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The Swiss Oblique Mercator Projection (a tentative name based upon the
Swiss usage in their CH1903 grid system) is based upon a three step process:

1. conformal transformation of ellipsoid coordinates to a sphere,

2. rotational translation of the spherical system so that the specified projec-
tion origin will lie on the equator, and

3. application of the Mercator projection to transform to the cartesian sys-
tem.

The projection is conformal with no scale error at the projection origin (k0 = 1)
and increasing symmetrically as a function of Northing (y) distance from the
origin.

This projection is selected in the proj.4 system by +proj=somerc with pa-
rameters +lon_0= and +lat_0 required to specify projection origin. Optionally,
false easting and northing, +x_0= and +y_0, may be used as well as origin scale
factor k_0. For computing the Swiss CH1903 grid coordinates with the proj.4
system, +init=world:CH1903 may be used.

Forward Projection

The first step is the conformal conversion of geodetic coordinates, φ–λ, to coor-
dinates on a sphere, φ′–λ′, with the following equations:
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where λ′ is designated longitude of the origin and e is ellipsoid eccentricity.
Constant c is determined from:
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where φ0 is the latitude of the projection origin. The equivalent origin latitude
on the sphere, φ′0, is obtained by:
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which, along with c and φ0, substituted into Eqn. 1 and solved for K.
Next the spherical coordinates are rotated by φ′0 about an axis on the equa-

torial plane and perpendicular to the plane of the central meridian (Wray’s
simple oblique).

sinφ′′ = cos φ′0 sinφ′ − sinφ′0 cos φ′ cos λ′ (5)
sinλ′′ = cos φ′ sinλ′/ cos φ′′ (6)

Finally, transform the rotated coordinates to cartesian by the spherical form
of the Mercator projection:
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where R is the geometric mean of the merdinal and parallel radius at the pro-
jection origin:
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where a is the major axis of the ellipsoid and k0 is scaling a factor. The scaling
factor is not used (= 1) in the Swiss version but it can reduce overall scale error
if appropriately applied.

Inverse Projection

To get the cartesian coordinates back into the rotated spherical system:
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Rotate the spherical coordinates back to the original position:

sinφ′ = cos φ′0 sinφ′′ + sinφ′0 cos φ′′ cos λ′′ (12)
sinλ′ = cos φ′′ sinλ′′/ cos φ′ (13)

The ellipsoid longitude is obtained from Eqn. 2 but latitude requires ap-
plication of Newton-Raphson method for a solution of Eqn. 1: xn+1 = xn −
f(xn)/f ′(xn). The correction ratio is:[
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Use φ′ as the initial estimate of φ and iterate until the correction ratio has
reached sufficient tolerance. The function converges rapidly.

Standard Definition

The following entry has been placed in the world file:

<CH1903> # Swiss Coordinate System
+proj=somerc +lat_0=46d57’8.660"N +lon_0=7d26’22.500"E
+ellps=bessel +x_0=600000 +y_0=200000
+k_0=1. no_defs <>

Note, the original are ”reverse engineered” from decimal values as I suspect
original specifications were in DMS format—needs verification.


