
PostGIS Manual
i

PostGIS Manual

PostGIS Manual
ii

Contents

1 Introduction 1

1.1 Credits .1

1.2 More Information .1

2 Installation 3

2.1 Requirements .3

2.2 PostGIS .3

2.2.1 Creating PostGIS spatially-enabled databases from an in-built template4

2.2.2 Upgrading .5

2.2.2.1 Soft upgrade .5

2.2.2.2 Hard upgrade .5

2.2.3 Common Problems .6

2.3 JDBC .6

2.4 Loader/Dumper .6

3 Frequently Asked Questions 7

4 Using PostGIS 10

4.1 GIS Objects .10

4.1.1 OpenGIS WKB and WKT .10

4.1.2 PostGIS EWKB, EWKT and Canonical Forms .11

4.1.3 SQL-MM Part 3 .12

4.2 Using OpenGIS Standards .12

4.2.1 The SPATIAL_REF_SYS Table .12

4.2.2 The GEOMETRY_COLUMNS Table .13

4.2.3 Creating a Spatial Table .14

4.2.4 Ensuring OpenGIS compliancy of geometries .15

4.3 Loading GIS Data .15

4.3.1 Using SQL .15

4.3.2 Using the Loader .16

4.4 Retrieving GIS Data .16

PostGIS Manual
iii

4.4.1 Using SQL .17

4.4.2 Using the Dumper .18

4.5 Building Indexes .18

4.5.1 GiST Indexes .18

4.5.2 Using Indexes .19

4.6 Complex Queries .19

4.6.1 Taking Advantage of Indexes .20

4.6.2 Examples of Spatial SQL .20

4.7 Using Mapserver .22

4.7.1 Basic Usage .23

4.7.2 Frequently Asked Questions .24

4.7.3 Advanced Usage .25

4.7.4 Examples .25

4.8 Java Clients (JDBC) .27

4.9 C Clients (libpq) .28

4.9.1 Text Cursors .28

4.9.2 Binary Cursors .28

5 Performance tips 29

5.1 Small tables of large geometries .29

5.1.1 Problem description .29

5.1.2 Workarounds .29

5.2 CLUSTERing on geometry indices .30

5.3 Avoiding dimension conversion .30

6 PostGIS Reference 31

6.1 OpenGIS Functions .31

6.1.1 Management Functions .31

6.1.2 Geometry Relationship Functions .31

6.1.3 Geometry Processing Functions .33

6.1.4 Geometry Accessors .35

6.1.5 Geometry Constructors .36

6.2 PostGIS Extensions .39

6.2.1 Management Functions .39

6.2.2 Operators .40

6.2.3 Measurement Functions .40

6.2.4 Geometry Outputs .41

6.2.5 Geometry Constructors .42

6.2.6 Geometry Editors .43

PostGIS Manual
iv

6.2.7 Linear Referencing .45

6.2.8 Misc .46

6.2.9 Long Transactions support .46

6.3 SQL-MM Functions .47

6.4 ArcSDE Functions .51

7 Reporting Bugs 52

A Appendix 53

A.1 Release Notes .53

A.1.1 Release 1.3.3 .53

A.1.2 Release 1.3.2 .53

A.1.3 Release 1.3.1 .53

A.1.4 Release 1.3.0 .53

A.1.4.1 Added Functionality .53

A.1.4.2 Performance Enhancements .54

A.1.4.3 Other Changes .54

A.1.5 Release 1.2.1 .54

A.1.5.1 Changes .54

A.1.6 Release 1.2.0 .54

A.1.6.1 Changes .54

A.1.7 Release 1.1.6 .54

A.1.7.1 Upgrading .55

A.1.7.2 Bug fixes .55

A.1.7.3 Other changes .55

A.1.8 Release 1.1.5 .55

A.1.8.1 Upgrading .55

A.1.8.2 Bug fixes .55

A.1.8.3 New Features .55

A.1.9 Release 1.1.4 .56

A.1.9.1 Upgrading .56

A.1.9.2 Bug fixes .56

A.1.9.3 Java changes .56

A.1.10 Release 1.1.3 .56

A.1.10.1 Upgrading .56

A.1.10.2 Bug fixes / correctness .56

A.1.10.3 New functionalities .57

A.1.10.4 JDBC changes .57

A.1.10.5 Other changes .57

PostGIS Manual
v

A.1.11 Release 1.1.2 .57

A.1.11.1 Upgrading .57

A.1.11.2 Bug fixes .57

A.1.11.3 New functionalities .57

A.1.11.4 Other changes .58

A.1.12 Release 1.1.1 .58

A.1.12.1 Upgrading .58

A.1.12.2 Bug fixes .58

A.1.12.3 New functionalities .58

A.1.13 Release 1.1.0 .58

A.1.13.1 Credits .59

A.1.13.2 Upgrading .59

A.1.13.3 New functions .59

A.1.13.4 Bug fixes .59

A.1.13.5 Function semantic changes .59

A.1.13.6 Performance improvements .60

A.1.13.7 JDBC2 works .60

A.1.13.8 Other new things .60

A.1.13.9 Other changes .60

A.1.14 Release 1.0.6 .60

A.1.14.1 Upgrading .60

A.1.14.2 Bug fixes .61

A.1.14.3 Improvements .61

A.1.15 Release 1.0.5 .61

A.1.15.1 Upgrading .61

A.1.15.2 Library changes .61

A.1.15.3 Loader changes .61

A.1.15.4 Other changes .62

A.1.16 Release 1.0.4 .62

A.1.16.1 Upgrading .62

A.1.16.2 Bug fixes .62

A.1.16.3 Improvements .62

A.1.17 Release 1.0.3 .62

A.1.17.1 Upgrading .63

A.1.17.2 Bug fixes .63

A.1.17.3 Improvements .63

A.1.18 Release 1.0.2 .63

A.1.18.1 Upgrading .63

A.1.18.2 Bug fixes .63

PostGIS Manual
vi

A.1.18.3 Improvements .64

A.1.19 Release 1.0.1 .64

A.1.19.1 Upgrading .64

A.1.19.2 Library changes .64

A.1.19.3 Other changes/additions .64

A.1.20 Release 1.0.0 .64

A.1.20.1 Upgrading .64

A.1.20.2 Library changes .65

A.1.20.3 Other changes/additions .65

A.1.21 Release 1.0.0RC6 .65

A.1.21.1 Upgrading .65

A.1.21.2 Library changes .65

A.1.21.3 Scripts changes .65

A.1.21.4 Other changes .65

A.1.22 Release 1.0.0RC5 .65

A.1.22.1 Upgrading .66

A.1.22.2 Library changes .66

A.1.22.3 Other changes .66

A.1.23 Release 1.0.0RC4 .66

A.1.23.1 Upgrading .66

A.1.23.2 Library changes .66

A.1.23.3 Scripts changes .66

A.1.23.4 Other changes .67

A.1.24 Release 1.0.0RC3 .67

A.1.24.1 Upgrading .67

A.1.24.2 Library changes .67

A.1.24.3 Scripts changes .67

A.1.24.4 JDBC changes .68

A.1.24.5 Other changes .68

A.1.25 Release 1.0.0RC2 .68

A.1.25.1 Upgrading .68

A.1.25.2 Library changes .68

A.1.25.3 Scripts changes .68

A.1.25.4 Other changes .69

A.1.26 Release 1.0.0RC1 .69

A.1.26.1 Upgrading .69

A.1.26.2 Changes .69

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

This is the manual for version 1.3.3

PostGIS Manual
1 / 69

Chapter 1

Introduction

PostGIS is developed by Refractions Research Inc, as a spatial database technology research project. Refractions is a GIS
and database consulting company in Victoria, British Columbia, Canada, specializing in data integration and custom software
development. We plan on supporting and developing PostGIS to support a range of important GIS functionality, including full
OpenGIS support, advanced topological constructs (coverages, surfaces, networks), desktop user interface tools for viewing and
editing GIS data, and web-based access tools.

1.1 Credits

Sandro Santilli <strk@refractions.net> Coordinates all bug fixing and maintenance effort, integration of new GEOS function-
ality, and new function enhancements.

Mark Leslie <mleslie@refractions.net> Ongoing maintenance and development of core functions.

Chris Hodgson <chodgson@refractions.net>Maintains new functions and the 7.2 index bindings.

Paul Ramsey <pramsey@refractions.net>Keeps track of the documentation and packaging.

Jeff Lounsbury <jeffloun@refractions.net> Original development of the Shape file loader/dumper.

Dave Blasby <dblasby@gmail.com>The original developer of PostGIS. Dave wrote the server side objects, index bindings,
and many of the server side analytical functions.

Other contributors In alphabetical order: Alex Bodnaru, Alex Mayrhofer, Bruce Rindahl, Bernhard Reiter, Bruno Wolff III,
Carl Anderson, Charlie Savage, David Skea, David Techer, IIDA Tetsushi, Geographic Data BC, Gerald Fenoy, Gino
Lucrezi, Klaus Foerster, Kris Jurka, Mark Cave-Ayland, Mark Sondheim, Markus Schaber, Michael Fuhr, Nikita Shulga,
Norman Vine, Olivier Courtin, Ralph Mason, Steffen Macke.

Important Support Libraries TheGEOSgeometry operations library, and the algorithmic work of Martin Davis <mbdavis@vividsolutions.com>
of Vivid Solutions in making it all work.

TheProj4cartographic projection library, and the work of Gerald Evenden and Frank Warmerdam in creating and main-
taining it.

1.2 More Information

• The latest software, documentation and news items are available at the PostGIS web site,http://postgis.refractions.net.

• More information about the GEOS geometry operations library is available athttp://geos.refractions.net.

• More information about the Proj4 reprojection library is available athttp://www.remotesensing.org/proj.

http://geos.refractions.net
http://proj4.maptools.org
http://postgis.refractions.net
http://geos.refractions.net
http://www.remotesensing.org/proj

PostGIS Manual
2 / 69

• More information about the PostgreSQL database server is available at the PostgreSQL main sitehttp://www.postgresql.org.

• More information about GiST indexing is available at the PostgreSQL GiST development site,http://www.sai.msu.su/~megera/-
postgres/gist.

• More information about Mapserver internet map server is available athttp://mapserver.gis.umn.edu.

• The "Simple Features for Specification for SQL" is available at the OpenGIS Consortium web site:http://www.opengis.org.

http://www.postgresql.org
http://www.sai.msu.su/~megera/postgres/gist
http://www.sai.msu.su/~megera/postgres/gist
http://mapserver.gis.umn.edu/
http://www.opengis.org/docs/99-049.pdf
http://www.opengis.org

PostGIS Manual
3 / 69

Chapter 2

Installation

2.1 Requirements

PostGIS has the following requirements for building and usage:

• A complete installation of PostgreSQL (including server headers). PostgreSQL is available fromhttp://www.postgresql.org.
Version 7.2 or higher is required.

• GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling withgcc .

• GNU Make (gmake or make). For many systems, GNUmake is the default version of make. Check the version by invoking
make-v . Other versions ofmake may not process the PostGISMakefile properly.

• (Recommended) Proj4 reprojection library. The Proj4 library is used to provide coordinate reprojection support within PostGIS.
Proj4 is available for download fromhttp://www.remotesensing.org/proj.

• (Recommended) GEOS geometry library. The GEOS library is used to provide geometry tests (ST_Touches(), ST_Contains(),
ST_Intersects()) and operations (ST_Buffer(), ST_Union(), ST_Difference()) within PostGIS. GEOS is available for download
from http://geos.refractions.net.

2.2 PostGIS

The PostGIS module is a extension to the PostgreSQL backend server. As such, PostGIS 1.3.3requiresfull PostgreSQL server
headers access in order to compile. The PostgreSQL source code is available athttp://www.postgresql.org.

PostGIS 1.3.3 can be built against PostgreSQL versions 7.2.0 or higher. Earlier versions of PostgreSQL arenot supported.

1. Before you can compile the PostGIS server modules, you must compile and install the PostgreSQL package.

Note
If you plan to use GEOS functionality you might need to explicitly link PostgreSQL against the standard C++ library:

LDFLAGS=- lstdc ++ ./ configure [YOUROPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird problems
(backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL from scratch,
of course.

2. Retrieve the PostGIS source archive fromhttp://postgis.refractions.net/postgis-1.3.3.tar.gz. Uncompress and untar the
archive.

http://www.postgresql.org
http://www.remotesensing.org/proj
http://geos.refractions.net
http://www.postgresql.org
http://postgis.refractions.net/postgis-1.3.3.tar.gz

PostGIS Manual
4 / 69

gzip - d - c postgis -1.3.3. tar . gz | tar xvf -

3. Enter the postgis-1.3.3 directory, and run:

./ configure

• If you want support for coordinate reprojection, you must have the Proj4 library installed. If ./configure didn’t find it, try
using--with-proj=PATH switch specify a specific Proj4 installation directory.

• If you want to use GEOS functionality, you must have the GEOS library installed. If ./configure didn’t find it, try using
--with-geos=PATH to specify the full path to the geos-config program full path.

4. Run the compile and install commands.

make # make install

All files are installed using information provided bypg_config

• Libraries are installed[pkglibdir]/lib/contrib .

• Important support files such aslwpostgis.sql are installed in[prefix]/share/contrib .

• Loader and dumper binaries are installed in[bindir]/ .

5. PostGIS requires the PL/pgSQL procedural language extension. Before loading thelwpostgis.sql file, you must first
enable PL/pgSQL. You should use thecreatelang command. The PostgreSQL Programmer’s Guide has the details if
you want to this manually for some reason.

createlang plpgsql [yourdatabase]

6. Now load the PostGIS object and function definitions into your database by loading thelwpostgis.sql definitions file.

psql - d [yourdatabase] - f lwpostgis . sql

The PostGIS server extensions are now loaded and ready to use.

7. For a complete set of EPSG coordinate system definition identifiers, you can also load thespatial_ref_sys.sql
definitions file and populate theSPATIAL_REF_SYStable.

psql - d [yourdatabase] - f spatial_ref_sys . sql

2.2.1 Creating PostGIS spatially-enabled databases from an in-built template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database calledtemplate_postgis . If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb - T template_postgis my_spatial_db

From SQL:

postgres =# CREATE DATABASEmy_spatial_db TEMPLATE=template_postgis

PostGIS Manual
5 / 69

2.2.2 Upgrading

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.

Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and an HARD UPGRADE procedure for major
releases.

Before attempting to upgrade postgis, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will always
be able to restore the dump with an HARD UPGRADE.

2.2.2.1 Soft upgrade

Soft upgrade consists of sourcing the lwpostgis_upgrade.sql script in your spatial database:

$ psql - f lwpostgis_upgrade . sql - d your_spatial_database

If a soft upgrade is not possible the script will abort and you will be warned about HARD UPGRADE being required, so do not
hesitate to try a soft upgrade first.

Note
If you can’t find the lwpostgis_upgrade.sql file you are probably using a version prior to 1.1 and must generate that file
by yourself. This is done with the following command:

$ utils / postgis_proc_upgrade . pl lwpostgis . sql > lwpostgis_upgrade . sql

2.2.2.2 Hard upgrade

By HARD UPGRADE we intend full dump/reload of postgis-enabled databases. You need an HARD UPGRADE when postgis
objects’ internal storage changes or when SOFT UPGRADE is not possible. TheRelease Notesappendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

PostGIS provides an utility script to restore a dump produced with the pg_dump -Fc command. It is experimental so redirecting
its output to a file will help in case of problems. The procedure is as follow:

Create a "custom-format" dump of the database you want to upgrade (let’s call it "olddb")

$ pg_dump - Fc olddb > olddb . dump

Restore the dump contextually upgrading postgis into a new database. The new database doesn’t have to exist. postgis_restore
accepts createdb parameters after the dump file name, and that can for instance be used if you are using a non-default character
encoding for your database. Let’s call it "newdb", with UNICODE as the character encoding:

$ sh utils / postgis_restore . pl lwpostgis . sql newdb olddb . dump - E=UNICODE > restore . log

Check that all restored dump objects really had to be restored from dump and do not conflict with the ones defined in lwpostgis.sql

$ grep ^KEEPING restore . log | less

If upgrading from PostgreSQL < 8.0 to >= 8.0 you might want to drop the attrelid, varattnum and stats columns in the geom-
etry_columns table, which are no-more needed. Keeping them won’t hurt. DROPPING THEM WHEN REALLY NEEDED
WILL DO HURT !

$ psql newdb - c " ALTER TABLE geometry_columns DROPattrelid "
$ psql newdb - c " ALTER TABLE geometry_columns DROPvarattnum "
$ psql newdb - c " ALTER TABLE geometry_columns DROPstats "

PostGIS Manual
6 / 69

spatial_ref_sys table is restore from the dump, to ensure your custom additions are kept, but the distributed one might contain
modification so you should backup your entries, drop the table and source the new one. If you did make additions we assume
you know how to backup them before upgrading the table. Replace of it with the new one is done like this:

$ psql newdb
newdb=> drop spatial_ref_sys ;
DROP
newdb=> \ i spatial_ref_sys . sql

2.2.3 Common Problems

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. It is easiest if you untar the PostGIS distribution into the contrib directory under the PostgreSQL source tree. However,
if this is not possible for some reason, you can set thePGSQL_SRCenvironment variable to the path to the PostgreSQL
source directory. This will allow you to compile PostGIS, but themake install may not work, so be prepared to copy the
PostGIS library and executable files to the appropriate locations yourself.

2. Check that you you have installed PostgreSQL 7.2 or newer, and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has
already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 7.2 or newer, and strange, unexpected error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version ();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using therpm
command as follows:rpm -qa | grep postgresql

Also check that you have made any necessary changes to the top of the Makefile.config. This includes:

1. If you want to be able to do coordinate reprojections, you must install the Proj4 library on your system, set theUSE_PROJ
variable to 1 and thePROJ_DIR to your installation prefix in the Makefile.config.

2. If you want to be able to use GEOS functions you must install the GEOS library on your system, and set theUSE_GEOS
to 1 and theGEOS_DIRto your installation prefix in the Makefile.config

2.3 JDBC

The JDBC extensions provide Java objects corresponding to the internal PostGIS types. These objects can be used to write Java
clients which query the PostGIS database and draw or do calculations on the GIS data in PostGIS.

1. Enter thejdbc sub-directory of the PostGIS distribution.

2. Edit theMakefile to provide the correct paths of your java compiler (JAVAC) and interpreter (JAVA).

3. Run themake command. Copy thepostgis.jar file to wherever you keep your java libraries.

2.4 Loader/Dumper

The data loader and dumper are built and installed automatically as part of the PostGIS build. To build and install them manually:

cd postgis -1.3.3/ loader
make
make install

The loader is calledshp2pgsql and converts ESRI Shape files into SQL suitable for loading in PostGIS/PostgreSQL. The
dumper is calledpgsql2shp and converts PostGIS tables (or queries) into ESRI Shape files. For more verbose documentation,
see the online help, and the manual pages.

PostGIS Manual
7 / 69

Chapter 3

Frequently Asked Questions

1. What kind of geometric objects can I store?

You can store point, line, polygon, multipoint, multiline, multipolygon, and geometrycollections. These are specified in
the Open GIS Well Known Text Format (with XYZ,XYM,XYZM extentions).

2. How do I insert a GIS object into the database?

First, you need to create a table with a column of type "geometry" to hold your GIS data. Connect to your database with
psql and try the following SQL:

CREATE TABLE gtest (ID int4 , NAMEvarchar (20));
SELECT AddGeometryColumn (’’, ’ gtest ’,’ geom’,-1,’ LINESTRING’,2);

If the geometry column addition fails, you probably have not loaded the PostGIS functions and objects into this database.
See theinstallation instructions.Then, you can insert a geometry into the table using a SQL insert statement. The GIS
object itself is formatted using the OpenGIS Consortium "well-known text" format:

INSERT INTO gtest (ID , NAME, GEOM)
VALUES (

1,
’ First Geometry ’,
GeomFromText (’ LINESTRING(2 3,4 5,6 5,7 8)’, -1)

);

For more information about other GIS objects, see theobject reference.To view your GIS data in the table:

SELECT id , name, AsText (geom) AS geom FROMgtest ;

The return value should look something like this:

id | name | geom
----+----------------+-----------------------------

1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

3. How do I construct a spatial query?

The same way you construct any other database query, as an SQL combination of return values, functions, and boolean
tests.For spatial queries, there are two issues that are important to keep in mind while constructing your query: is there a
spatial index you can make use of; and, are you doing expensive calculations on a large number of geometries.In general,
you will want to use the "intersects operator" (&&) which tests whether the bounding boxes of features intersect. The
reason the && operator is useful is because if a spatial index is available to speed up the test, the && operator will make
use of this. This can make queries much much faster.You will also make use of spatial functions, such as Distance(),
ST_Intersects(), ST_Contains() and ST_Within(), among others, to narrow down the results of your search. Most spatial
queries include both an indexed test and a spatial function test. The index test serves to limit the number of return tuples
to only tuples thatmightmeet the condition of interest. The spatial functions are then use to test the condition exactly.

PostGIS Manual
8 / 69

SELECT id , the_geom
FROMthetable
WHERE

the_geom && ’ POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))’
AND

_ST_Contains (the_geom ,’ POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))’);

4. How do I speed up spatial queries on large tables?

Fast queries on large tables is theraison d’etreof spatial databases (along with transaction support) so having a good index
is important.To build a spatial index on a table with ageometry column, use the "CREATE INDEX" function as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

Note
GiST indexes are assumed to be lossy. Lossy indexes uses a proxy object (in the spatial case, a bounding box) for
building the index.

You should also ensure that the PostgreSQL query planner has enough information about your index to make rational
decisions about when to use it. To do this, you have to "gather statistics" on your geometry tables.For PostgreSQL
8.0.x and greater, just run theVACUUM ANALYZE command.For PostgreSQL 7.4.x and below, run theSELECT UP-
DATE_GEOMETRY_STATS() command.

5. Why aren’t PostgreSQL R-Tree indexes supported?

Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-Trees have been completely
discarded since version 0.6, and spatial indexing is provided with an R-Tree-over-GiST scheme.Our tests have shown
search speed for native R-Tree and GiST to be comparable. Native PostgreSQL R-Trees have two limitations which make
them undesirable for use with GIS features (note that these limitations are due to the current PostgreSQL native R-Tree
implementation, not the R-Tree concept in general):

• R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in size. GiST indexes can, using the
"lossy" trick of substituting the bounding box for the feature itself.

• R-Tree indexes in PostgreSQL are not "null safe", so building an index on a geometry column which contains null
geometries will fail.

6. Why should I use theAddGeometryColumn() function and all the other OpenGIS stuff?

If you do not want to use the OpenGIS support functions, you do not have to. Simply create tables as in older versions,
defining your geometry columns in the CREATE statement. All your geometries will have SRIDs of -1, and the OpenGIS
meta-data tables willnot be filled in properly. However, this will cause most applications based on PostGIS to fail, and it
is generally suggested that you do useAddGeometryColumn() to create geometry tables.Mapserver is one application
which makes use of thegeometry_columns meta-data. Specifically, Mapserver can use the SRID of the geometry
column to do on-the-fly reprojection of features into the correct map projection.

7. What is the best way to find all objects within a radius of another object?

To use the database most efficiently, it is best to do radius queries which combine the radius test with a bounding box test:
the bounding box test uses the spatial index, giving fast access to a subset of data which the radius test is then applied to.The
ST_DWithin(geometry, geometry, distance) function is a handy way of performing an indexed distance
search. It works by creating a search rectangle large enough to enclose the distance radius, then performing an exact
distance search on the indexed subset of results.For example, to find all objects with 100 meters of POINT(1000 1000) the
following query would work well:

SELECT * FROMgeotable
WHEREST_DWithin (geocolumn , ’ POINT(1000 1000)’, 100.0);

PostGIS Manual
9 / 69

8. How do I perform a coordinate reprojection as part of a query?

To perform a reprojection, both the source and destination coordinate systems must be defined in the SPATIAL_REF_SYS
table, and the geometries being reprojected must already have an SRID set on them. Once that is done, a reprojection is as
simple as referring to the desired destination SRID.

SELECT ST_Transform (the_geom ,4269) FROMgeotable ;

PostGIS Manual
10 / 69

Chapter 4

Using PostGIS

4.1 GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" defined by the OpenGIS Consortium (OGC). As
of version 0.9, PostGIS supports all the objects and functions specified in the OGC "Simple Features for SQL" specification.

PostGIS extends the standard with support for 3DZ,3DM and 4D coordinates.

4.1.1 OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT) form and the
Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the object and the coordinates
which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

• POINT(0 0)

• LINESTRING(0 0,1 1,1 2)

• POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

• MULTIPOINT(0 0,1 2)

• MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

• MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

• GEOMETRYCOLLECTION(POINT(2 3),LINESTRING((2 3,3 4)))

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing system
identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

bytea WKB= asBinary (geometry);
text WKT = asText (geometry);
geometry = GeomFromWKB(bytea WKB, SRID);
geometry = GeometryFromText (text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would be:

INSERT INTO geotable (the_geom , the_name)
VALUES (GeomFromText (’ POINT(-126.4 45.32)’, 312), ’ A Place ’);

PostGIS Manual
11 / 69

4.1.2 PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is *never* embedded in the input/output representations.

PostGIS extended formats are currently superset of OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but this might
vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus you SHOULD NOT
rely on this feature!

PostGIS EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded SRID information.

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows:

• POINT(0 0 0) -- XYZ

• SRID=32632;POINT(0 0) -- XY with SRID

• POINTM(0 0 0) -- XYM

• POINT(0 0 0 0) -- XYZM

• SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

• MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))

• POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))

• MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

• GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5))

Input/Output of these formats are available using the following interfaces:

bytea EWKB= asEWKB(geometry);
text EWKT= asEWKT(geometry);
geometry = GeomFromEWKB(bytea EWKB);
geometry = GeomFromEWKT(text EWKT);

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

INSERT INTO geotable (the_geom , the_name)
VALUES (GeomFromEWKT(’ SRID=312; POINTM(-126.4 45.32 15)’), ’ A Place ’)

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function call) and
the one which is guaranteed to be accepted with a simple insert, update or copy. For the postgis ’geometry’ type these are:

- Output
- binary : EWKB

ascii : HEXEWKB(EWKBin hex form)
- Input

- binary : EWKB
ascii : HEXEWKB| EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

=# SELECT ’ SRID=4; POINT(0 0)’:: geometry ;

geometry
--
01010000200400000000000000000000000000000000000000
(1 row)

PostGIS Manual
12 / 69

4.1.3 SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec by defining a number of
circularly interpolated curves.

The SQL-MM definitions include 3dm, 3dz and 4d coordinates, but do not allow the embedding of SRID information.

The well-known text extensions are not yet fully supported. Examples of some simple curved geometries are shown below:

• CIRCULARSTRING(0 0, 1 1, 1 0)

• COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

• CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1))

• MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

• MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

Note
Currently, PostGIS cannot support the use of Compound Curves in a Curve Polygon.

Note
All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-8.

4.2 Using OpenGIS Standards

The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the functions required to manipulate
them, and a set of meta-data tables. In order to ensure that meta-data remain consistent, operations such as creating and removing
a spatial column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables:SPATIAL_REF_SYSandGEOMETRY_COLUMNS. TheSPATIAL_REF_SYStable
holds the numeric IDs and textual descriptions of coordinate systems used in the spatial database.

4.2.1 The SPATIAL_REF_SYS Table

TheSPATIAL_REF_SYStable definition is as follows:

CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR(2048),
proj4text VARCHAR(2048)

)

TheSPATIAL_REF_SYScolumns are as follows:

SRID An integer value that uniquely identifies the Spatial Referencing System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG"
would be a validAUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in theAUTH_NAME. In the case of
EPSG, this is where the EPSG projection code would go.

PostGIS Manual
13 / 69

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS[" NAD83 / UTM Zone 10N",
GEOGCS[" NAD83",

DATUM[" North_American_Datum_1983 ",
SPHEROID[" GRS 1980",6378137,298.257222101]

],
PRIMEM[" Greenwich ",0],
UNIT[" degree ",0.0174532925199433]

],
PROJECTION[" Transverse_Mercator "],
PARAMETER[" latitude_of_origin ",0],
PARAMETER[" central_meridian ",-123],
PARAMETER[" scale_factor ",0.9996],
PARAMETER[" false_easting ",500000],
PARAMETER[" false_northing ",0],
UNIT[" metre ",1]

]

For a listing of EPSG projection codes and their corresponding WKT representations, seehttp://www.opengis.org/techno/-
interop/EPSG2WKT.TXT. For a discussion of WKT in general, see the OpenGIS "Coordinate Transformation Services
Implementation Specification" athttp://www.opengis.org/techno/specs.htm. For information on the European Petroleum
Survey Group (EPSG) and their database of spatial reference systems, seehttp://epsg.org.

PROJ4TEXT PostGIS uses the Proj4 library to provide coordinate transformation capabilities. ThePROJ4TEXTcolumn
contains the Proj4 coordinate definition string for a particular SRID. For example:

+proj =utm +zone =10 +ellps =clrk66 +datum =NAD27 +units =m

For more information about, see the Proj4 web site athttp://www.remotesensing.org/proj. Thespatial_ref_sys.sql
file contains bothSRTEXTandPROJ4TEXTdefinitions for all EPSG projections.

4.2.2 The GEOMETRY_COLUMNS Table

TheGEOMETRY_COLUMNStable definition is as follows:

CREATE TABLE geometry_columns (
f_table_catalog VARRCHAR(256) NOT NULL,
f_table_schema VARCHAR(256) NOT NULL,
f_table_nam VARCHAR(256) NOT NULL,
f_geometry_column VARCHAR(256) NOT NULL,
coord_dimension INTEGER NOT NULL,
srid INTEGER NOT NULL,
type VARCHAR(30) NOT NULL

)

The columns are as follows:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is used (public is the default).

F_GEOMETRY_COLUMN The name of the geometry column in the feature table.

COORD_DIMENSION The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
SPATIAL_REF_SYS.

http://www.opengis.org/techno/interop/EPSG2WKT.TXT
http://www.opengis.org/techno/interop/EPSG2WKT.TXT
http://www.opengis.org/techno/specs.htm
http://epsg.org
http://www.remotesensing.org/proj

PostGIS Manual
14 / 69

TYPE The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

Note
This attribute is (probably) not part of the OpenGIS specification, but is required for ensuring type homogeneity.

4.2.3 Creating a Spatial Table

Creating a table with spatial data is done in two stages:

• Create a normal non-spatial table.

For example:CREATE TABLE ROADS_GEOM (ID int4, NAME varchar(25))

• Add a spatial column to the table using the OpenGIS "AddGeometryColumn" function.

The syntax is:

AddGeometryColumn (
<schema_name>,
<table_name >,
<column_name >,
<srid >,
<type >,
<dimension >

)

Or, using current schema:

AddGeometryColumn (
<table_name >,
<column_name >,
<srid >,
<type >,
<dimension >

)

Example1:SELECT AddGeometryColumn(’public’, ’roads_geom’, ’geom’, 423, ’LINESTRING’, 2)

Example2:SELECT AddGeometryColumn(’roads_geom’, ’geom’, 423, ’LINESTRING’, 2)

Here is an example of SQL used to create a table and add a spatial column (assuming that an SRID of 128 exists already):

CREATE TABLE parks (
park_id INTEGER,
park_name VARCHAR,
park_date DATE,
park_type VARCHAR

);
SELECT AddGeometryColumn (’ parks ’, ’ park_geom ’, 128, ’ MULTIPOLYGON’, 2);

Here is another example, using the generic "geometry" type and the undefined SRID value of -1:

CREATE TABLE roads (
road_id INTEGER,
road_name VARCHAR

);
SELECT AddGeometryColumn (’ roads ’, ’ roads_geom ’, -1, ’ GEOMETRY’, 3);

PostGIS Manual
15 / 69

4.2.4 Ensuring OpenGIS compliancy of geometries

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by the
OpenGIS Simple Feature Specification. To check validity of geometries you can use theIsValid() function:

gisdb =# select isvalid (’ LINESTRING(0 0, 1 1)’),
isvalid (’ LINESTRING(0 0,0 0)’);

isvalid | isvalid
---------+---------

t | f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for
complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your
tables by adding a check constraint:

ALTER TABLE mytable
ADD CONSTRAINTgeometry_valid_check

CHECK(isvalid (the_geom));

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" or "JTS Intersection() threw an error!"
when calling PostGIS functions with valid input geometries, you likely found an error in either PostGIS or one of the libraries
it uses, and you should contact the PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for
valid input.

Note
Strictly compliant OGC geometries cannot have Z or M values. The IsValid() function won’t consider higher dimensioned
geometries invalid! Invocations of AddGeometryColumn() will add a constraint checking geometry dimensions, so it is enough
to specify 2 there.

4.3 Loading GIS Data

Once you have created a spatial table, you are ready to upload GIS data to the database. Currently, there are two ways to get data
into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shape file loader/dumper.

4.3.1 Using SQL

If you can convert your data to a text representation, then using formatted SQL might be the easiest way to get your data into
PostGIS. As with Oracle and other SQL databases, data can be bulk loaded by piping a large text file full of SQL "INSERT"
statements into the SQL terminal monitor.

A data upload file (roads.sql for example) might look like this:

BEGIN;
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (1, GeomFromText (’ LINESTRING(191232 243118,191108 243242)’,-1),’ Jeff Rd’);
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (2, GeomFromText (’ LINESTRING(189141 244158,189265 244817)’,-1),’ Geordie Rd’);
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (3, GeomFromText (’ LINESTRING(192783 228138,192612 229814)’,-1),’ Paul St ’);
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (4, GeomFromText (’ LINESTRING(189412 252431,189631 259122)’,-1),’ Graeme Ave’);
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (5, GeomFromText (’ LINESTRING(190131 224148,190871 228134)’,-1),’ Phil Tce ’);
INSERT INTO roads (road_id , roads_geom , road_name)

VALUES (6, GeomFromText (’ LINESTRING(198231 263418,198213 268322)’,-1),’ Dave Cres ’);
COMMIT;

PostGIS Manual
16 / 69

The data file can be piped into PostgreSQL very easily using the "psql" SQL terminal monitor:

psql - d [database] - f roads . sql

4.3.2 Using the Loader

The shp2pgsql data loader converts ESRI Shape files into SQL suitable for insertion into a PostGIS/PostgreSQL database.
The loader has several operating modes distinguished by command line flags:

-d Drops the database table before creating a new table with the data in the Shape file.

-a Appends data from the Shape file into the database table. Note that to use this option to load multiple files, the files must have
the same attributes and same data types.

-c Creates a new table and populates it from the Shape file.This is the default mode.

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s <SRID> Creates and populates the geometry tables with the specified SRID.

-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-w Output WKT format, for use with older (0.x) versions of PostGIS. Note that this will introduce coordinate drifts and will
drop M values from shapefiles.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTF8. The resulting SQL output will contain aSET CLIENT_ENCODING to UTF8command,
so that the backend will be able to reconvert from UTF8 to whatever encoding the database is configured to use internally.

Note that -a, -c, -d and -p are mutually exclusive.

An example session using the loader to create an input file and uploading it might look like this:

shp2pgsql shaperoads myschema. roadstable > roads . sql
psql - d roadsdb - f roads . sql

A conversion and upload can be done all in one step using UNIX pipes:

shp2pgsql shaperoads myschema. roadstable | psql - d roadsdb

4.4 Retrieving GIS Data

Data can be extracted from the database using either SQL or the Shape file loader/dumper. In the section on SQL we will discuss
some of the operators available to do comparisons and queries on spatial tables.

PostGIS Manual
17 / 69

4.4.1 Using SQL

The most straightforward means of pulling data out of the database is to use a SQL select query and dump the resulting columns
into a parsable text file:

db=# SELECT road_id , AsText (road_geom) AS geom, road_name FROMroads ;

road_id | geom | road_name
--------+---+-----------

1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING(192783 228138,192612 229814) | Paul St
4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
7 | LINESTRING(218421 284121,224123 241231) | Chris Way

(6 rows)

However, there will be times when some kind of restriction is necessary to cut down the number of fields returned. In the case of
attribute-based restrictions, just use the same SQL syntax as normal with a non-spatial table. In the case of spatial restrictions,
the following operators are available/useful:

&& This operator tells whether the bounding box of one geometry intersects the bounding box of another.

~= This operators tests whether two geometries are geometrically identical. For example, if ’POLYGON((0 0,1 1,1 0,0 0))’ is
the same as ’POLYGON((0 0,1 1,1 0,0 0))’ (it is).

= This operator is a little more naive, it only tests whether the bounding boxes of to geometries are the same.

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries by using the "GeomFromText()" function. So, for example:

SELECT road_id , road_name
FROMroads
WHEREroads_geom ~= GeomFromText (’ LINESTRING(191232 243118,191108 243242)’,-1);

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

SELECT road_id , road_name
FROMroads
WHEREroads_geom && GeomFromText (’ POLYGON((...))’,-1);

The above query will use the bounding box of the polygon for comparison purposes.

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display. Using a "BOX3D" object for the frame, such a query looks like this:

SELECT AsText (roads_geom) AS geom
FROMroads
WHERE

roads_geom && SetSRID (’ BOX3D(191232 243117,191232 243119)’:: box3d ,-1);

Note the use of the SRID, to specify the projection of the BOX3D. The value -1 is used to indicate no specified SRID.

PostGIS Manual
18 / 69

4.4.2 Using the Dumper

Thepgsql2shp table dumper connects directly to the database and converts a table (possibly defined by a query) into a shape
file. The basic syntax is:

pgsql2shp [< options >] < database > [< schema>.]< table >

pgsql2shp [< options >] < database > <query >

The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.

-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop thegid field, or escape column names.

-d For backward compatibility: write a 3-dimensional shape file when dumping from old (pre-1.0.0) postgis databases (the
default is to write a 2-dimensional shape file in that case). Starting from postgis-1.0.0+, dimensions are fully encoded.

4.5 Building Indexes

Indexes are what make using a spatial database for large data sets possible. Without indexing, any search for a feature would
require a "sequential scan" of every record in the database. Indexing speeds up searching by organizing the data into a search
tree which can be quickly traversed to find a particular record. PostgreSQL supports three kinds of indexes by default: B-Tree
indexes, R-Tree indexes, and GiST indexes.

• B-Trees are used for data which can be sorted along one axis; for example, numbers, letters, dates. GIS data cannot be rationally
sorted along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no use for us.

• R-Trees break up data into rectangles, and sub-rectangles, and sub-sub rectangles, etc. R-Trees are used by some spatial
databases to index GIS data, but the PostgreSQL R-Tree implementation is not as robust as the GiST implementation.

• GiST (Generalized Search Trees) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index GIS data.

4.5.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is used to speed
up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree
indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

PostGIS Manual
19 / 69

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

Building a spatial index is a computationally intensive exercise: on tables of around 1 million rows, on a 300MHz Solaris
machine, we have found building a GiST index takes about 1 hour. After building an index, it is important to force PostgreSQL
to collect table statistics, which are used to optimize query plans:

VACUUMANALYZE [table_name] [column_name];
-- This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS([table_name], [column_name]);

GiST indexes have two advantages over R-Tree indexes in PostgreSQL. Firstly, GiST indexes are "null safe", meaning they can
index columns which include null values. Secondly, GiST indexes support the concept of "lossiness" which is important when
dealing with GIS objects larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL to store only the "important"
part of an object in an index -- in the case of GIS objects, just the bounding box. GIS objects larger than 8K will cause R-Tree
indexes to fail in the process of being built.

4.5.2 Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the query planner transparently decides when to use
index information to speed up a query plan. Unfortunately, the PostgreSQL query planner does not optimize the use of GiST
indexes well, so sometimes searches which should use a spatial index instead default to a sequence scan of the whole table.

If you find your spatial indexes are not being used (or your attribute indexes, for that matter) there are a couple things you can
do:

• Firstly, make sure statistics are gathered about the number and distributions of values in a table, to provide the query plan-
ner with better information to make decisions around index usage. For PostgreSQL 7.4 installations and below this is done
by runningupdate_geometry_stats([table_name, column_name])(compute distribution) andVACUUM ANALYZE [ta-
ble_name] [column_name](compute number of values). Starting with PostgreSQL 8.0 runningVACUUM ANALYZE will
do both operations. You should regularly vacuum your databases anyways -- many PostgreSQL DBAs haveVACUUM run as
an off-peak cron job on a regular basis.

• If vacuuming does not work, you can force the planner to use the index information by using theSET ENABLE_SEQSCAN=OFF
command. You should only use this command sparingly, and only on spatially indexed queries: generally speaking, the planner
knows better than you do about when to use normal B-Tree indexes. Once you have run your query, you should consider setting
ENABLE_SEQSCANback on, so that other queries will utilize the planner as normal.

Note
As of version 0.6, it should not be necessary to force the planner to use the index with ENABLE_SEQSCAN.

• If you find the planner wrong about the cost of sequential vs index scans try reducing the value of random_page_cost in
postgresql.conf or using SET random_page_cost=#. Default value for the parameter is 4, try setting it to 1 or 2. Decrementing
the value makes the planner more inclined of using Index scans.

4.6 Complex Queries

The raison d’etreof spatial database functionality is performing queries inside the database which would ordinarily require
desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available, and ensuring that
appropriate indexes are in place to provide good performance.

PostGIS Manual
20 / 69

4.6.1 Taking Advantage of Indexes

When constructing a query it is important to remember that only the bounding-box-based operators such as && can take advan-
tage of the GiST spatial index. Functions such asdistance() cannot use the index to optimize their operation. For example,
the following query would be quite slow on a large table:

SELECT the_geom
FROMgeom_table
WHEREST_Distance (the_geom , GeomFromText (’ POINT(100000 200000)’, -1)) < 100

This query is selecting all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and our specified point, ie. oneST_Distance()
calculation for each row in the table. We can avoid this by using the && operator to reduce the number of distance calculations
required:

SELECT the_geom
FROMgeom_table
WHEREthe_geom && ’ BOX3D(90900 190900, 100100 200100)’:: box3d

AND
ST_Distance (the_geom , GeomFromText (’ POINT(100000 200000)’, -1)) < 100

This query selects the same geometries, but it does it in a more efficient way. Assuming there is a GiST index on the_geom,
the query planner will recognize that it can use the index to reduce the number of rows before calculating the result of thed-
istance() function. Notice that theBOX3Dgeometry which is used in the && operation is a 200 unit square box centered
on the original point - this is our "query box". The && operator uses the index to quickly reduce the result set down to only
those geometries which have bounding boxes that overlap the "query box". Assuming that our query box is much smaller than
the extents of the entire geometry table, this will drastically reduce the number of distance calculations that need to be done.

Change in Behavior
As of PostGIS 1.3.0, most of the Geometry Relationship Functions, with the notable exceptions of ST_Disjoint and ST_Relate,
include implicit bounding box overlap operators.

4.6.2 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.
The table definitions for thebc_roads table is:

Column | Type | Description
------------+-------------------+-------------------
gid | integer | Unique ID
name | character varying | Road Name
the_geom | geometry | Location Geometry (Linestring)

The table definition for thebc_municipality table is:

Column | Type | Description
-----------+-------------------+-------------------
gid | integer | Unique ID
code | integer | Unique ID
name | character varying | City / Town Name
the_geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

PostGIS Manual
21 / 69

SELECT sum(ST_Length (the_geom))/1000 AS km_roads FROMbc_roads ;

km_roads

70842.1243039643
(1 row)

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT
ST_Area (the_geom)/10000 AS hectares

FROMbc_municipality
WHEREname = ’ PRINCE GEORGE’;

hectares

32657.9103824927
(1 row)

3. What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but
the most efficient is below:

SELECT
name,
ST_Area (the_geom)/10000 AS hectares

FROM
bc_municipality

ORDERBY hectares DESC
LIMIT 1;

name | hectares
---------------+-----------------
TUMBLERRIDGE | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would
make sense to add an area column to the table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without
using an aggregate function like max().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a
spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a
common key:

SELECT
m. name,
sum(ST_Length (r . the_geom))/1000 as roads_km

FROM
bc_roads AS r ,
bc_municipality AS m

WHERE
ST_Contains (m. the_geom , r . the_geom)

GROUPBY m. name
ORDERBY roads_km ;

name | roads_km

PostGIS Manual
22 / 69

----------------------------+------------------
SURREY | 1539.47553551242
VANCOUVER | 1450.33093486576
LANGLEY DISTRICT | 833.793392535662
BURNABY | 773.769091404338
PRINCE GEORGE | 694.37554369147
...

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our
particular example table). For smaller overlays (several thousand records on several hundred) the response can be very
fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or
cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like
a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT

ST_Intersection (r . the_geom , m. the_geom) AS intersection_geom ,
ST_Length (r . the_geom) AS rd_orig_length ,
r .*

FROM
bc_roads AS r ,
bc_municipality AS m

WHEREST_Intersects (r . the_geom , m. the_geom)
AND m. name = ’ PRINCE GEORGE’;

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT
sum(ST_Length (r . the_geom))/1000 AS kilometers

FROM
bc_roads r ,
bc_municipality m

WHEREST_Contains (m. the_geom , r . the_geom)
AND r . name = ’ Douglas St ’
AND m. name = ’ VICTORIA’;

kilometers

4.89151904172838
(1 row)

7. What is the largest municipality polygon that has a hole?

SELECT gid , name, ST_Area (the_geom) AS area
FROMbc_municipality
WHEREST_NRings (the_geom) > 1
ORDERBY area DESC LIMIT 1;

gid | name | area
-----+--------------+------------------
12 | SPALLUMCHEEN| 257374619.430216
(1 row)

4.7 Using Mapserver

The Minnesota Mapserver is an internet web-mapping server which conforms to the OpenGIS Web Mapping Server specification.

PostGIS Manual
23 / 69

• The Mapserver homepage is athttp://mapserver.gis.umn.edu.

• The OpenGIS Web Map Specification is athttp://www.opengis.org/techno/specs/01-047r2.pdf.

4.7.1 Basic Usage

To use PostGIS with Mapserver, you will need to know about how to configure Mapserver, which is beyond the scope of this
documentation. This section will cover specific PostGIS issues and configuration details.

To use PostGIS with Mapserver, you will need:

• Version 0.6 or newer of PostGIS.

• Version 3.5 or newer of Mapserver.

Mapserver accesses PostGIS/PostgreSQL data like any other PostgreSQL client -- usinglibpq . This means that Mapserver can
be installed on any machine with network access to the PostGIS server, as long as the system has thelibpq PostgreSQL client
libraries.

1. Compile and install Mapserver, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your Mapserver map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPEpostgis
NAME" widehighways "
Connect to a remote spatial database
CONNECTION" user =dbuser dbname=gisdatabase host =bigserver "
Get the lines from the ’ geom’ column of the ’ roads ’ table
DATA " geom from roads "
STATUS ON
TYPE LINE
Of the lines in the extents , only render the wide highways
FILTER " type = ’ highway ’ and numlanes >= 4"
CLASS

Make the superhighways brighter and 2 pixels wide
EXPRESSION([numlanes] >= 6)
COLOR255 22 22
SYMBOL" solid "
SIZE 2

END
CLASS

All the rest are darker and only 1 pixel wide
EXPRESSION([numlanes] < 6)
COLOR205 92 82

END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):

user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>

An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<column> from <tablename>" where the column is the spatial column to be rendered
to the map.

http://mapserver.gis.umn.edu
http://www.opengis.org/techno/specs/01-047r2.pdf

PostGIS Manual
24 / 69

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

3. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

4. If you will be querying your layers using Mapserver you will also need an "oid index".

Mapserver requires unique identifiers for each spatial record when doing queries, and the PostGIS module of Mapserver
uses the PostgreSQLoid value to provide these unique identifiers. A side-effect of this is that in order to do fast random
access of records during queries, an index on theoid is needed.

To build an "oid index", use the following SQL:

CREATE INDEX [indexname] ON [tablename] (oid);

4.7.2 Frequently Asked Questions

1. When I use anEXPRESSIONin my map file, the condition never returns as true, even though I know the values exist in
my table.

Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS usinglower case.

EXPRESSION([numlanes] >= 6)

2. The FILTER I use for my Shape files is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in Mapserver).

FILTER " type = ’ highway ’ and numlanes >= 4"

3. My PostGIS layer draws much slower than my Shape file layer, is this normal?

In general, expect PostGIS layers to be 10% slower than equivalent Shape files layers, due to the extra overhead involved
in database connections, data transformations and data transit between the database and Mapserver.If you are finding
substantial draw performance problems, it is likely that you have not build a spatial index on your table.

postgis # CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis # SELECT update_geometry_stats (); -- For PGSQL < 8.0
postgis # VACUUMANALYZE; -- For PGSQL >= 8.0

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key.You
can specify what unique key for mapserver to use with theUSING UNIQUEclause in yourDATAline:

DATA " the_geom FROMgeotable USING UNIQUE gid "

If your table does not have an explicit unique column, you can "fake" a unique column by using the PostgreSQL row "oid"
for your unique column. "oid" is the default unique column if you do not declare one, so enhancing your query speed is a
matter of building an index on your spatial table oid value.

postgis # CREATE INDEX geotable_oid_idx ON geotable (oid);

PostGIS Manual
25 / 69

4.7.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATAdefinition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. TheUSINGclause can provide mapserver with these two pieces of information as follows:

DATA " the_geom FROM(
SELECT

table1 . the_geom AS the_geom ,
table1 . oid AS oid ,
table2 . data AS data

FROMtable1
LEFT JOIN table2
ON table1 . id = table2 . id

) AS new_table USING UNIQUE oid USING SRID=-1"

USING UNIQUE <uniqueid> Mapserver requires a unique id for each row in order to identify the row when doing map queries.
Normally, it would use the oid as the unique identifier, but views and subselects don’t automatically have an oid column. If
you want to use Mapserver’s query functionality, you need to add a unique column to your view or subselect, and declare
it with USING UNIQUE. For example, you could explicitly select one of the table’s oid values for this purpose, or any
other column which is guaranteed to be unique for the result set.

TheUSINGstatement can also be useful even for simpleDATAstatements, if you are doing map queries. It was previously
recommended to add an index on the oid column of tables used in query-able layers, in order to speed up the performance
of map queries. However, with theUSINGclause, it is possible to tell mapserver to use your table’s primary key as the
identifier for map queries, and then it is no longer necessary to have an additional index.

Note
"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location. Don’t
confuse "map queries" with the SQL query in a DATAdefinition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to
return the correct data back to mapserver. Normally it is possible to find this information in the "geometry_columns" table
in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views.
So theUSING SRID=option allows the correct SRID to be specified in theDATAdefinition.

Warning
The parser for Mapserver PostGIS layers is fairly primitive, and is case sensitive in a few areas. Be careful to ensure
that all SQL keywords and all your USINGclauses are in upper case, and that your USING UNIQUEclause precedes
your USING SRIDclause.

4.7.4 Examples

Lets start with a simple example and work our way up. Consider the following Mapserver layer definition:

LAYER
CONNECTIONTYPEpostgis
NAME" roads "
CONNECTION" user =theuser password =thepass dbname=thedb host =theserver "
DATA " the_geom FROMroads "
STATUS ON
TYPE LINE
CLASS

COLOR0 0 0
END

END

PostGIS Manual
26 / 69

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will
achieve this effect:

LAYER
CONNECTION" user =theuser password =thepass dbname=thedb host =theserver "
DATA " the_geom FROMroads "
MINSCALE 100000
STATUS ON
TYPE LINE
FILTER " road_type = ’ highway ’"
CLASS

COLOR0 0 0
END

END
LAYER

CONNECTION" user =theuser password =thepass dbname=thedb host =theserver "
DATA " the_geom FROMroads "
MAXSCALE100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS

EXPRESSION" highway "
SIZE 2
COLOR255 0 0

END
CLASS

COLOR0 0 0
END

END

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The
FILTER option causes only roads of type "highway" to be displayed.

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other
roads as regular black lines.

So, we have done a couple of interesting things using only mapserver functionality, but ourDATASQL statement has remained
simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and
label our roads.

LAYER
CONNECTION" user =theuser password =thepass dbname=thedb host =theserver "
DATA " the_geom FROM(SELECT roads . oid AS oid , roads . the_geom AS the_geom ,

road_names . name as name FROMroads LEFT JOIN road_names ON
roads . road_name_id = road_names . road_name_id)
AS named_roads USING UNIQUE oid USING SRID=-1"

MAXSCALE20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS

LABEL
ANGLE auto
SIZE 8
COLOR0 192 0
TYPE truetype
FONT arial

ENDl
END

END

PostGIS Manual
27 / 69

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in aDATAdefinition.

4.8 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using
the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your
CLASSPATH along with the "postgresql.jar" JDBC driver package.

import java . sql .*;
import java . util .*;
import java . lang .*;
import org . postgis .*;

public class JavaGIS {

public static void main (String [] args) {

java . sql . Connection conn ;

try {
/*
* Load the JDBC driver and establish a connection .
*/
Class . forName (" org . postgresql . Driver ");
String url = " jdbc : postgresql :// localhost :5432/ database ";
conn = DriverManager . getConnection (url , " postgres ", "");
/*
* Add the geometry types to the connection . Note that you
* must cast the connection to the pgsql - specific connection
* implementation before calling the addDataType () method .
*/
((org . postgresql . Connection) conn). addDataType (" geometry "," org . postgis . PGgeometry ")

;
((org . postgresql . Connection) conn). addDataType (" box3d "," org . postgis . PGbox3d");
/*
* Create a statement and execute a select query .
*/
Statement s = conn . createStatement ();
ResultSet r = s. executeQuery (" select AsText (geom) as geom, id from geomtable ");
while (r . next ()) {

/*
* Retrieve the geometry as an object then cast it to the geometry type .
* Print things out .
*/
PGgeometry geom = (PGgeometry) r . getObject (1);
int id = r . getInt (2);
System . out . println (" Row " + id + ":");
System . out . println (geom. toString ());

}
s. close ();
conn . close ();

}
catch (Exception e) {

e. printStackTrace ();
}

}
}

PostGIS Manual
28 / 69

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract
class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry) r . getObject (1);
if (geom. getType () = Geometry . POLYGON) {

Polygon pl = (Polygon) geom. getGeometry ();
for (int r = 0; r < pl . numRings (); r ++) {

LinearRing rng = pl . getRing (r);
System . out . println (" Ring : " + r);
for (int p = 0; p < rng . numPoints (); p++) {

Point pt = rng . getPoint (p);
System . out . println (" Point : " + p);
System . out . println (pt . toString ());

}
}

}

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

4.9 C Clients (libpq)

...

4.9.1 Text Cursors

...

4.9.2 Binary Cursors

...

PostGIS Manual
29 / 69

Chapter 5

Performance tips

5.1 Small tables of large geometries

5.1.1 Problem description

Current PostgreSQL versions (including 8.0) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like
long texts, images or complex geometries with lots of vertices), see http://www.postgresql.org/docs/8.0/static/storage-toast.html
for more information).

The problem appears if you happen to have a table with rather large geometries, but not too much rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. He estimates that a sequential scan on such a
small table is much faster than using an index. And so he decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this bug, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the postgres performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

5.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT addGeometryColumn (’ myschema’,’ mytable ’,’ bbox ’,’4326’,’ GEOMETRY’,’2’);
UPDATE mytable set bbox = Envelope (Force_2d (the_geom));

Now change your query to use the && operator against bbox instead of geom_column, like:

PostGIS Manual
30 / 69

SELECT geom_column
FROMmytable
WHEREbbox && ST_SetSRID (’ BOX3D(0 0,1 1)’:: box3d ,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

5.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom =# CLUSTERmy_geom_index ON my_table ;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column " the_geom " NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom =# ALTER TABLE my_table ALTER COLUMNthe_geom SET not null ;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

5.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant asText() or asBi-
nary() functions that only output 2D geometries. They do this by internally calling the force_2d() function, which introduces
a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional dimensions
once and forever:

UPDATE mytable SET the_geom = force_2d (the_geom);
VACUUMFULL ANALYZE mytable ;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATEs. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-writing of geometries that already are in 2D.

PostGIS Manual
31 / 69

Chapter 6

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required
support functions to the PostGIS objects which are not of use to a general user.

Note
PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result, most of the
functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous functions are still
available, though are not listed in this document where updated functions are equivalent. These will be deprecated in a future
release.

6.1 OpenGIS Functions

6.1.1 Management Functions

AddGeometryColumn(varchar, varchar, varchar, integer, varchar, integer) Syntax: AddGeometryColumn(<schema_name>,
<table_name>, <column_name>, <srid>, <type>, <dimension>). Adds a geometry column to an existing table of attributes.
Theschema_name is the name of the table schema (unused for pre-schema PostgreSQL installations). Thesrid must
be an integer value reference to an entry in the SPATIAL_REF_SYS table. Thetype must be an uppercase string corre-
sponding to the geometry type, eg, ’POLYGON’ or ’MULTILINESTRING’.

DropGeometryColumn(varchar, varchar, varchar) Syntax: DropGeometryColumn(<schema_name>, <table_name>, <col-
umn_name>). Remove a geometry column from a spatial table. Note that schema_name will need to match the f_schema_name
field of the table’s row in the geometry_columns table.

ST_SetSRID(geometry, integer)Set the SRID on a geometry to a particular integer value. Useful in constructing bounding
boxes for queries.

6.1.2 Geometry Relationship Functions

ST_Distance(geometry, geometry)Return the cartesian distance between two geometries in projected units. Does not use
indexes.

ST_DWithin(geometry, geometry, float) Returns true if geometries are within the specified distance of one another. Uses
indexes if available.

ST_Equals(geometry, geometry)Returns 1 (TRUE) if the given Geometries are "spatially equal". Use this for a ’better’ answer
than ’=’. equals(’LINESTRING(0 0, 10 10)’,’LINESTRING(0 0, 5 5, 10 10)’) is true.

Performed by the GEOS module

OGC SPEC s2.1.1.2

PostGIS Manual
32 / 69

ST_Disjoint(geometry, geometry)Returns 1 (TRUE) if the Geometries are "spatially disjoint".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - a.Relate(b, ’FF*FF****’)

ST_Intersects(geometry, geometry)Returns 1 (TRUE) if the Geometries "spatially intersect".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Intersects.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 //s2.1.13.3 - Intersects(g1, g2) --> Not (Disjoint(g1, g2))

ST_Touches(geometry, geometry)Returns 1 (TRUE) if the Geometries "spatially touch".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Touches.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3- a.Touches(b) -> (I(a) intersection I(b) = {empty set}) and (a intersection b) not empty

ST_Crosses(geometry, geometry)Returns 1 (TRUE) if the Geometries "spatially cross".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Crosses.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - a.Relate(b, ’T*T******’)

ST_Within(geometry A, geometry B) Returns 1 (TRUE) if Geometry A is "spatially within" Geometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Within.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - a.Relate(b, ’T*F**F***’)

ST_Overlaps(geometry, geometry)Returns 1 (TRUE) if the Geometries "spatially overlap".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Overlaps.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3

PostGIS Manual
33 / 69

ST_Contains(geometry A, geometry B)Returns 1 (TRUE) if Geometry A "spatially contains" Geometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Contains.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - same as within(geometry B, geometry A)

ST_Covers(geometry A, geometry B)Returns 1 (TRUE) if no point in Geometry B is outside Geometry A

Refer to http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html for an explanation of the need
of this function.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available
on the geometries. To avoid index use, use the function _ST_Covers.

ST_CoveredBy(geometry A, geometry B)Returns 1 (TRUE) if no point in Geometry A is outside Geometry B

Refer to http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html for an explaination of the need
of this function.

ST_Intersects(geometry, geometry)Returns 1 (TRUE) if the Geometries "spatially intersect".

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3 - NOT disjoint(geometry, geometry)

ST_Relate(geometry, geometry, intersectionPatternMatrix)Returns 1 (TRUE) if this Geometry is spatially related to anoth-
erGeometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by
the values in the intersectionPatternMatrix.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is the "allowable" version that returns a boolean, not an integer.

OGC SPEC s2.1.1.2 // s2.1.13.3

ST_Relate(geometry, geometry)returns the DE-9IM (dimensionally extended nine-intersection matrix)

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2

6.1.3 Geometry Processing Functions

ST_Centroid(geometry) Returns the centroid of the geometry as a point.

Computation will be more accurate if performed by the GEOS module (enabled at compile time).

ST_Area(geometry) Returns the area of the geometry if it is a polygon or multi-polygon.

ST_Length(geometry) The length of this Curve in its associated spatial reference.

synonym for length2d()

OGC SPEC 2.1.5.1

ST_PointOnSurface(geometry)Return a Point guaranteed to lie on the surface

Implemented using GEOS

OGC SPEC 3.2.14.2 and 3.2.18.2 -

PostGIS Manual
34 / 69

ST_Boundary(geometry) Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary
is defined as described in section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence
topologically closed, the resulting boundary can be represented using representational geometry primitives as discussed in
the OGC SPEC, section 3.12.2.

Performed by the GEOS module

OGC SPEC s2.1.1.1

ST_Buffer(geometry, double, [integer]) Returns a geometry that represents all points whose distance from this Geometry is
less than or equal to distance. Calculations are in the Spatial Reference System of this Geometry. The optional third
parameter sets the number of segment used to approximate a quarter circle (defaults to 8).

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_ConvexHull(geometry) Returns a geometry that represents the convex hull of this Geometry.

Performed by the GEOS module

OGC SPEC s2.1.1.3

ST_Intersection(geometry, geometry)Returns a geometry that represents the point set intersection of the Geometries.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_SymDifference(geometry A, geometry B)Returns a geometry that represents the point set symmetric difference of Geom-
etry A with Geometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_Difference(geometry A, geometry B)Returns a geometry that represents the point set difference of Geometry A with Ge-
ometry B.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

OGC SPEC s2.1.1.3

ST_Union(geometry, geometry)Returns a geometry that represents the point set union of the Geometries.

Performed by the GEOS module

Do not call with a GeometryCollection as an argument

NOTE: this is renamed from "union" because union is an SQL reserved word

OGC SPEC s2.1.1.3

ST_Union(geometry set)Returns a geometry that represents the point set union of this all Geometries in given set.

Performed by the GEOS module

Do not call with a GeometryCollection in the argument set

Not explicitly defined in OGC SPEC

ST_MemUnion(geometry set)Same as the above, only memory-friendly (uses less memory and more processor time).

PostGIS Manual
35 / 69

6.1.4 Geometry Accessors

ST_AsText(geometry) Return the Well-Known Text representation of the geometry. For example: POLYGON(0 0,0 1,1 1,1 0,0
0)

OGC SPEC s2.1.1.1

ST_AsBinary(geometry) Returns the geometry in the OGC "well-known-binary" format, using the endian encoding of the
server on which the database is running. This is useful in binary cursors to pull data out of the database without converting
it to a string representation.

OGC SPEC s2.1.1.1 - also see asBinary(<geometry>,’XDR’) and asBinary(<geometry>,’NDR’)

ST_SRID(geometry) Returns the integer SRID number of the spatial reference system of the geometry.

OGC SPEC s2.1.1.1

ST_Dimension(geometry)The inherent dimension of this Geometry object, which must be less than or equal to the coordinate
dimension. OGC SPEC s2.1.1.1 - returns 0 for points, 1 for lines, 2 for polygons, and the largest dimension of the
components of a GEOMETRYCOLLECTION.

select dimension (’ GEOMETRYCOLLECTION(LINESTRING(1 1,0 0), POINT(0 0)’);
dimension

1

ST_Envelope(geometry)Returns a POLYGON representing the bounding box of the geometry.

OGC SPEC s2.1.1.1 - The minimum bounding box for this Geometry, returned as a Geometry. The polygon is defined by
the corner points of the bounding box ((MINX, MINY), (MAXX, MINY), (MAXX, MAXY), (MINX, MAXY), (MINX,
MINY)).

NOTE:PostGIS will add a Zmin/Zmax coordinate as well.

ST_IsEmpty(geometry) Returns 1 (TRUE) if this Geometry is the empty geometry . If true, then this Geometry represents the
empty point set - i.e. GEOMETRYCOLLECTION(EMPTY).

OGC SPEC s2.1.1.1

ST_IsSimple(geometry)Returns 1 (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or
self tangency.

Performed by the GEOS module

OGC SPEC s2.1.1.1

ST_IsClosed(geometry)Returns true of the geometry start and end points are coincident.

ST_IsRing(geometry) Returns 1 (TRUE) if this Curve is closed (StartPoint () = EndPoint ()) and this Curve is simple (does
not pass through the same point more than once).

performed by GEOS

OGC spec 2.1.5.1

ST_NumGeometries(geometry)If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries,
otherwise return NULL.

ST_GeometryN(geometry,int) Return the N’th geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT,
MULTILINESTRING or MULTIPOLYGON. Otherwise, return NULL.

Note
Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

ST_NumPoints(geometry)Find and return the number of points in the first linestring in the geometry. Return NULL if there is
no linestring in the geometry.

PostGIS Manual
36 / 69

ST_PointN(geometry,integer)Return the N’th point in the first linestring in the geometry. Return NULL if there is no linestring
in the geometry.

Note
Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

ST_ExteriorRing(geometry) Return the exterior ring of the polygon geometry. Return NULL if the geometry is not a polygon.

ST_NumInteriorRings(geometry) Return the number of interior rings of the first polygon in the geometry. Return NULL if
there is no polygon in the geometry.

ST_NumInteriorRing(geometry) Synonym to NumInteriorRings(geometry). The OpenGIS specs are ambiguous about the
exact function naming, so we provide both spellings.

ST_InteriorRingN(geometry,integer) Return the N’th interior ring of the polygon geometry. Return NULL if the geometry is
not a polygon or the given N is out of range.

Note
Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

ST_EndPoint(geometry) Returns the last point of the LineString geometry as a point.

ST_StartPoint(geometry) Returns the first point of the LineString geometry as a point.

GeometryType(geometry) Returns the type of the geometry as a string. Eg: ’LINESTRING’, ’POLYGON’, ’MULTIPOINT’,
etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a
member. The name of the instantiable subtype of Geometry is returned as a string.

Note
This function also indicates if the geometry is measured, by returning a string of the form ’POINTM’.

ST_GeometryType(geometry)Returns the type of the geometry as a string. EG: ’Linestring’, ’Polygon’, etc. This function
differs from GeometryType(geometry) in the case of the string that is returned, as well as the fact that it will not indicate
whether the geometry is measured.

ST_X(geometry) Return the X coordinate of the point. Input must be a point.

ST_Y(geometry) Return the Y coordinate of the point. Input must be a point.

ST_Z(geometry) Return the Z coordinate of the point, or NULL if not available. Input must be a point.

ST_M(geometry) Return the M coordinate of the point, or NULL if not available. Input must be a point.

Note
This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

6.1.5 Geometry Constructors

ST_GeomFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

PostGIS Manual
37 / 69

ST_PointFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Point

ST_LineFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Line

ST_LinestringFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to
-1.

from the conformance suite

Throws an error if the WKT is not a Line

ST_PolyFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a Polygon

ST_PolygonFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

from the conformance suite

Throws an error if the WKT is not a Polygon

ST_MPointFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTIPOINT

ST_MLineFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTILINESTRING

ST_MPolyFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTIPOLYGON

ST_GeomCollFromText(text,[<srid>]) Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a GEOMETRYCOLLECTION

ST_GeomFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

ST_GeometryFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults
to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

ST_PointFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a POINT

ST_LineFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a LINESTRING

PostGIS Manual
38 / 69

ST_LinestringFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults
to -1.

from the conformance suite

throws an error if WKB is not a LINESTRING

ST_PolyFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a POLYGON

ST_PolygonFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults
to -1.

from the conformance suite

throws an error if WKB is not a POLYGON

ST_MPointFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTIPOINT

ST_MLineFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTILINESTRING

ST_MPolyFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to
-1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a MULTIPOLYGON

ST_GeomCollFromWKB(bytea,[<srid>]) Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults
to -1.

OGC SPEC 3.2.7.2 - option SRID is from the conformance suite

throws an error if WKB is not a GEOMETRYCOLLECTION

ST_BdPolyFromText(text WKT, integer SRID) Construct a Polygon given an arbitrary collection of closed linestrings as a
MultiLineString text representation.

Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; useBdM-
PolyFromTextin that case, or seeBuildArea()for a postgis-specific approach.

OGC SFSQL 1.1 - 3.2.6.2

Availability: 1.1.0 - requires GEOS >= 2.1.0.

ST_BdMPolyFromText(text WKT, integer SRID) Construct a MultiPolygon given an arbitrary collection of closed linestrings
as a MultiLineString text representation.

Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only
composed by a single POLYGON; useBdPolyFromTextif you’re sure a single POLYGON will result from operation, or
seeBuildArea()for a postgis-specific approach.

OGC SFSQL 1.1 - 3.2.6.2

Availability: 1.1.0 - requires GEOS >= 2.1.0.

PostGIS Manual
39 / 69

6.2 PostGIS Extensions

6.2.1 Management Functions

DropGeometryTable([<schema_name>], <table_name>)Drops a table and all its references in geometry_columns. Note:
uses current_schema() on schema-aware pgsql installations if schema is not provided.

UpdateGeometrySRID([<schema_name>], <table_name>, <column_name>, <srid>)Update the SRID of all features in a
geometry column updating constraints and reference in geometry_columns. Note: uses current_schema() on schema-
aware pgsql installations if schema is not provided.

update_geometry_stats([<table_name>, <column_name>])Update statistics about spatial tables for use by the query planner.
You will also need to run "VACUUM ANALYZE [table_name] [column_name]" for the statistics gathering process to
be complete. NOTE: starting with PostgreSQL 8.0 statistics gathering is automatically performed running "VACUUM
ANALYZE".

postgis_version()Returns PostGIS version number and compile-time options

Note
Prior to version 1.1.0 this was a procedural function, thus possibly returning inaccurate information (in case of incomplete
database upgrades).

postgis_lib_version() Returns the version number of the PostGIS library.

Availability: 0.9.0

postgis_lib_build_date() Returns build date of the PostGIS library.

Availability: 1.0.0RC1

postgis_script_build_date() Returns build date of the PostGIS scripts.

Availability: 1.0.0RC1

postgis_scripts_installed()Returns version of the postgis scripts installed in this database.

Note
If the output of this function doesn’t match the output of postgis_scripts_released() you probably missed to properly
upgrade an existing database. See the Upgrading section for more info.

Availability: 0.9.0

postgis_scripts_released()Returns the version number of the lwpostgis.sql script released with the installed postgis lib.

Note
Starting with version 1.1.0 this function returns the same value of postgis_lib_version(). Kept for backward compatibility.

Availability: 0.9.0

postgis_geos_version()Returns the version number of the GEOS library, or NULL if GEOS support is not enabled.

Availability: 0.9.0

postgis_jts_version()Returns the version number of the JTS library, or NULL if JTS support is not enabled.

Availability: 1.1.0

PostGIS Manual
40 / 69

postgis_proj_version() Returns the version number of the PROJ4 library, or NULL if PROJ4 support is not enabled.

Availability: 0.9.0

postgis_uses_stats()Returns true if STATS usage has been enabled, false otherwise.

Availability: 0.9.0

postgis_full_version() Reports full postgis version and build configuration infos.

Availability: 0.9.0

6.2.2 Operators

A &< B The "&<" operator returns true if A’s bounding box overlaps or is to the left of B’s bounding box.

A &> B The "&>" operator returns true if A’s bounding box overlaps or is to the right of B’s bounding box.

A « B The "«" operator returns true if A’s bounding box is strictly to the left of B’s bounding box.

A » B The "»" operator returns true if A’s bounding box is strictly to the right of B’s bounding box.

A &<| B The "&<|" operator returns true if A’s bounding box overlaps or is below B’s bounding box.

A |&> B The "|&>" operator returns true if A’s bounding box overlaps or is above B’s bounding box.

A «| B The "«|" operator returns true if A’s bounding box is strictly below B’s bounding box.

A |» B The "|»" operator returns true if A’s bounding box is strictly above B’s bounding box.

A ~= B The "~=" operator is the "same as" operator. It tests actual geometric equality of two features. So if A and B are the
same feature, vertex-by-vertex, the operator returns true.

A @ B The "@" operator returns true if A’s bounding box is completely contained by B’s bounding box.

A ~ B The "~" operator returns true if A’s bounding box completely contains B’s bounding box.

A && B The "&&" operator is the "overlaps" operator. If A’s bounding box overlaps B’s bounding box the operator returns
true.

6.2.3 Measurement Functions

ST_area2d(geometry)Returns the area of the geometry if it is a polygon or multi-polygon.

ST_distance_sphere(point, point)Returns linear distance in meters between two lat/lon points. Uses a spherical earth and
radius of 6370986 meters. Faster thandistance_spheroid(), but less accurate. Only implemented for points.

ST_distance_spheroid(point, point, spheroid)Returns linear distance between two lat/lon points given a particular spheroid.
See the explanation of spheroids given forlength_spheroid(). Currently only implemented for points.

ST_length2d(geometry)Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring.

ST_length3d(geometry)Returns the 3-dimensional length of the geometry if it is a linestring or multi-linestring.

ST_length_spheroid(geometry,spheroid)Calculates the length of of a geometry on an ellipsoid. This is useful if the coordi-
nates of the geometry are in latitude/longitude and a length is desired without reprojection. The ellipsoid is a separate
database type and can be constructed as follows:

SPHEROID[<NAME>,<SEMI-MAJOR
AXIS>,<INVERSE FLATTENING>]

Eg:

PostGIS Manual
41 / 69

SPHEROID["GRS_1980",6378137,298.257222101]

An example calculation might look like this:

SELECT length_spheroid(geometry_column,
’SPHEROID["GRS_1980",6378137,298.257222101]’)
FROM geometry_table;

ST_length3d_spheroid(geometry,spheroid)Calculates the length of of a geometry on an ellipsoid, taking the elevation into
account. This is just like length_spheroid except vertical coordinates (expressed in the same units as the spheroid axes) are
used to calculate the extra distance vertical displacement adds.

ST_distance(geometry, geometry)Returns the smaller distance between two geometries.

ST_max_distance(linestring,linestring)Returns the largest distance between two line strings.

ST_perimeter(geometry) Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

ST_perimeter2d(geometry) Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

ST_perimeter3d(geometry) Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

ST_azimuth(geometry, geometry)Returns the azimuth of the segment defined by the given Point geometries, or NULL if the
two points are coincident. Return value is in radians.

Availability: 1.1.0

6.2.4 Geometry Outputs

ST_AsBinary(geometry,{’NDR’|’XDR’}) Returns the geometry in the OGC "well-known-binary" format as a bytea, using
little-endian (NDR) or big-endian (XDR) encoding. This is useful in binary cursors to pull data out of the database without
converting it to a string representation.

ST_AsEWKT(geometry) Returns a Geometry in EWKT format (as text).

ST_AsEWKB(geometry, {’NDR’|’XDR’}) Returns a Geometry in EWKB format (as bytea) using either little-endian (NDR)
or big-endian (XDR) encoding.

ST_AsHEXEWKB(geometry, {’NDR’|’XDR’}) Returns a Geometry in HEXEWKB format (as text) using either little-endian
(NDR) or big-endian (XDR) encoding.

ST_AsSVG(geometry, [rel], [precision]) Return the geometry as SVG path data. Use 1 as second argument to have the path
data implemented in terms of relative moves, the default (or 0) uses absolute moves. Third argument may be used to reduce
the maximum number of decimal digits used in output (defaults to 15). Point geometries will be rendered as cx/cy when
’rel’ arg is 0, x/y when ’rel’ is 1. Multipoint geometries are delimited by commas (","), GeometryCollection geometries
are delimited by semicolons (";").

ST_AsGML([version], geometry, [precision]) Return the geometry as a GML element. The version parameter, if specified,
may be either 2 or 3. If no version parameter is specified then the default is assumed to be 2. The third argument may be
used to reduce the maximum number of significant digits used in output (defaults to 15).

ST_AsKML(geometry, [precision]) Return the geometry as a KML element. Second argument may be used to reduce the
maximum number of significant digits used in output (defaults to 15).

PostGIS Manual
42 / 69

6.2.5 Geometry Constructors

ST_GeomFromEWKT(text) Makes a Geometry from EWKT.

ST_GeomFromEWKB(bytea) Makes a Geometry from EWKB.

ST_MakePoint(<x>, <y>, [<z>], [<m>]) Creates a 2d,3dz or 4d point geometry.

ST_MakePointM(<x>, <y>, <m>) Creates a 3dm point geometry.

ST_MakeBox2D(<LL>, <UR>) Creates a BOX2D defined by the given point geometries.

ST_MakeBox3D(<LLB>, <URT>) Creates a BOX3D defined by the given point geometries.

ST_MakeLine(geometry set)Creates a Linestring from a set of point geometries. You might want to use a subselect to order
points before feeding them to this aggregate.

ST_MakeLine(geometry, geometry)Creates a Linestring from the two given point geometries.

ST_LineFromMultiPoint(multipoint) Creates a LineString from a MultiPoint geometry.

ST_MakePolygon(linestring, [linestring[]]) Creates a Polygon formed by the given shell and array of holes. You can construct
a geometry array usingAccum. Input geometries must be closed LINESTRINGS (seeIsClosedandGeometryType).

ST_BuildArea(geometry) Creates an areal geometry formed by the constituent linework of given geometry. The return type
can be a Polygon or MultiPolygon, depending on input. If the input lineworks do not form polygons NULL is returned.

See alsoBdPolyFromTextandBdMPolyFromText- wrappers to this function with standard OGC interface.

Availability: 1.1.0 - requires GEOS >= 2.1.0.

ST_Polygonize(geometry set)Aggregate. Creates a GeometryCollection containing possible polygons formed from the con-
stituent linework of a set of geometries.

Availability: 1.0.0RC1 - requires GEOS >= 2.1.0.

ST_Collect(geometry set)This function returns a GEOMETRYCOLLECTION or a MULTI object from a set of geometries.
The collect() function is an "aggregate" function in the terminology of PostgreSQL. That means that it operators on lists
of data, in the same way the sum() and mean() functions do. For example, "SELECT COLLECT(GEOM) FROM GE-
OMTABLE GROUP BY ATTRCOLUMN" will return a separate GEOMETRYCOLLECTION for each distinct value of
ATTRCOLUMN.

ST_Collect(geometry, geometry)This function returns a geometry being a collection of two input geometries. Output type can
be a MULTI* or a GEOMETRYCOLLECTION.

ST_Dump(geometry) This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed by a geometry
(geom) and an array of integers (path). When the input geometry is a simple type (POINT,LINESTRING,POLYGON) a
single record will be returned with an empty path array and the input geometry as geom. When the input geometry is a
collection or multi it will return a record for each of the collection components, and the path will express the position of
the component inside the collection.

Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

ST_DumpRings(geometry)This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed by a geom-
etry (geom) and an array of integers (path). The ’path’ field holds the polygon ring index, contains a single element: 0 for
the shell, hole number for holes. The ’geom’ field contains the corresponding ring as a polygon.

Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

PostGIS Manual
43 / 69

6.2.6 Geometry Editors

ST_AddBBOX(geometry) Add bounding box to the geometry. This would make bounding box based queries faster, but will
increase the size of the geometry.

ST_DropBBOX(geometry) Drop the bounding box cache from the geometry. This reduces geometry size, but makes bounding-
box based queries slower.

ST_AddPoint(linestring, point, [<position>]) Adds a point to a LineString before point <pos> (0-based index). Third param-
eter can be omitted or set to -1 for appending.

ST_RemovePoint(linestring, offset)Removes point from a linestring. Offset is 0-based.

Availability: 1.1.0

ST_SetPoint(linestring, N, point) Replace point N of linestring with given point. Index is 0-based.

Availability: 1.1.0

ST_Force_collection(geometry)Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the
WKB representation.

ST_Force_2d(geometry)Forces the geometries into a "2-dimensional mode" so that all output representations will only have
the X and Y coordinates. This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

ST_Force_3dz(geometry), ST_Force_3d(geometry)Forces the geometries into XYZ mode.

ST_Force_3dm(geometry)Forces the geometries into XYM mode.

ST_Force_4d(geometry)Forces the geometries into XYZM mode.

ST_Multi(geometry) Returns the geometry as a MULTI* geometry. If the geometry is already a MULTI*, it is returned un-
changed.

ST_Transform(geometry,integer) Returns a new geometry with its coordinates transformed to the SRID referenced by the
integer parameter. The destination SRID must exist in theSPATIAL_REF_SYStable.

ST_Affine(geometry, float8, float8, float8, float8, float8, float8, float8, float8, float8, float8, float8, float8)Applies an 3d affine
transformation to the geometry. The call

Affine (geom, a, b, c, d, e, f , g, h, i , xoff , yoff , zoff)

represents the transformation matrix

/ a b c xoff \
| d e f yoff |
| g h i zoff |
\ 0 0 0 1 /

and the vertices are transformed as follows:

x’ = a* x + b* y + c* z + xoff
y ’ = d* x + e* y + f * z + yoff
z ’ = g* x + h* y + i * z + zoff

All of the translate / scale functions below are expressed via such an affine transformation.

Availability: 1.1.2.

ST_Affine(geometry, float8, float8, float8, float8, float8, float8)Applies an 2d affine transformation to the geometry. The call

Affine (geom, a, b, d, e, xoff , yoff)

represents the transformation matrix

PostGIS Manual
44 / 69

/ a b 0 xoff \ / a b xoff \
| d e 0 yoff | rsp . | d e yoff |
| 0 0 1 0 | \ 0 0 1 /
\ 0 0 0 1 /

and the vertices are transformed as follows:

x’ = a* x + b* y + xoff
y ’ = d* x + e* y + yoff
z ’ = z

This method is a subcase of the 3D method above.

Availability: 1.1.2.

ST_Translate(geometry, float8, float8, float8)Translates the geometry to a new location using the numeric parameters as off-
sets. Ie: translate(geom, X, Y, Z).

ST_Scale(geometry, float8, float8, float8)scales the geometry to a new size by multiplying the ordinates with the parameters.
Ie: scale(geom, Xfactor, Yfactor, Zfactor).

Availability: 1.1.0

ST_RotateZ(geometry, float8), ST_RotateX(geometry, float8), ST_RotateY(geometry, float8)Rotate the geometry around
the Z, X or Y axis by the given angle given in radians. Follows the right-hand rule.

Availability: 1.1.2.

ST_TransScale(geometry, float8, float8, float8, float8)First, translates the geometry using the first two floats, then scales it
using the second two floats, working in 2D only. Usingtransscale(geom, X, Y, XFactor, YFactor) in-
ternally callsaffine(geom, XFactor, 0, 0, 0, YFactor, 0, 0, 0, 1, X*XFactor, Y*YFacto-
r, 0) .

Availability: 1.1.0.

ST_Reverse(geometry)Returns the geometry with vertex order reversed.

ST_ForceRHR(geometry) Force polygons of the collection to obey Right-Hand-Rule.

ST_Simplify(geometry, tolerance)Returns a "simplified" version of the given geometry using the Douglas-Peuker algorithm.
Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry.
Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function. Note that
returned geometry might loose its simplicity (seeIsSimple)

ST_SimplifyPreserveTopology(geometry, tolerance)Returns a "simplified" version of the given geometry using the Douglas-
Peuker algorithm. Will avoid creating derived geometries (polygons in particular) that are invalid.

ST_SnapToGrid(geometry, originX, originY, sizeX, sizeY), ST_SnapToGrid(geometry, sizeX, sizeY), ST_SnapToGrid(geometry, size)
Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points falling on
the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type. Collapsed
geometries in a collection are stripped from it.

Note
The returned geometry might loose its simplicity (see IsSimple).

Note
Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same
dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry
argument to define all grid dimensions.

Availability: 1.0.0RC1

PostGIS Manual
45 / 69

ST_SnapToGrid(geometry, geometry, sizeX, sizeY, sizeZ, sizeM)Snap all points of the input geometry to the grid defined by
its origin (the second argument, must be a point) and cell sizes. Specify 0 as size for any dimension you don’t want to snap
to a grid.

Availability: 1.1.0

ST_Segmentize(geometry, maxlength)Return a modified geometry having no segment longer then the given distance. Inter-
polated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only.

ST_LineMerge(geometry) Returns a (set of) LineString(s) formed by sewing together constituent linework of input.

Availability: 1.1.0 - requires GEOS >= 2.1.0

6.2.7 Linear Referencing

ST_line_interpolate_point(linestring, location) Returns a point interpolated along a line. First argument must be a LINESTRING.
Second argument is a float8 between 0 and 1 representing fraction of total2d lengththe point has to be located.

Seeline_locate_point()for computing the line location nearest to a Point.

Note
Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to 0.0.

Availability: 0.8.2

ST_line_substring(linestring, start, end) Return a linestring being a substring of the input one starting and ending at the given
fractions of total 2d length. Second and third arguments are float8 values between 0 and 1.

If ’start’ and ’end’ have the same value this is equivalent toline_interpolate_point().

Seeline_locate_point()for computing the line location nearest to a Point.

Note
Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to
unspecified values.

Availability: 1.1.0

ST_line_locate_point(LineString, Point) Returns a float between 0 and 1 representing the location of the closest point on
LineString to the given Point, as a fraction of total2d linelength.

You can use the returned location to extract a Point (line_interpolate_point) or a substring (line_substring).

Availability: 1.1.0

ST_locate_along_measure(geometry, float8)Return a derived geometry collection value with elements that match the speci-
fied measure. Polygonal elements are not supported.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting

Availability: 1.1.0

ST_locate_between_measures(geometry, float8, float8)Return a derived geometry collection value with elements that match
the specified range of measures inclusively. Polygonal elements are not supported.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting

Availability: 1.1.0

PostGIS Manual
46 / 69

6.2.8 Misc

ST_Summary(geometry) Returns a text summary of the contents of the geometry.

ST_box2d(geometry)Returns a BOX2D representing the maximum extents of the geometry.

ST_box3d(geometry)Returns a BOX3D representing the maximum extents of the geometry.

ST_extent(geometry set)The extent() function is an "aggregate" function in the terminology of PostgreSQL. That means that it
operators on lists of data, in the same way the sum() and mean() functions do. For example, "SELECT EXTENT(GEOM)
FROM GEOMTABLE" will return a BOX3D giving the maximum extend of all features in the table. Similarly, "SELECT
EXTENT(GEOM) FROM GEOMTABLE GROUP BY CATEGORY" will return one extent result for each category.

ST_zmflag(geometry)Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz,
3=4d.

ST_HasBBOX(geometry) Returns TRUE if the bbox of this geometry is cached, FALSE otherwise. UseaddBBOX() and
dropBBOX()to control caching.

ST_ndims(geometry) Returns number of dimensions of the geometry as a small int. Values are: 2,3 or 4.

ST_nrings(geometry) If the geometry is a polygon or multi-polygon returns the number of rings.

ST_npoints(geometry) Returns the number of points in the geometry.

ST_isvalid(geometry) returns true if this geometry is valid.

ST_expand(geometry, float)This function returns a bounding box expanded in all directions from the bounding box of the
input geometry, by an amount specified in the second argument. Very useful for distance() queries, to add an index filter to
the query.

ST_estimated_extent([schema], table, geocolumn)Return the ’estimated’ extent of the given spatial table. The estimated is
taken from the geometry column’s statistics. The current schema will be used if not specified.

For PostgreSQL>=8.0.0 statistics are gathered by VACUUM ANALYZE and resulting extent will be about 95% of the real
one.

For PostgreSQL<8.0.0 statistics are gathered by update_geometry_stats() and resulting extent will be exact.

ST_find_srid(varchar,varchar,varchar) The syntax is find_srid(<db/schema>, <table>, <column>) and the function returns
the integer SRID of the specified column by searching through the GEOMETRY_COLUMNS table. If the geometry
column has not been properly added with the AddGeometryColumns() function, this function will not work either.

ST_mem_size(geometry)Returns the amount of space (in bytes) the geometry takes.

ST_point_inside_circle(geometry, float, float, float)The syntax for this functions is point_inside_circle(<geometry>,<circle_center_x>,<circle_center_y>,<radius>).
Returns the true if the geometry is a point and is inside the circle. Returns false otherwise.

ST_XMin(box3d) ST_YMin(box3d) ST_ZMin(box3d) Returns the requested minima of a bounding box.

ST_XMax(box3d) ST_YMax(box3d) ST_ZMax(box3d) Returns the requested maxima of a bounding box.

ST_Accum(geometry set)Aggregate. Constructs an array of geometries.

6.2.9 Long Transactions support

This module and associated pl/pgsql functions have been implemented to provide long locking support required byWeb Feature
Servicespecification.

Note
Users must use serializable transaction level otherwise locking mechanism would break.

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7176
http://www.postgresql.org/docs/7.4/static/transaction-iso.html

PostGIS Manual
47 / 69

EnableLongTransactions() Enable long transaction support. This function creates the required metadata tables, needs to be
called once before using the other functions in this section. Calling it twice is harmless.

Availability: 1.1.3

DisableLongTransactions() Disable long transaction support. This function removes the long transaction support metadata
tables, and drops all triggers attached to lock-checked tables.

Availability: 1.1.3

CheckAuth([<schema>], <table>, <rowid_col>)Check updates and deletes of rows in given table for being authorized. Iden-
tify rows using <rowid_col> column.

Availability: 1.1.3

LockRow([<schema>], <table>, <rowid>, <authid>, [<expires>])Set lock/authorization for specific row in table <authid> is
a text value, <expires> is a timestamp defaulting to now()+1hour. Returns 1 if lock has been assigned, 0 otherwise (already
locked by other auth)

Availability: 1.1.3

UnlockRows(<authid>) Remove all locks held by specified authorization id. Returns the number of locks released.

Availability: 1.1.3

AddAuth(<authid>) Add an authorization token to be used in current transaction.

Availability: 1.1.3

6.3 SQL-MM Functions

This is a listing of the SQL-MM defined functions that PostGIS currently supports. The implementations of these functions
follow the ArcSDE implementation, and thus deviate somewhat from the spec. These deviations will be noted.

As of version 1.2.0, these functions have been implemented by wrapping existing PostGIS functions. As a result, full support for
curved geometries may not be in place for many functions.

Note
SQL-MM defines the default SRID of all geometry constructors as 0. PostGIS uses a default SRID of -1.

ST_Area Return the area measurement of an ST_Surface or ST_MultiSurface value.

SQL-MM 3: 8.1.2, 9.5.3

ST_AsBinary Return the well-known binary representation of an ST_Geometry value.

SQL-MM 3: 5.1.37

ST_AsText Return the well-known text representation of an ST_Geometry value.

SQL-MM 3: 5.1.25

ST_Boundary Return the boundary of the ST_Geometry value.

SQL-MM 3: 5.1.14

ST_Buffer Return a buffer around the ST_Geometry value.

SQL-MM 3: 5.1.17

ST_Centroid Return mathematical centroid of the ST_Surface or ST_MultiSurface value.

SQL-MM 3: 8.1.4, 9.5.5

ST_Contains Test if an ST_Geometry value spatially contains another ST_Geometry value.

SQL-MM 3: 5.1.31

PostGIS Manual
48 / 69

ST_ConvexHull Return the convex hull of the ST_Geometry value.

SQL-MM 3: 5.1.16

ST_CoordDim Return the coordinate dimension of the ST_Geometry value.

SQL-MM 3: 5.1.3

ST_CrossesTest if an ST_Geometry value spatially crosses another ST_Geometry value.

SQL-MM 3: 5.1.29

ST_Difference Return an ST_Geometry value that represents the point set difference of two ST_Geometry values.

SQL-MM 3: 5.1.20

ST_Dimension Return the dimension of the ST_Geometry value.

SQL-MM 3: 5.1.2

ST_Disjoint Test if an ST_Geometry value is spatially disjoint from another ST_Geometry value.

SQL-MM 3: 5.1.26

ST_Distance Return the distance between two geometries.

SQL-MM 3: 5.1.23

ST_EndPoint Return an ST_Point value that is the end point of an ST_Curve value.

SQL-MM 3: 7.1.4

ST_Envelope Return the bounding rectangle for the ST_Geometry value.

SQL-MM 3: 5.1.15

ST_Equals Test if an ST_Geometry value as spatially equal to another ST_Geometry value.

SQL-MM 3: 5.1.24

ST_ExteriorRing Return the exterior ring of an ST_Surface

SQL-MM 3: 8.2.3, 8.3.3

ST_GeometryN Return the indicated ST_Geometry value from an ST_GeomCollection.

SQL-MM 3: 9.1.5

ST_GeometryType Return the geometry type of the ST_Geometry value.

SQL-MM 3: 5.1.4

ST_GeomFromText Return a specified ST_Geometry value.

SQL-MM 3: 5.1.40

ST_GeomFromWKB Return a specified ST_Geometry value.

SQL-MM 3: 5.1.41

ST_InteriorRingN Return the specified interior ring of an ST_Surface value.

SQL-MM 3: 8.2.6, 8.3.5

ST_Intersection Return an ST_Geometry value that represents the point set intersection of two ST_Geometry values.

SQL-MM 3: 5.1.18

ST_Intersects Test if an ST_Geometry value spatially intersects another ST_Geometry value.

SQL-MM 3: 5.1.27

ST_IsClosed Test if an ST_Curve or ST_MultiCurve value is closed.

PostGIS Manual
49 / 69

Note
SQL-MM defines the result of ST_IsClosed(NULL) to be 0, while PostGIS returns NULL.

SQL-MM 3: 7.1.5, 9.3.3

ST_IsEmpty Test if an ST_Geometry value corresponds to the empty set.

Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

SQL-MM 3: 5.1.7

ST_IsRing Test if an ST_Curve value is a ring.

Note
SQL-MM defines the result of ST_IsRing(NULL) to be 0, while PostGIS returns NULL.

SQL-MM 3: 7.1.6

ST_IsSimple Test if an ST_Geometry value has no anomalous geometric points, such as self intersection or self tangency.

Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

SQL-MM 3: 5.1.8

ST_IsValid Test if an ST_Geometry value is well formed.

Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL.

SQL-MM defines the result of ST_IsValid(NULL) to be 1

SQL-MM 3: 5.1.9

ST_Length Return the length measurement of an ST_Curve or ST_MultiCurve value.

SQL-MM 3: 7.1.2, 9.3.4

ST_LineFromText Return a specified ST_LineString value.

SQL-MM 3: 7.2.8

ST_LineFromWKB Return a specified ST_LineString value.

SQL-MM 3: 7.2.9

ST_MLineFromText Return a specified ST_MultiLineString value.

SQL-MM 3: 9.4.4

ST_MLineFromWKB Return a specified ST_MultiLineString value.

SQL-MM 3: 9.4.5

ST_MPointFromText Return a specified ST_MultiPoint value.

SQL-MM 3: 9.2.4

PostGIS Manual
50 / 69

ST_MPointFromWKB Return a specified ST_MultiPoint value.

SQL-MM 3: 9.2.5

ST_MPolyFromText Return a specified ST_MultiPolygon value.

SQL-MM 3: 9.6.4

ST_MPolyFromWKB Return a specified ST_MultiPolygon value.

SQL-MM 3: 9.6.5

ST_NumGeometriesReturn the number of geometries in an ST_GeomCollection.

SQL-MM 3: 9.1.4

ST_NumInteriorRing Return the number of interior rings in an ST_Surface.

SQL-MM 3: 8.2.5

ST_NumPoints Return the number of points in an ST_LineString or ST_CircularString value.

SQL-MM 3: 7.2.4

ST_OrderingEquals ST_OrderingEquals compares two geometries and t (TRUE) if the geometries are equal and the coordi-
nates are in the same order; otherwise it returns f (FALSE).

Note
This function is implemented as per the ArcSDE SQL specification rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

SQL-MM 3: 5.1.43

ST_Overlaps Test if an ST_Geometry value spatially overlays another ST_Geometry value.

SQL-MM 3: 5.1.32

ST_Perimeter Return the length measurement of the boundary of an ST_Surface or ST_MultiRSurface value.

SQL-MM 3: 8.1.3, 9.5.4

ST_Point Returns an ST_Point with the given coordinate values.

SQL-MM 3: 6.1.2

ST_PointFromText Return a specified ST_Point value.

SQL-MM 3: 6.1.8

ST_PointFromWKB Return a specified ST_Point value.

SQL-MM 3: 6.1.9

ST_PointN Return the specified ST_Point value in an ST_LineString or ST_CircularString

SQL-MM 3: 7.2.5, 7.3.5

ST_PointOnSurface Return an ST_Point value guaranteed to spatially intersect the ST_Surface or ST_MultiSurface value.

SQL-MM 3: 8.1.5, 9.5.6

ST_PolyFromText Return a specified ST_Polygon value.

SQL-MM 3: 8.3.6

ST_PolyFromWKB Return a specified ST_Polygon value.

SQL-MM 3: 8.3.7

ST_Polygon Return a polygon build from the specified linestring and SRID.

SQL-MM 3: 8.3.2

PostGIS Manual
51 / 69

ST_Relate Test if an ST_Geometry value is spatially related to another ST_Geometry value.

SQL-MM 3: 5.1.25

ST_SRID Return the spatial reference system identifier of the ST_Geometry value.

SQL-MM 3: 5.1.5

ST_StartPoint Return an ST_Point value that is the start point of an ST_Curve value.

SQL-MM 3: 7.1.3

ST_SymDifference Return an ST_Geometry value that represents the point set symmetric difference of two ST_Geometry
values.

SQL-MM 3: 5.1.21

ST_TouchesTest if an ST_Geometry value spatially touches another ST_Geometry value.

SQL-MM 3: 5.1.28

ST_Transform Return an ST_Geometry value transformed to the specified spatial reference system.

SQL-MM 3: 5.1.6

ST_Union Return an ST_Geometry value that represents the point set union of two ST_Geometry values.

SQL-MM 3: 5.1.19

ST_Within Test if an ST_Geometry value is spatially within another ST_Geometry value.

SQL-MM 3: 5.1.30

ST_WKBToSQL Return an ST_Geometry value for a given well-known binary representation.

SQL-MM 3: 5.1.36

ST_WKTToSQL Return an ST_Geometry value for a given well-known text representation.

SQL-MM 3: 5.1.34

ST_X Returns the x coordinate value of an ST_Point value.

SQL-MM 3: 6.1.3

ST_Y Returns the y coordinate value of an ST_Point value.

SQL-MM 3: 6.1.4

6.4 ArcSDE Functions

Additional functions have been added to improve support for an ArcSDE style interface.

SE_EnvelopesIntersectReturns t (TRUE) if the envelopes of two geometries intersect; otherwise, it returns f (FALSE).

SE_Is3d Test if a geometry value has z coordinate values.

SE_IsMeasured Test if a geometry value has m coordinate values.

SE_LocateAlong Return a derived geometry collection value with elements that match the specified measur.

SE_LocateBetweenReturn a derived geometry collection value with elements that match the specified range of measures in-
clusively.

SE_M Returns the m coordinate value of an ST_Point value.

SE_Z Returns the z coordinate value of an ST_Point value

PostGIS Manual
52 / 69

Chapter 7

Reporting Bugs

Reporting bugs effectively is a fundamental way to help PostGIS development. The most effective bug report is that enabling
PostGIS developers to reproduce it, so it would ideally contain a script triggering it and every information regarding the envi-
ronment in which it was detected. Good enough info can be extracted runningSELECT postgis_full_version() [for
postgis] andSELECT version() [for postgresql].

If you aren’t using latest release, it’s worth taking a look at itsrelease changelogfirst, to find out if your bug has already been
fixed.

Using thePostGIS bug trackerwill ensure your reports are not discarded, and will keep you informed on it’s handling process.
Before reporting a new bug please query the database to see if it is a known one, and if it is please add any new information you
have about it.

You might want to read Simon Tatham’s paper aboutHow to Report Bugs Effectivelybefore filing a new report.

http://postgis.refractions.net/CHANGES.txt
http://code.google.com/p/postgis/issues/list
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

PostGIS Manual
53 / 69

Appendix A

Appendix

A.1 Release Notes

A.1.1 Release 1.3.3

Release date: 2008/04/12

This release fixes bugs shp2pgsql, adds enhancements to SVG and KML support, adds a ST_SimplifyPreserveTopology function,
makes the build more sensitive to GEOS versions, and fixes a handful of severe but rare failure cases.

A.1.2 Release 1.3.2

Release date: 2007/12/01

This release fixes bugs in ST_EndPoint() and ST_Envelope, improves support for JDBC building and OS/X, and adds better
support for GML output with ST_AsGML(), including GML3 output.

A.1.3 Release 1.3.1

Release date: 2007/08/13

This release fixes some oversights in the previous release around version numbering, documentation, and tagging.

A.1.4 Release 1.3.0

Release date: 2007/08/09

This release provides performance enhancements to the relational functions, adds new relational functions and begins the migra-
tion of our function names to the SQL-MM convension, using the spatial type (SP) prefix.

A.1.4.1 Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)

Added ST_Covers and ST_CoveredBy relational functions. Description and justification of these functions can be found at
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Added ST_DWithin relational function.

PostGIS Manual
54 / 69

A.1.4.2 Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the functions ST_Contains, ST_Intersects, ST_Within and ST_Disjoint

Added inline index support for relational functions (except ST_Disjoint)

A.1.4.3 Other Changes

Extended curved geometry support into the geometry accessor and some processing functions

Began migration of functions to the SQL-MM naming convension; using a spatial type (ST) prefix.

Added initial support for PostgreSQL 8.3

A.1.5 Release 1.2.1

Release date: 2007/01/11

This release provides bug fixes in PostgreSQL 8.2 support and some small performance enhancements.

A.1.5.1 Changes

Fixed point-in-polygon shortcut bug in Within().

Fixed PostgreSQL 8.2 NULL handling for indexes.

Updated RPM spec files.

Added short-circuit for Transform() in no-op case.

JDBC: Fixed JTS handling for multi-dimensional geometries (thanks to Thomas Marti for hint and partial patch). Additionally,
now JavaDoc is compiled and packaged. Fixed classpath problems with GCJ. Fixed pgjdbc 8.2 compatibility, losing support for
jdk 1.3 and older.

A.1.6 Release 1.2.0

Release date: 2006/12/08

This release provides type definitions along with serialization/deserialization capabilities for SQL-MM defined curved geome-
tries, as well as performance enhancements.

A.1.6.1 Changes

Added curved geometry type support for serialization/deserialization

Added point-in-polygon shortcircuit to the Contains and Within functions to improve performance for these cases.

A.1.7 Release 1.1.6

Release date: 2006/11/02

This is a bugfix release, in particular fixing a critical error with GEOS interface in 64bit systems. Includes an updated of the SRS
parameters and an improvement in reprojections (take Z in consideration). Upgrade isencouraged.

PostGIS Manual
55 / 69

A.1.7.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.7.2 Bug fixes

fixed CAPI change that broke 64-bit platforms

loader/dumper: fixed regression tests and usage output

Fixed setSRID() bug in JDBC, thanks to Thomas Marti

A.1.7.3 Other changes

use Z ordinate in reprojections

spatial_ref_sys.sql updated to EPSG 6.11.1

Simplified Version.config infrastructure to use a single pack of version variables for everything.

Include the Version.config in loader/dumper USAGE messages

Replace hand-made, fragile JDBC version parser with Properties

A.1.8 Release 1.1.5

Release date: 2006/10/13

This is an bugfix release, including a critical segfault on win32. Upgrade isencouraged.

A.1.8.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.8.2 Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on Win32 when compiled for PostgreSQL 8.2

fixed nullpointer Exception in Geometry.equals() method in Java

Added EJB3Spatial.odt to fulfill the GPL requirement of distributing the "preferred form of modification"

Removed obsolete synchronization from JDBC Jts code.

Updated heavily outdated README files for shp2pgsql/pgsql2shp by merging them with the manpages.

Fixed version tag in jdbc code that still said "1.1.3" in the "1.1.4" release.

A.1.8.3 New Features

Added -S option for non-multi geometries to shp2pgsql

PostGIS Manual
56 / 69

A.1.9 Release 1.1.4

Release date: 2006/09/27

This is an bugfix release including some improvements in the Java interface. Upgrade isencouraged.

A.1.9.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.9.2 Bug fixes

Fixed support for PostgreSQL 8.2

Fixed bug in collect() function discarding SRID of input

Added SRID match check in MakeBox2d and MakeBox3d

Fixed regress tests to pass with GEOS-3.0.0

Improved pgsql2shp run concurrency.

A.1.9.3 Java changes

reworked JTS support to reflect new upstream JTS developers’ attitude to SRID handling. Simplifies code and drops build depend
on GNU trove.

Added EJB2 support generously donated by the "Geodetix s.r.l. Company" http://www.geodetix.it/

Added EJB3 tutorial / examples donated by Norman Barker <nbarker@ittvis.com>

Reorganized java directory layout a little.

A.1.10 Release 1.1.3

Release date: 2006/06/30

This is an bugfix release including also some new functionalities (most notably long transaction support) and portability enhance-
ments. Upgrade isencouraged.

A.1.10.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.10.2 Bug fixes / correctness

BUGFIX in distance(poly,poly) giving wrong results.

BUGFIX in pgsql2shp successful return code.

BUGFIX in shp2pgsql handling of MultiLine WKT.

BUGFIX in affine() failing to update bounding box.

WKT parser: forbidden construction of multigeometries with EMPTY elements (still supported for GEOMETRYCOLLEC-
TION).

PostGIS Manual
57 / 69

A.1.10.3 New functionalities

NEW Long Transactions support.

NEW DumpRings() function.

NEW AsHEXEWKB(geom, XDR|NDR) function.

A.1.10.4 JDBC changes

Improved regression tests: MultiPoint and scientific ordinates

Fixed some minor bugs in jdbc code

Added proper accessor functions for all fields in preparation of making those fields private later

A.1.10.5 Other changes

NEW regress test support for loader/dumper.

Added --with-proj-libdir and --with-geos-libdir configure switches.

Support for build Tru64 build.

Use Jade for generating documentation.

Don’t link pgsql2shp to more libs then required.

Initial support for PostgreSQL 8.2.

A.1.11 Release 1.1.2

Release date: 2006/03/30

This is an bugfix release including some new functions and portability enhancements. Upgrade isencouraged.

A.1.11.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.11.2 Bug fixes

BUGFIX in SnapToGrid() computation of output bounding box

BUGFIX in EnforceRHR()

jdbc2 SRID handling fixes in JTS code

Fixed support for 64bit archs

A.1.11.3 New functionalities

Regress tests can now be run *before* postgis installation

New affine() matrix transformation functions

New rotate{,X,Y,Z}() function

Old translating and scaling functions now use affine() internally

Embedded access control in estimated_extent() for builds against pgsql >= 8.0.0

PostGIS Manual
58 / 69

A.1.11.4 Other changes

More portable ./configure script

Changed ./run_test script to have more sane default behaviour

A.1.12 Release 1.1.1

Release date: 2006/01/23

This is an important Bugfix release, upgrade ishighly recommended. Previous version contained a bug in postgis_restore.pl
preventinghard upgradeprocedure to complete and a bug in GEOS-2.2+ connector preventing GeometryCollection objects to be
used in topological operations.

A.1.12.1 Upgrading

If you are upgrading from release 1.0.3 or later follow thesoft upgradeprocedure.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.12.2 Bug fixes

Fixed a premature exit in postgis_restore.pl

BUGFIX in geometrycollection handling of GEOS-CAPI connector

Solaris 2.7 and MingW support improvements

BUGFIX in line_locate_point()

Fixed handling of postgresql paths

BUGFIX in line_substring()

Added support for localized cluster in regress tester

A.1.12.3 New functionalities

New Z and M interpolation in line_substring()

New Z and M interpolation in line_interpolate_point()

added NumInteriorRing() alias due to OpenGIS ambiguity

A.1.13 Release 1.1.0

Release date: 2005/12/21

This is a Minor release, containing many improvements and new things. Most notably: build procedure greatly simplified;
transform() performance drastically improved; more stable GEOS connectivity (CAPI support); lots of new functions; draft
topology support.

It is highly recommendedthat you upgrade to GEOS-2.2.x before installing PostGIS, this will ensure future GEOS upgrades
won’t require a rebuild of the PostGIS library.

PostGIS Manual
59 / 69

A.1.13.1 Credits

This release includes code from Mark Cave Ayland for caching of proj4 objects. Markus Schaber added many improvements in
his JDBC2 code. Alex Bodnaru helped with PostgreSQL source dependency relief and provided Debian specfiles. Michael Fuhr
tested new things on Solaris arch. David Techer and Gerald Fenoy helped testing GEOS C-API connector. Hartmut Tschauner
provided code for the azimuth() function. Devrim GUNDUZ provided RPM specfiles. Carl Anderson helped with the new area
building functions. See thecreditssection for more names.

A.1.13.2 Upgrading

If you are upgrading from release 1.0.3 or later youDO NOTneed a dump/reload. Simply sourcing the new lwpostgis_upgrade.sql
script in all your existing databases will work. See thesoft upgradechapter for more information.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.13.3 New functions

scale() and transscale() companion methods to translate()

line_substring()

line_locate_point()

M(point)

LineMerge(geometry)

shift_longitude(geometry)

azimuth(geometry)

locate_along_measure(geometry, float8)

locate_between_measures(geometry, float8, float8)

SnapToGrid by point offset (up to 4d support)

BuildArea(any_geometry)

OGC BdPolyFromText(linestring_wkt, srid)

OGC BdMPolyFromText(linestring_wkt, srid)

RemovePoint(linestring, offset)

ReplacePoint(linestring, offset, point)

A.1.13.4 Bug fixes

Fixed memory leak in polygonize()

Fixed bug in lwgeom_as_anytype cast functions

Fixed USE_GEOS, USE_PROJ and USE_STATS elements of postgis_version() output to always reflect library state.

A.1.13.5 Function semantic changes

SnapToGrid doesn’t discard higher dimensions

Changed Z() function to return NULL if requested dimension is not available

PostGIS Manual
60 / 69

A.1.13.6 Performance improvements

Much faster transform() function, caching proj4 objects

Removed automatic call to fix_geometry_columns() in AddGeometryColumns() and update_geometry_stats()

A.1.13.7 JDBC2 works

Makefile improvements

JTS support improvements

Improved regression test system

Basic consistency check method for geometry collections

Support for (Hex)(E)wkb

Autoprobing DriverWrapper for HexWKB / EWKT switching

fix compile problems in ValueSetter for ancient jdk releases.

fix EWKT constructors to accept SRID=4711; representation

added preliminary read-only support for java2d geometries

A.1.13.8 Other new things

Full autoconf-based configuration, with PostgreSQL source dependency relief

GEOS C-API support (2.2.0 and higher)

Initial support for topology modelling

Debian and RPM specfiles

New lwpostgis_upgrade.sql script

A.1.13.9 Other changes

JTS support improvements

Stricter mapping between DBF and SQL integer and string attributes

Wider and cleaner regression test suite

old jdbc code removed from release

obsoleted direct use of postgis_proc_upgrade.pl

scripts version unified with release version

A.1.14 Release 1.0.6

Release date: 2005/12/06

Contains a few bug fixes and improvements.

A.1.14.1 Upgrading

If you are upgrading from release 1.0.3 or later youDO NOTneed a dump/reload.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

PostGIS Manual
61 / 69

A.1.14.2 Bug fixes

Fixed palloc(0) call in collection deserializer (only gives problem with --enable-cassert)

Fixed bbox cache handling bugs

Fixed geom_accum(NULL, NULL) segfault

Fixed segfault in addPoint()

Fixed short-allocation in lwcollection_clone()

Fixed bug in segmentize()

Fixed bbox computation of SnapToGrid output

A.1.14.3 Improvements

Initial support for postgresql 8.2

Added missing SRID mismatch checks in GEOS ops

A.1.15 Release 1.0.5

Release date: 2005/11/25

Contains memory-alignment fixes in the library, a segfault fix in loader’s handling of UTF8 attributes and a few improvements
and cleanups.

Note
Return code of shp2pgsql changed from previous releases to conform to unix standards (return 0 on success).

A.1.15.1 Upgrading

If you are upgrading from release 1.0.3 or later youDO NOTneed a dump/reload.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.15.2 Library changes

Fixed memory alignment problems

Fixed computation of null values fraction in analyzer

Fixed a small bug in the getPoint4d_p() low-level function

Speedup of serializer functions

Fixed a bug in force_3dm(), force_3dz() and force_4d()

A.1.15.3 Loader changes

Fixed return code of shp2pgsql

Fixed back-compatibility issue in loader (load of null shapefiles)

Fixed handling of trailing dots in dbf numerical attributes

Segfault fix in shp2pgsql (utf8 encoding)

PostGIS Manual
62 / 69

A.1.15.4 Other changes

Schema aware postgis_proc_upgrade.pl, support for pgsql 7.2+

New "Reporting Bugs" chapter in manual

A.1.16 Release 1.0.4

Release date: 2005/09/09

Contains important bug fixes and a few improvements. In particular, it fixes a memory leak preventing successful build of GiST
indexes for large spatial tables.

A.1.16.1 Upgrading

If you are upgrading from release 1.0.3 youDO NOTneed a dump/reload.

If you are upgrading from a releasebetween 1.0.0RC6 and 1.0.2(inclusive) and really want a live upgrade read theupgrade
sectionof the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires anhard upgrade.

A.1.16.2 Bug fixes

Memory leak plugged in GiST indexing

Segfault fix in transform() handling of proj4 errors

Fixed some proj4 texts in spatial_ref_sys (missing +proj)

Loader: fixed string functions usage, reworked NULL objects check, fixed segfault on MULTILINESTRING input.

Fixed bug in MakeLine dimension handling

Fixed bug in translate() corrupting output bounding box

A.1.16.3 Improvements

Documentation improvements

More robust selectivity estimator

Minor speedup in distance()

Minor cleanups

GiST indexing cleanup

Looser syntax acceptance in box3d parser

A.1.17 Release 1.0.3

Release date: 2005/08/08

Contains some bug fixes -including a severe one affecting correctness of stored geometries- and a few improvements.

PostGIS Manual
63 / 69

A.1.17.1 Upgrading

Due to a bug in a bounding box computation routine, the upgrade procedure requires special attention, as bounding boxes cached
in the database could be incorrect.

An hard upgradeprocedure (dump/reload) will force recomputation of all bounding boxes (not included in dumps). This is
requiredif upgrading from releases prior to 1.0.0RC6.

If you are upgrading from versions 1.0.0RC6 or up, this release includes a perl script (utils/rebuild_bbox_caches.pl) to force
recomputation of geometries’ bounding boxes and invoke all operations required to propagate eventual changes in them (ge-
ometry statistics update, reindexing). Invoke the script after a make install (run with no args for syntax help). Optionally run
utils/postgis_proc_upgrade.pl to refresh postgis procedures and functions signatures (seeSoft upgrade).

A.1.17.2 Bug fixes

Severe bugfix in lwgeom’s 2d bounding box computation

Bugfix in WKT (-w) POINT handling in loader

Bugfix in dumper on 64bit machines

Bugfix in dumper handling of user-defined queries

Bugfix in create_undef.pl script

A.1.17.3 Improvements

Small performance improvement in canonical input function

Minor cleanups in loader

Support for multibyte field names in loader

Improvement in the postgis_restore.pl script

New rebuild_bbox_caches.pl util script

A.1.18 Release 1.0.2

Release date: 2005/07/04

Contains a few bug fixes and improvements.

A.1.18.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up youDO NOTneed a dump/reload.

Upgrading from older releases requires a dump/reload. See theupgradingchapter for more informations.

A.1.18.2 Bug fixes

Fault tolerant btree ops

Memory leak plugged in pg_error

Rtree index fix

Cleaner build scripts (avoided mix of CFLAGS and CXXFLAGS)

PostGIS Manual
64 / 69

A.1.18.3 Improvements

New index creation capabilities in loader (-I switch)

Initial support for postgresql 8.1dev

A.1.19 Release 1.0.1

Release date: 2005/05/24

Contains a few bug fixes and some improvements.

A.1.19.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up youDO NOTneed a dump/reload.

Upgrading from older releases requires a dump/reload. See theupgradingchapter for more informations.

A.1.19.2 Library changes

BUGFIX in 3d computation of length_spheroid()

BUGFIX in join selectivity estimator

A.1.19.3 Other changes/additions

BUGFIX in shp2pgsql escape functions

better support for concurrent postgis in multiple schemas

documentation fixes

jdbc2: compile with "-target 1.2 -source 1.2" by default

NEW -k switch for pgsql2shp

NEW support for custom createdb options in postgis_restore.pl

BUGFIX in pgsql2shp attribute names unicity enforcement

BUGFIX in Paris projections definitions

postgis_restore.pl cleanups

A.1.20 Release 1.0.0

Release date: 2005/04/19

Final 1.0.0 release. Contains a few bug fixes, some improvements in the loader (most notably support for older postgis versions),
and more docs.

A.1.20.1 Upgrading

If you are upgrading from release 1.0.0RC6 youDO NOTneed a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See theupgradingchapter for more informations.

PostGIS Manual
65 / 69

A.1.20.2 Library changes

BUGFIX in transform() releasing random memory address

BUGFIX in force_3dm() allocating less memory then required

BUGFIX in join selectivity estimator (defaults, leaks, tuplecount, sd)

A.1.20.3 Other changes/additions

BUGFIX in shp2pgsql escape of values starting with tab or single-quote

NEW manual pages for loader/dumper

NEW shp2pgsql support for old (HWGEOM) postgis versions

NEW -p (prepare) flag for shp2pgsql

NEW manual chapter about OGC compliancy enforcement

NEW autoconf support for JTS lib

BUGFIX in estimator testers (support for LWGEOM and schema parsing)

A.1.21 Release 1.0.0RC6

Release date: 2005/03/30

Sixth release candidate for 1.0.0. Contains a few bug fixes and cleanups.

A.1.21.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See theupgradingchapter for more informations.

A.1.21.2 Library changes

BUGFIX in multi()

early return [when noop] from multi()

A.1.21.3 Scripts changes

dropped {x,y}{min,max}(box2d) functions

A.1.21.4 Other changes

BUGFIX in postgis_restore.pl scrip

BUGFIX in dumper’s 64bit support

A.1.22 Release 1.0.0RC5

Release date: 2005/03/25

Fifth release candidate for 1.0.0. Contains a few bug fixes and a improvements.

PostGIS Manual
66 / 69

A.1.22.1 Upgrading

If you are upgrading from release 1.0.0RC4 youDO NOTneed a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See theupgradingchapter for more informations.

A.1.22.2 Library changes

BUGFIX (segfaulting) in box3d computation (yes, another!).

BUGFIX (segfaulting) in estimated_extent().

A.1.22.3 Other changes

Small build scripts and utilities refinements.

Additional performance tips documented.

A.1.23 Release 1.0.0RC4

Release date: 2005/03/18

Fourth release candidate for 1.0.0. Contains bug fixes and a few improvements.

A.1.23.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See theupgradingchapter for more informations.

A.1.23.2 Library changes

BUGFIX (segfaulting) in geom_accum().

BUGFIX in 64bit architectures support.

BUGFIX in box3d computation function with collections.

NEW subselects support in selectivity estimator.

Early return from force_collection.

Consistency check fix in SnapToGrid().

Box2d output changed back to 15 significant digits.

A.1.23.3 Scripts changes

NEW distance_sphere() function.

Changed get_proj4_from_srid implementation to use PL/PGSQL instead of SQL.

PostGIS Manual
67 / 69

A.1.23.4 Other changes

BUGFIX in loader and dumper handling of MultiLine shapes

BUGFIX in loader, skipping all but first hole of polygons.

jdbc2: code cleanups, Makefile improvements

FLEX and YACC variables set *after* pgsql Makefile.global is included and only if the pgsql *stripped* version evaluates to the
empty string

Added already generated parser in release

Build scripts refinements

improved version handling, central Version.config

improvements in postgis_restore.pl

A.1.24 Release 1.0.0RC3

Release date: 2005/02/24

Third release candidate for 1.0.0. Contains many bug fixes and improvements.

A.1.24.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See theupgradingchapter for more informations.

A.1.24.2 Library changes

BUGFIX in transform(): missing SRID, better error handling.

BUGFIX in memory alignment handling

BUGFIX in force_collection() causing mapserver connector failures on simple (single) geometry types.

BUGFIX in GeometryFromText() missing to add a bbox cache.

reduced precision of box2d output.

prefixed DEBUG macros with PGIS_ to avoid clash with pgsql one

plugged a leak in GEOS2POSTGIS converter

Reduced memory usage by early releasing query-context palloced one.

A.1.24.3 Scripts changes

BUGFIX in 72 index bindings.

BUGFIX in probe_geometry_columns() to work with PG72 and support multiple geometry columns in a single table

NEW bool::text cast

Some functions made IMMUTABLE from STABLE, for performance improvement.

PostGIS Manual
68 / 69

A.1.24.4 JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and license.

jdbc2: bug fix and testcase in for pgjdbc 8.0 type autoregistration

jdbc2: Removed use of jdk1.4 only features to enable build with older jdk releases.

jdbc2: Added support for building against pg72jdbc2.jar

jdbc2: updated and cleaned makefile

jdbc2: added BETA support for jts geometry classes

jdbc2: Skip known-to-fail tests against older PostGIS servers.

jdbc2: Fixed handling of measured geometries in EWKT.

A.1.24.5 Other changes

new performance tips chapter in manual

documentation updates: pgsql72 requirement, lwpostgis.sql

few changes in autoconf

BUILDDATE extraction made more portable

fixed spatial_ref_sys.sql to avoid vacuuming the whole database.

spatial_ref_sys: changed Paris entries to match the ones distributed with 0.x.

A.1.25 Release 1.0.0RC2

Release date: 2005/01/26

Second release candidate for 1.0.0 containing bug fixes and a few improvements.

A.1.25.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See theupgradingchapter for more informations.

A.1.25.2 Library changes

BUGFIX in pointarray box3d computation

BUGFIX in distance_spheroid definition

BUGFIX in transform() missing to update bbox cache

NEW jdbc driver (jdbc2)

GEOMETRYCOLLECTION(EMPTY) syntax support for backward compatibility

Faster binary outputs

Stricter OGC WKB/WKT constructors

A.1.25.3 Scripts changes

More correct STABLE, IMMUTABLE, STRICT uses in lwpostgis.sql

stricter OGC WKB/WKT constructors

PostGIS Manual
69 / 69

A.1.25.4 Other changes

Faster and more robust loader (both i18n and not)

Initial autoconf script

A.1.26 Release 1.0.0RC1

Release date: 2005/01/13

This is the first candidate of a major postgis release, with internal storage of postgis types redesigned to be smaller and faster on
indexed queries.

A.1.26.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See theupgradingchapter for more informations.

A.1.26.2 Changes

Faster canonical input parsing.

Lossless canonical output.

EWKB Canonical binary IO with PG>73.

Support for up to 4d coordinates, providing lossless shapefile->postgis->shapefile conversion.

New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(), accum().

Vertical positioning indexed operators.

JOIN selectivity function.

More geometry constructors / editors.

PostGIS extension API.

UTF8 support in loader.

	Introduction
	Credits
	More Information

	Installation
	Requirements
	PostGIS
	Creating PostGIS spatially-enabled databases from an in-built template
	Upgrading
	Soft upgrade
	Hard upgrade

	Common Problems

	JDBC
	Loader/Dumper

	Frequently Asked Questions
	Using PostGIS
	GIS Objects
	OpenGIS WKB and WKT
	PostGIS EWKB, EWKT and Canonical Forms
	SQL-MM Part 3

	Using OpenGIS Standards
	The SPATIAL_REF_SYS Table
	The GEOMETRY_COLUMNS Table
	Creating a Spatial Table
	Ensuring OpenGIS compliancy of geometries

	Loading GIS Data
	Using SQL
	Using the Loader

	Retrieving GIS Data
	Using SQL
	Using the Dumper

	Building Indexes
	GiST Indexes
	Using Indexes

	Complex Queries
	Taking Advantage of Indexes
	Examples of Spatial SQL

	Using Mapserver
	Basic Usage
	Frequently Asked Questions
	Advanced Usage
	Examples

	Java Clients (JDBC)
	C Clients (libpq)
	Text Cursors
	Binary Cursors

	Performance tips
	Small tables of large geometries
	Problem description
	Workarounds

	CLUSTERing on geometry indices
	Avoiding dimension conversion

	PostGIS Reference
	OpenGIS Functions
	Management Functions
	Geometry Relationship Functions
	Geometry Processing Functions
	Geometry Accessors
	Geometry Constructors

	PostGIS Extensions
	Management Functions
	Operators
	Measurement Functions
	Geometry Outputs
	Geometry Constructors
	Geometry Editors
	Linear Referencing
	Misc
	Long Transactions support

	SQL-MM Functions
	ArcSDE Functions

	Reporting Bugs
	Appendix
	Release Notes
	Release 1.3.3
	Release 1.3.2
	Release 1.3.1
	Release 1.3.0
	Added Functionality
	Performance Enhancements
	Other Changes

	Release 1.2.1
	Changes

	Release 1.2.0
	Changes

	Release 1.1.6
	Upgrading
	Bug fixes
	Other changes

	Release 1.1.5
	Upgrading
	Bug fixes
	New Features

	Release 1.1.4
	Upgrading
	Bug fixes
	Java changes

	Release 1.1.3
	Upgrading
	Bug fixes / correctness
	New functionalities
	JDBC changes
	Other changes

	Release 1.1.2
	Upgrading
	Bug fixes
	New functionalities
	Other changes

	Release 1.1.1
	Upgrading
	Bug fixes
	New functionalities

	Release 1.1.0
	Credits
	Upgrading
	New functions
	Bug fixes
	Function semantic changes
	Performance improvements
	JDBC2 works
	Other new things
	Other changes

	Release 1.0.6
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.5
	Upgrading
	Library changes
	Loader changes
	Other changes

	Release 1.0.4
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.3
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.2
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.1
	Upgrading
	Library changes
	Other changes/additions

	Release 1.0.0
	Upgrading
	Library changes
	Other changes/additions

	Release 1.0.0RC6
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC5
	Upgrading
	Library changes
	Other changes

	Release 1.0.0RC4
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC3
	Upgrading
	Library changes
	Scripts changes
	JDBC changes
	Other changes

	Release 1.0.0RC2
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC1
	Upgrading
	Changes

