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Note: The entire documentation is also available as a single PDF document

If you are upgrading from an earlier version of MapServer, be sure to review the MapServer Migration Guide.

Documentation for earlier versions of MapServer can be found on the Download page.
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1.1.1 MapServer Overview

MapServer is a popular Open Source project whose purpose is to display dynamic spatial maps over the Internet. Some
of its major features include:

• support for display and querying of hundreds of raster, vector, and database formats

• ability to run on various operating systems (Windows, Linux, Mac OS X, etc.)

• support for popular scripting languages and development environments (PHP, Python, Perl, Ruby, Java, .NET)

• on-the-fly projections

• high quality rendering
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• fully customizable application output

• many ready-to-use Open Source application environments

In its most basic form, MapServer is a CGI program that sits inactive on your Web server. When a request is sent to
MapServer, it uses information passed in the request URL and the Mapfile to create an image of the requested map.
The request may also return images for legends, scale bars, reference maps, and values passed as CGI variables.

See also:
The Glossary contains an overview of many of the jargon terms in this document.

MapServer can be extended and customized through MapScript or templating. It can be built to support many different
vector and raster input data formats, and it can generate a multitude of output formats. Most pre-compiled MapServer
distributions contain most all of its features.

See also:
Compiling on Unix and Compiling on Win32

Note: MapScript provides a scripting interface for MapServer for the construction of Web and stand-alone applications.
MapScript can be used independently of CGI MapServer, and it is a loadable module that adds MapServer capability
to your favorite scripting language. MapScript currently exists in PHP, Perl, Python, Ruby, Tcl, Java, and .NET flavors.

This guide will not explicitly discuss MapScript, check out the MapScript Reference for more information.

1.1.2 Anatomy of a MapServer Application

A simple MapServer application consists of:

• Map File - a structured text configuration file for your MapServer application. It defines the area of your map,
tells the MapServer program where your data is and where to output images. It also defines your map layers,
including their data source, projections, and symbology. It must have a .map extension or MapServer will not
recognize it.

See also:
MapServer Mapfile Reference

• Geographic Data - MapServer can utilize many geographic data source types. The default format is the ESRI
Shape format. Many other data formats can be supported, this is discussed further below in Adding data to your
site.

See also:
Vector Input Reference and Raster Input Reference

• HTML Pages - the interface between the user and MapServer . They normally sit in Web root. In it’s simplest
form, MapServer can be called to place a static map image on a HTML page. To make the map interactive, the
image is placed in an HTML form on a page.

CGI programs are ‘stateless’, every request they get is new and they don’t remember anything about the last time
that they were hit by your application. For this reason, every time your application sends a request to MapServer,
it needs to pass context information (what layers are on, where you are on the map, application mode, etc.) in
hidden form variables or URL variables.

A simple MapServer CGI application may include two HTML pages:

– Initialization File - uses a form with hidden variables to send an initial query to the web server and
MapServer. This form could be placed on another page or be replaced by passing the initialization in-
formation as variables in a URL.
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Fig. 1: The basic architecture of MapServer applications.
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– Template File - controls how the maps and legends output by MapServer will appear in the browser. By
referencing MapServer CGI variables in the template HTML, you allow MapServer to populate them with
values related to the current state of your application (e.g. map image name, reference image name, map
extent, etc.) as it creates the HTML page for the browser to read. The template also determines how the
user can interact with the MapServer application (browse, zoom, pan, query).

See also:
Templating

• MapServer CGI - The binary or executable file that receives requests and returns images, data, etc. It sits in the
cgi-bin or scripts directory of the web server. The Web server user must have execute rights for the directory that
it sits in, and for security reasons, it should not be in the web root. By default, this program is called mapserv

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable,
by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as
recommended in the document Limit Mapfile Access. All possible environment variables to secure your server
are listed in Environment Variables.

• Web/HTTP Server - serves up the HTML pages when hit by the user’s browser. You need a working Web
(HTTP) server, such as Apache or Microsoft Internet Information Server, on the machine on which you are
installing MapServer.

1.1.3 Installation and Requirements

Hardware Requirements

MapServer runs on Linux, Windows, Mac OS X, Solaris, and more. To compile or install some of the required pro-
grams, you may need administrative rights to the machine. People commonly ask questions about minimum hardware
specifications for MapServer applications, but the answers are really specific to the individual application. For devel-
opment and learning purposes, a very minimal machine will work fine. For deployment, you will want to investigate
Optimization of everything from your data to server configuration.

Software Requirements

You need a working and properly configured Web (HTTP) server, such as Apache or Microsoft Internet Information
Server, on the machine on which you are installing MapServer.

If you are on a Windows machine, and you don’t have a web server installed, it is recommended that you use MS4W,
which will install a pre-configured web server, MapServer, MapCache, PHP, TinyOWS, and many more utilities. Win-
dows users can optionally check out the OSGeo4W installer as well.

This introduction will assume you are using an MS4W installation to follow along. Obtaining MapServer on Linux or
Mac OS X should be straightforward. Visit download for installing pre-compiled MapServer builds on Mac OS X and
Linux.

Note: The OSGeo-Live virtual machine contains MapServer ready to use as well.

You will also need a Web browser, and a text editor (vi, emacs, notepad++, textpad, homesite) to modify your HTML
and mapfiles.
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Tip: Notepad++ users can follow these steps to add syntax coloring to .map files.

Skills

In addition to learning how the different components of a MapServer application work together and learning Map File
syntax, building a basic application requires some conceptual understanding and proficiency in several skill areas.

You need to be able to create or at least modify HTML pages and understand how HTML forms work. Since the primary
purpose of a MapServer application is to create maps, you will also need to understand the basics of geographic data and
likely, map projections. As your applications get more complex, skills in SQL, DHTML/Javascript, Java, databases,
expressions, compiling, and scripting may be very useful.

Secure your installation

During your installation and configuration, it is strongly recommended to review the security steps for the MAP= call
to the MapServer executable, by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter
on public servers, as recommended in the document Limit Mapfile Access. All possible environment variables to secure
your server are listed in Environment Variables.

Windows Installation

Note: Pre-compiled binaries for MapServer are available from a variety of sources, refer to the windows section of
the Downloads page.

MS4W (MapServer for Windows) is the long-time installer that contains the Apache Web server, MapServer, and all
of its dependencies and tools; MS4W also contains several add-on packages, that contain over 60+ pre-configured
MapServer configuration files (mapfiles) and data. The following steps illustrate how to install MS4W:

1) Download MS4W (this example will use the -setup.exe file) from https://ms4w.com/

2) Execute (double-click) the .exe

3) Click the “Agree” button, to accept the license.

Note: MS4W uses the very open MIT/X license.
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4) Select packages to install. Be sure to also select the “MapServer Itasca Demo Application”, as we will be using
this demo later.

Note: You can optionally install other packages, by clicking the checkbox beside the package name.
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5) Click the “Next” button

6) Click the “Browse. . . ” button, to choose an installation path. You can safely leave the default (C:/), and the
installer will create C:/ms4w.

Note: Folders with spaces are supported, if you are using the -setup.exe installer.
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7) Click the “Next” button

8) Enter a port number to use for the Apache service. In most cases you can leave the port as 80, unless something
is using that port such as an IIS service.

Note: You can specify any number above 1024, such as 8081 or 8082.
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10) Click the “Install” button
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11) Once you see a message of “Installer Complete”, then click the “Close” button
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12) On your desktop, click on the “MS4W-Localhost” shortcut, and your browser should open http://127.0.0.1 that
loads an MS4W introduction page.
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13) Verify that MapServer is working, by clicking on the /cgi-bin/mapserv.exe link in the “Features” section of the
page.

Note: If MapServer is working properly, you will receive a message stating: “No query information to
decode. QUERY_STRING is set, but empty.”

1.1. An Introduction to MapServer 14



MapServer Documentation, Release 7.6.6

1.1.4 Introduction to the Mapfile

The .map file is the basic configuration file for data access and styling for MapServer. The file is an ASCII text file,
and is made up of different objects. Each object has a variety of parameters available for it. All .map file (or mapfile)
parameters are documented in the mapfile reference. A simple mapfile example displaying only one layer follows, as
well as the map image output:

Tip: Notepad++ users can follow these steps to add syntax coloring to .map files.

MAP
NAME "sample"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

(continues on next page)
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(continued from previous page)

#
# Start of web interface definition
#
WEB

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END # WEB

#
# Start of layer definitions
#
LAYER

NAME 'global-raster'
TYPE RASTER
STATUS DEFAULT
DATA bluemarble.gif

END # LAYER
END # MAP

Fig. 2: Rendered Bluemarble Image

Note:
• Comments in a mapfile are specified with a ‘#’ character. Since version 7.2 MapServer also supports single or

multi-line C-style comments, as /* . . . */

• MapServer parses mapfiles from top to bottom, therefore layers at the end of the mapfile will be drawn last
(meaning they will be displayed on top of other layers)

• Using relative paths is always recommended

• Paths should be quoted (single or double quotes are accepted)

• The above example is built on the following directory structure:
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– The mapfile could be placed anywhere, as long as it is accessible to the web server. Normally, one
would try to avoid placing it at a location that makes it accessible on the web. Let us say it is placed
in /home/msuser/mapfiles/

– The location of the font file is given relative to the map file, in this case: /home/msuser/etc/fonts.txt

– The location of the datasets (bluemarble.gif ) is given relative to the map file, in this case:
/home/msuser/data/

– The location of the symbol file is given relative to the map file, in this case: /home/msuser/etc/symbols.txt

– The files generated by MapServer will be placed in the directory /ms4w/tmp/ms_tmp/. The web server must
be able to place files in this directory. The web server must make this directory available as /ms_tmp (if the
web server is on www.ms.org, the web address to the directory must be: httpd://www.ms.org/ms_tmp/.

MAP Object

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255

END # MAP

• EXTENT is the output extent in the units of the output map

• SIZE is the width and height of the map image in pixels

• IMAGECOLOR is the default image background color

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

Note: MapServer currently uses a pixel-center based extent model which is a bit different from what GDAL or WMS
use.

LAYER Object

• starting with MapServer 5.0, there is no limit to the number of layers in a mapfile

• the DATA parameter is relative to the SHAPEPATH parameter of the MAP object

• if no DATA extension is provided in the filename, MapServer will assume it is ESRI Shape format (.shp)
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Raster Layers

LAYER
NAME "bathymetry"
TYPE RASTER
STATUS DEFAULT
DATA "bath_mapserver.tif"

END # LAYER

See also:
Raster Data

Vector Layers

Vector layers of TYPE point, line, or polygon can be displayed. The following example shows how to display only lines
from a TYPE polygon layer, using the OUTLINECOLOR parameter:

LAYER
NAME "world_poly"
DATA 'shapefile/countries_area.shp'
STATUS ON
TYPE POLYGON
CLASS
NAME 'The World'
STYLE
OUTLINECOLOR 0 0 0

END # STYLE
END # CLASS

END # LAYER

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

See also:
Vector Data

CLASS and STYLE Objects

• typical styling information is stored within the CLASS and STYLE objects of a LAYER

• starting with MapServer 5.0, there is no limit to the number of classes or styles in a mapfile

• the following example shows how to display a road line with two colors by using overlaid STYLE objects

CLASS
NAME "Primary Roads"
STYLE
SYMBOL "circle"
COLOR 178 114 1
SIZE 15

END # STYLE
(continues on next page)
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Fig. 3: Rendered Bluemarble image with vector boundaries

(continued from previous page)

STYLE
SYMBOL "circle"
COLOR 254 161 0
SIZE 7

END # STYLE
END # CLASS

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

SYMBOLs

• can be defined directly in the mapfile, or in a separate file

• the separate file method must use the SYMBOLSET parameter in the MAP object:

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
SYMBOLSET "../etc/symbols.txt"

END # MAP

where symbols.txt might contain:

SYMBOL
NAME "ski"

(continues on next page)
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Fig. 4: Rendered Bluemarble image with styled roads

(continued from previous page)

TYPE PIXMAP
IMAGE "ski.png"

END # SYMBOL

and the mapfile would contain:

LAYER
...
CLASS
NAME "Ski Area"
STYLE
SYMBOL "ski"

END # STYLE
END # CLASS

END # LAYER

See also:
Cartographical Symbol Construction with MapServer, Symbology Examples, and SYMBOL
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Fig. 5: Rendered Bluemarble image with skier symbol

LABEL

• defined within a CLASS object

• the LABELITEM parameters in the LAYER object can be used to specify an attribute in the data to be used
for labeling. The label is displayed by the FONT, declared in the FONTSET file (set in the MAP object). The
FONTSET file contains references to the available font names. ENCODING describes which encoding is used
in the file (see Display of International Characters in MapServer).

An example LABEL object that references one of the above fonts might look like:

LABEL
FONT "sans-bold"
TYPE truetype
ENCODING "UTF-8"
SIZE 10
POSITION LC
PARTIALS FALSE
COLOR 100 100 100
OUTLINECOLOR 242 236 230

END # LABEL

See also:
LABEL, FONTSET
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Fig. 6: Rendered Bluemarble image with skier symbol and a label

CLASS Expressions

MapServer supports three types of CLASS Expressions in a LAYER (CLASSITEM in LAYER determines the attribute
to be used for the two first types of expressions):

1) String comparisons

EXPRESSION "africa"

2) Regular expressions

EXPRESSION /^9|^10/

3) Logical expressions

EXPRESSION ([POPULATION] > 50000 AND '[LANGUAGE]' eq 'FRENCH')

Note: Logical expressions should be avoided wherever possible as they are very costly in terms of drawing time.

See also:
Expressions
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INCLUDE

Added to MapServer 4.10, any part of the mapfile can now be stored in a separate file and added to the main mapfile
using the INCLUDE parameter. The filename to be included can have any extension, and it is always relative to the
main .map file. Here are some potential uses:

• LAYERs can be stored in files and included to any number of applications

• STYLEs can also be stored and included in multiple applications

The following is an example of using mapfile includes to include a layer definition in a separate file:

If ‘shadedrelief.lay’ contains:

LAYER
NAME 'shadedrelief'
STATUS ON
TYPE RASTER
DATA 'GLOBALeb3colshade.jpg'

END # LAYER

therefore the main mapfile would contain:

MAP
...
INCLUDE "shadedrelief.lay"
...

END # MAP

The following is an example of a mapfile where all LAYER s are in separate .lay files, and all other objects (WEB,
REFERENCE, SCALEBAR, etc.) are stored in a “.ref” file:

MAP
NAME "base"
#
# include reference objects
#
INCLUDE "../templates/template.ref"
#
# Start of layer definitions
#
INCLUDE "../layers/usa/usa_outline.lay"
INCLUDE "../layers/canada/base/1m/provinces.lay"
INCLUDE "../layers/canada/base/1m/roads_atlas_of_canada_1m.lay"
INCLUDE "../layers/canada/base/1m/roads_atlas_of_canada_1m_shields.lay"
INCLUDE "../layers/canada/base/1m/populated_places.lay"

END # MAP

Warning: Mapfiles must have the .map extension or MapServer will not recognize them. Include files can have
any extension you want, however.

See also:
INCLUDE
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Get MapServer Running

You can test if MapServer is working by running the MapServer executable (mapserv) with the -v parameter on the
command line (./mapserv -v).

MS4W users that installed through the -setup.exe installer, can use the MS4W-Shell shortcut on the desktop, and then
run mapserv -v at the commandline. MS4W users who did not use the -setup.exe installer can open a Command Prompt
window, cd to their installation folder, and then execute setenv.bat, before testing a mapserv -v command.

Depending on your configuration, the output could be something like this:

MapServer version 7.0.1 (MS4W 3.1.4) OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO SUPPORTS=ICONV
SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE

You can also send a HTTP request directly to the MapServer CGI program without passing any configuration vari-
ables (e.g. http://127.0.0.1/cgi-bin/mapserv.exe). If you receive the message, ‘No query information to decode.
QUERY_STRING not set.’, your installation is working.

Get Demo Running

Warning: MS4W users do not have to do this step, as the above instructions already installed the demo. You should
see a “MapServer Itasca Demo Application” section on the bottom of the page (after clicking the MS4W-Localhost
shortcut).

Download the MapServer Demo. UnZip it and follow the directions in ReadMe.txt. You will need to move the demo
files to their appropriate locations on your web server, and modify the Map File and HTML pages to reflect the paths
and URLs of your server. Next, point your browser to init.html and hit the ‘initialize button’. If you get errors, verify
that you have correctly modified the demo files.

1.1.5 Making the Site Your Own

Now that you have a working MapServer demo, you can use the demo to display your own data. Add new LAYERs to
your Map file that refer to your own geographic data layers (you will probably want to delete the existing layers or set
their status to OFF).

Unless you are adding layers that fall within the same geographic area as the demo, modify MAP EXTENT to match
the extent of your data. To determine the extent of your data, you can use ogrinfo. If you have access to a GIS, you
could use that as well. The MAP EXTENT needs to be in the units of your output projection.

If you add geographic data layers with different geographical reference systems, you will need to modify your Map File
to add a PROJECTION block to the MAP (defines the output projection / geographical reference system) and each of
the LAYERs (defines the geographical reference system of the layer dataset).
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Adding Data to Your Site

MapServer supports several data input formats ‘natively’, and many more if it is compiled with the Open Source libraries
GDAL and OGR.

Vector Data

Vector data includes features made up of points, lines, and polygons. MapServer support the ESRI Shape format by
default, but it can be compiled to support spatially enabled databases such as PostgreSQL-PostGIS, and file formats
such as Geography Markup Language (GML), MapInfo, delimited text files, and more formats with OGR Vector Layers
Through MapServer.

See the Vector Data reference for examples on how to add different geographic data sources to your MapServer project.

Raster Data

Raster data is image or grid data. Through GDAL, MapServer supports most raster formats - see the GDAL format list.
More specific information can be found in the Raster Data reference.

Note: Since version 6.2 MapServer relies on GDAL for all raster access.

Projections

Because the earth is round and your monitor (or paper map) is flat, distortions will occur when you display geographic
data in a two-dimensional image. Projections allow you to represent geographic data on a flat surface. In doing so, some
of the original properties (e.g. area, direction, distance, scale or conformity) of the data will be distorted. Different
projections excel at accurately portraying different properties.

With MapServer, if you keep all of your spatial data sets in the same projection (or unprojected Latitude and Longitude),
you do not need to include any projection info in your Map File. In building your first MapServer application, this
simplification is recommended.

On-the-fly projection can be accomplished when MapServer is compiled with PROJ support. Instructions on how to
enable PROJ support on Windows can be found on the Wiki.

1.1.6 Enhancing your site

Adding Query Capability

There are two primary ways to query spatial data. Both methods return data through the use of templates and CGI
variable replacement. A QUERYMAP can be used to map the results of the query.

To be queryable, each mapfile LAYER must have a TEMPLATE defined, or each CLASS within the LAYER must have a
TEMPLATE defined. More information about the CGI variables used to define queries can be found in the MapServer
CGI Reference.

1.1. An Introduction to MapServer 25

http://postgis.net/
http://en.wikipedia.org/wiki/Geography_Markup_Language
https://www.pitneybowes.com/ca/en/location-intelligence/geographic-information-systems/mapinfo-pro.html
https://gdal.org/
http://www.gdal.org/formats_list.html
https://github.com/MapServer/MapServer/wiki/WindowsProjHowto


MapServer Documentation, Release 7.6.6

Attribute queries

The user selects features based on data associated with that feature. ‘Show me all of the lakes where depth is greater
than 100 feet’, with ‘depth’ being a field in the Shape dataset or the spatial database. Attribute queries are accomplished
by passing query definition information to MapServer in the URL (or form post). Mode=itemquery returns a single
result, and mode=itemnquery returns multiple result sets.

The request must also include a QLAYER, which identifies the layer to be queried, and a QSTRING which contains
the query string. Optionally, QITEM, can be used in conjunction with QSTRING to define the field to be queried.
Attribute queries only apply within the EXTENT set in the map file.

Spatial queries

The user selects features based on a click on the map or a user-defined selection box. Again the request is passed through
a URL or form post. By setting mode=QUERY, a user click will return the one closest feature. In mode=NQUERY, all
features found by a map click or user-defined selection box are returned. Additional query options can be found in the
CGI documentation.

Interfaces

See: OpenLayers http://openlayers.org, GeoMOOSE http://geomoose.org

Note: MS4W users can install both OpenLayers and GeoMOOSE as ready-to-use packages.

Data Optimization

Data organization is at least as important as hardware configuration in optimizing a MapServer application for perfor-
mance. MapServer is quite efficient at what it does, but by reducing the amount of processing that it needs to do at the
time of a user request, you can greatly increase performance. Here are a few rules:

• Index Your data - By creating spatial indexes for your Shape datasets using shptree. Spatial indexes should also
be created for spatially aware databases such as PostGIS and Oracle Spatial.

• Tile Your Data - Ideally, your data will be ‘sliced up’ into pieces about the size in which it will be displayed.
There is unnecessary overhead when searching through a large vector dataset or image of which you are only
going to display a small area. By breaking the data up into tiles and creating a tile index, MapServer only
needs to open up and search the data files of interest. The GDAL commandline utilities ogrtindex (for vectors)
and gdaltindex (for rasters) allow indexing of any supported GDAL driver/format. For more information (and
detailed steps) see Tile Indexes. If you need to only index shapefiles, you can use the tile4ms MapServer utility.

• Pre-Classify Your Data - MapServer allows for the use of quite complex EXPRESSIONs to classify data. How-
ever, using logical and regular expressions is more resource intensive than string comparisons. To increase
efficiency, you can divide your data into classes ahead of time, create a field to use as the CLASSITEM and pop-
ulate it with a simple value that identifies the class, such as 1,2,3, or 4 for a four class data set. You can then do
a simple string comparison for the class EXPRESSION.

• Pre-Process Your Images - Do resource intensive processing up front. See the Raster Data reference for more
info.

• Generalize for Overview - create a more simple, generalized data layer to display at small scales, and then use
scale-dependent layers utilizing LAYER MINSCALE and LAYER MAXSCALE to show more detailed data layers
as the user zooms in. This same concept applies to images.

1.1. An Introduction to MapServer 26

http://openlayers.org
http://geomoose.org
https://ms4w.com/download.html#applications-packaged-for-ms4w
https://gdal.org/programs/ogrtindex.html
https://gdal.org/programs/gdaltindex.html


MapServer Documentation, Release 7.6.6

See also:
Optimization

1.1.7 How do I get Help?

Documentation

• Official MapServer documentation lives here on this site.

• User contributed documentation exists on the MapServer Wiki.

Users Mailing List

Register and post questions to the MapServer Users mailing list. Questions to the list are usually answered quickly and
often by the developers themselves. A few things to remember:

1. Search the archives for your answer first, people get tired of answering the same questions over and over.

2. Provide version and configuration information for your MapServer installation, and relevant snippets of your map
and template files.

3. Always post your responses back to the whole list, as opposed to just the person who replied to your question.

IRC

MapServer users and developers can be found on Internet Relay Chat. The channel is #mapserver on irc.libera.chat.

Reporting bugs

Software bugs are reported on the MapServer issue tracker. Documentation bugs are reported on the MapServer doc-
umentation issue tracker.

Tutorial

Here is a quick tutorial for new users.

Test Suite

Download the MapServer Test Suite for a demonstration of some MapServer functionality.

Books

Web Mapping Illustrated, a book by Tyler Mitchell that describes well and provides real-world examples for the use of
Web mapping concepts, Open Source GIS software, MapServer, Web services, and PostGIS.

Mapping Hacks, by Schuyler Erle, Rich Gibson, and Jo Walsh, creatively demonstrates digital mapping tools and
concepts. MapServer only appears in a handful of the 100 hacks, but many more are useful for concepts and inspiration.

Beginning MapServer: Opensource GIS Development, by Bill Kropla. According to the publisher, it covers installation
and configuration, basic MapServer topics and features, incorporation of dynamic data, advanced topics, MapScript,
and the creation of an actual application.
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Note: This tutorial requires at least MapServer 7 (the demo server in the live examples runs
MapServer 8.0-dev)

This tutorial (initially created in the early-2000’s by Perry, and maintained since by Jeff) was designed to give new users
a quick (relatively speaking) introduction to the concepts behind MapServer. It is arranged into four sections with each
section having one or more examples and increasing in complexity. Users can jump to any section at any time although
it is recommended that absolute beginners work on the first three sections sequentially.

Section one focuses on basic MapServer configuration concepts such as layer and class ordering, using vector and
raster data, projections and labeling. Section two provides examples on how to use HTML templates to create a simple
interface for an interactive web mapping application. Section three introduces the use of HTML templates to provide
a “query” interface. Finally, section four introduces some advanced user interface concepts.

2.1.1 Tutorial background

Tutorial Timeframe

While some users can go through this tutorial in one day, those who work on each example in detail can probably expect
to finish in one week.
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Tutorial Data

The dataset used in this tutorial was taken from the U.S. Department of the Interior’s National Atlas of the United
States (which is no longer available, but was hosted by data.gov). The dataset was clipped to the upper great lakes
region (Minnesota, Michigan, and Wisconsin) to reduce storage size. Additional raster images were added courtesy
of the TerraSIP project at the University of Minnesota. When using this tutorial, you are encouraged to use your own
dataset.

Like MapServer itself, this tutorial is open and customizable to anyone. This was done in the hope that someone (or
some folks) will help design and develop it further.

Download the data (and all html files) for this tutorial at https://download.osgeo.org/mapserver/docs/
mapserver-tutorial.zip .

Before Using the Tutorial

There are some prerequisites to using this tutorial:

1. Users will need to have a web server installed and running on their computer. This web server has to have support
for common gateway interface (CGI) programs.

2. Users should have a basic understanding of web servers and internet security. A poorly configured web server
can easily be attacked by malicious people. At the very least your software installation will be corrupted and
you’ll lose hours of productivity, at worst your computer can be used to attack other computers on the internet.

3. It is recommended that users of this tutorial read the Introduction to MapServer before proceeding with this
tutorial.

4. To use this tutorial, users will need to have a MapServer CGI program (mapserv or mapserv.exe) installed in
their systems. MapServer source code is available for download here. Documentation exists on how to compile
and install MapServer:

• for UNIX users, please read the MapServer UNIX Compilation and Installation HOWTO.

• Windows users should read the MapServer Win32 Compilation and Installation HOWTO

In addition, precompiled binaries exist for a number of platform (see the download page).

Windows, UNIX/Linux Issues

Paths

This tutorial is packaged for Windows users, but should work with minimal changes on UNIX or other platforms. The
main differences are the paths in the map files. Windows users need to specify the drive letter of the hard disk where
their tutorial files reside. Here’s an example:

A UNIX map file might include a parameter like this:

SHAPEPATH "/data/projects/tutorial/data"

In Windows, the same parameters might look like this:

SHAPEPATH "C:/data/projects/tutorial/data"

or:

SHAPEPATH "C:\data\projects\tutorial\data".
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Notice that either slash or backslash works in Windows. The usual backslash may work well for you if you want to
make a distinction between virtual (as in URLs or web addresses) and local paths in your map file. However, if you plan
to move your application to UNIX at some point, you’ll have the tedious task of switching all backslashes to slashes.

While we’re on the subject of paths, keep in mind that paths in mapfiles are typically relative to the system’s root
directory: the slash (“/”) in UNIX or some drive letter (“C:”) in Windows. This is true except when specifically asked
to enter a URL or when referencing a URL. When working with HTML template files, paths are relative to the web
server’s root directory. i.e., “/tutorial/” is relative to “https://demo.mapserver.org/”. Please read this for a few insights
on URLs.

Executable

Another issue is that UNIX executable files don’t contain a .EXE extension, but they do in Windows. So you might
have to adjust all instances of “/cgi-bin/mapserv.exe” to “/cgi-bin/mapserv”.

Other Resources

Other documentation exist to give you better understanding of the many customizations MapServer offer. Please visit
the MapServer documentation page at https://mapserver.org/documentation.html . There you will find many HOWTO
documents, from getting started to using MapScript, a scripting interface for MapServer.

Back to Tutorial home | Proceed to Section 1

2.1.2 Section 1: Static Maps and the MapFile

• Take a vector dataset. Any vector datatype supported by GDAL. We can use MapServer to display that vector
dataset in a web browser. Look. . .

– Example 1.1 - A map with a single layer

• We can display the same Shapefile dataset repeatedly. We can display the polygon attributes in one LAYER and
the line attributes in another. . .

– Example 1.2 - A map with two layers

• And we can select which parts of the Shapefile dataset to display. We do this using the CLASS object. . .

– Example 1.3 - Using classes to make a “useful” map

• We can also label our maps. . .

– Example 1.4 - Labeling layers and label layers

• Or add raster data such as satellite images, aerial photographs, or shaded reliefs. . .

– Example 1.5 - Adding a raster layer

• We can reproject our data from just about any projection to just about any. . . Yeah, check it out!

– Example 1.6 - Projection/Reprojection

• And we can use layers from other map servers on the Internet (for example WMS servers). . .

– Example 1.7 - Adding a WMS layer

• MapServer can output to various formats such as PDF and GeoTIFF.

– Example 1.8 - A different output format
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• MapServer not only generates static maps, it can also create interactive maps. . .

– Example 1.9 - The difference between map mode and browse mode

Back to Tutorial home | Proceed to Section 2

2.1.3 Section 2: CGI variables and the User Interface

So far we have only looked at the mapfile when creating maps. In creating web mapping applications, it is usually our
intention to make maps that can be changed by the user (of the application) interactively. That is, a user should be able
to change the content of (or the information in) the map. To accomplish this interactivity, we use the MapServer HTML
templates.

HTML Templates

A MapServer HTML template is essentially an HTML file with a few MapServer specific tags. These tags are the
MapServer CGI variables and are enclosed in square brackets “[]”. When the MapServer CGI program processes an
application, it first parses the query string and the mapfile, and produces the necessary output. Some of this output
will need to be written to the HTML template file which you would have to also specify in the mapfile using the web
template keyword (or in a separate HTML initialization file). The CGI program will replace all the variables in the
HTML template with the proper value before sending it back to the web browser. If you are to directly view an HTML
template in a web browser, there won’t be any maps rendered and you will instead get blank images and other junk.

Variables

MapServer provides several variables for web mapping: the “img” variable which you’ve seen in Example 1.9 is but
one example. There area few core CGI variables originally designed as part of the mapping interface but practically
all the mapfile parameters can be defined as variables. The definitive reference to the MapServer CGI variables can be
found here.

We can also define our own variables, which MapServer will pass along to our application. For example, we can create
a variable called “root” to represent the root directory of this tutorial, the value for “root” will then be “/tutorial”.
When the MapServer CGI program processes our HTML template, it will replace every instance of he “[root]” tag
with “/tutorial”. You will see this in action for each of the following examples.

Examples

So, let’s build an interactive interface for our application. . .

• Users of a web mapping application should be able to pan and zoom on the map: Example 2.1 - Pan and Zoom
Controls

• They also should be able to turn on and off layers on a map: Example 2.2 - Layer Control

• A map should always include a scalebar. Example 2.3 - Adding a Scalebar

• If users are to navigate through the map, a reference map should be provided: Example 2.4 - Adding a Reference
Map

• The map should include a legend. Example 2.5- Adding a Legend

Back to Section 1 index | Proceed to Section 3
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2.1.4 Section 3: Query and more about HTML Templates

To learn more about query and HTML templates with MapServer, see examples 3.1 to 3.4 in the Tutorial Viewer.

Back to Section 2 index | Proceed to Section 4

2.1.5 Section 4: Advanced User Interfaces

To learn more about advanced navigation such as pan and rubber-band zoom with Javascript and MapServer CGI, see
examples 4.1 to 4.4 in the Tutorial Viewer.

Back to Section 3 index | Tutorial home

Begin tutorial
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Introduction

The University of Minnesota’s MapServer is an open-source and freely available map rendering engine for the web.
Due to its open-source nature, it can be compiled on a wide variety of platforms and operating systems. We will focus
on how to obtain, compile and install MapServer on UNIX-like platforms.

Note: Detailed configuration options are maintained in the INSTALL.CMAKE file packaged at the root of the source
directory:

Tip: The minimum CMake version required is 3.0 as of the MapServer 7.6.0 release

You might also check the MapServerCompilation wiki page for additional information.

Compiler Requirements

As of MapServer 8.0, a C++11 and C99 capable compiler is required to build MapServer. This means for example
using GCC 4.8 or more recent, or CLang 3.3 or more recent.

Obtaining the necessary software

You can obtain the MapServer source code as well as the demo package from the download section.

You can also get the latest MapServer source code from git.

Secure your installation

During your installation and configuration, it is strongly recommended to review the security steps for the MAP= call
to the MapServer executable, by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter
on public servers, as recommended in the document Limit Mapfile Access. All possible environment variables to secure
your server are listed in Environment Variables.

Required External Libraries

• GDAL: the GDAL library allows MapServer to read a variety of geospatial raster formats (GDAL) and vector
formats (OGR). It can be downloaded at https://gdal.org/. (some platforms refer to this library as libgdal-dev)

• PROJ: PROJ provides projection support for MapServer. Version 4.4.6 or greater is required.

• libpng: libpng should be on your system by default. Versions back to 1.2.7 should work.

• FreeType: Version 2.x or above is required.

• libjpeg: libjpeg allows MapServer to render images in JPEG format. A sufficient version should be installed by
default on your system (probably version 6b from 1998).

Warning: Direct JPEG support was deprecated in MapServer 5.8+, and you should now depend on GDAL
for raster read support in MapServer. JPEG support is however still required for producing (i.e. writing)
images.
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• zlib: Zlib should be on your system by default. Though not used directly by mapserver, it’s a mandatory depen-
dency of libpng.

Highly Recommended Libraries

• libcurl: libcurl is the foundation of OGC (WFS/WMS/WCS) client and server support. Version 7.10 or greater
is required.

Optional External Libraries

• GEOS:

Added in version 4.10.

GEOS allows MapServer to do spatial predicate and algebra operations (within, touches, etc & union, difference,
intersection).

• libxml:

Added in version 4.10.

libxml is required to use OGC SOS support in MapServer

• Oracle Spatial OCI: The client libraries for your platform are available for download from Oracle’s website.
Ideally, your client library matches the database you are querying from, but this is not a hard requirement.

• libpq: libpq is required to support the use of PostGIS geometries within the PostgreSQL database. Ideally, your
client library matches the database you are querying from.

• giflib: libgif / libgif is is used for reading GIF files used as PIXMAP symbols.

• FastCGI: FastCGI is a popular protocol for interfacing MapServer with various web servers. You will need to
install the development package. More details on how to use this feature in MapServer is here FastCGI . On
Ubuntu, that would be:

$ apt-get -y install libfcgi-dev

• Cairo (SVG, PDF) support: This library is required to produce PDF and SVG outputs. If you’re on an ubuntu
system, it can be installed with “apt-get install -y libcairo2-dev”

• KML support: This renderer is has no external dependency.

• HarfBuzz:

Added in version 7.0.

Support complex script shaping (to simplify: the tool that will insert ligatures between characters). Harfbuzz
algorithms will be applied on text strings that have been determined to not be latin (i.e. the slowdown induced
by harfbuzz is limited to those languages that actually require shaping). Requires FriBidi.

See also:
rfc98

• MySQL: Support joining with MySQL (the WITH_MYSQL option).
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Optional Features

• Cairo SVG parser support: The WITH_SVGCAIRO option is part of a proposal to improve SVG support. Using
this feature requires installing the libsvg-cairo library available here: https://www.cairographics.org/snapshots/
. You will need to compile and install cairo, libsvg, and libsvg-cairo.

• SVG support can be enabled either through the unmaintained libsvg / libsvg-cairo combo, or through librsvg (the
WITH_RSVG option) at the cost of more dependencies. Use librsvg if your distro provides a package for it, or
fall back to libsvgcairo if the cost of compiling the librsvg dependencies is too important.

Anti-Grain Geometry Support

Since version 5.0 MapServer supports the AGG rendering backend. MapServer 5.6+ embeds it directly in the source
tree and you do not have to do anything special to have support for it.

OGC Support

MapServer provides support for many OGC specifications. For an overview, see MapServer OGC Specification sup-
port.

WMS support

WMS Server

Support for WMS server is automatically enabled.

You can check it by looking for the following in your configure output:

-- * WMS SERVER: ENABLED

If, for some reason you don’t want WMS support, you can force it off using “-DWITH_WMS=OFF”.

More information on using this feature is available in WMS Server.

WMS Client

Cascading is also supported. This allows mapserver to transparently fetch remote layers over WMS, basically acting
like a client, and combine them with other layers to generate the final map.

In order to enable this feature, you will need to pass the WITH_CLIENT_WMS option to the configure script.
MapServer will automatically look for libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

-- * WMS CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WMS Client.
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WFS support

WFS Server

Support for WFS server is enabled by default. GDAL (actually OGR) and PROJ support are required.

To verify that this feature is enabled, check the configure output for:

-- * WFS SERVER: ENABLED

If, for some reason you don’t want WFS support, you can force it off using “-DWITH_WFS=OFF”.

More information on using this feature is available in WFS Server.

WFS Client

MapServer can also act as a WFS client. This effectively means that MapServer reads it’s data from a remote server’s
WFS output and renders it into a map, just like it would when reading data from a shapefile.

In order to enable this feature, you will need to make sure you have GDAL (actually OGR) built with Xerces support
and PROJ support, and pass the WITH_CLIENT_WFS option to your configure script. MapServer will automatically
look for libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

-- * WFS CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WFS Client.

WCS Server

Support for WCS server is enabled by default. WCS must be compiled against certain libraries. More information on
this service is available in WCS Server.

To verify that this feature is enabled, check the configure output for:

-- * WCS SERVER: ENABLED

If, for some reason you don’t want WCS support, you can force it off using “-DWITH_WCS=OFF”.

SOS Server

Support for SOS is enabled by using the WITH_SOS option. More information on this service is available in SOS
Server.

To verify that this feature is enabled, check the configure output for:

-- * SOS SERVER: ENABLED
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Note: This feature is disabled by default, you have to specifically request it.

Spatial Warehousing

MapServer can use a wide variety of sources of data input. One of the solutions growing in popularity is to use spatially
enabled databases to store data, and to use them directly to draw maps for the web.

Here you will find out how to enable mapserver to talk to one of these products. Please refer to the MapFile reference
for more details on how to use these. This section only details how to compile MapServer for their use.

PostGIS

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS “spatially
enables” the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information systems
(GIS), much like ESRI’s SDE or Oracle’s Spatial extension. PostGIS is included in many distributions’ packaging
system, but you can also roll your own if needed.

MapServer can use PostGIS as a data source. PostGIS support is enabled by default.

To verify that this feature is enabled, check the configure output for:

-- * POSTGIS: /usr/local/pgsql/lib/libpq.so

If, for some reason you don’t want PostGIS support, you can force it off using “-DWITH_POSTGIS=OFF”. To
help CMake find your PostGIS installation, you can use the CMAKE_PREFIX_PATH option (for instance “-
DCMAKE_PREFIX_PATH=/usr/local/pgsql”).

Oracle Spatial

Oracle’s Spatial is also supported by MapServer. In order to connect to it, you will need to compile MapServer against
the Oracle libraries by using the WITH_ORACLESPATIAL option. You will very likely need an ORACLE_HOME
environment variable set to have it configure things correctly.

To verify that this feature is enabled, check the configure output for:

-- * Oracle Spatial: <path to oracle spatial shared library>

Compiling

First prepare the ground by making sure all of your required and/or recommended libraries are installed before at-
tempting to compile MapServer. This will make your life much less complicated ;). Here is the order that I usually
use:

1. Compile GDAL. Describing how to compile GDAL is beyond the scope of this document. If you have require-
ments for lots of different formats, make sure to install those libraries first. I often find that building up a GDAL
library often takes as long as compiling MapServer itself!

2. Compile PROJ. PROJ (formerly PROJ.4) is a straight-forward configure/make/make install library.

3. Compile libcurl. libcurl is a straight-forward configure/make/make install library. This library is only used
along with other features, so “–with-curl-config” won’t do anything unless something like “–with-wmsclient” or
“–with-wfsclient” is also selected.
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Note: If you want to configure MapServer to use SSL when accessing a WMS/WFS server libcurl must be
configured / compiled with the “–with-ssl” option. Details about how to set this up is available in Accessing
OGC services over HTTPS.

4. Compile/install optional libraries. These might include PostGIS, Oracle Spatial, AGG, Ming, PDFlib, or MyGIS.
Mix and match as you need them.

5. Unpack the MapServer tarball and cd into the mapserver directory:

$ tar -zxvf mapserver-X.Y.Z.tar.gz

6. Create the build directory and configure your environment.

Create the build directory:

$ cd mapserver-X.Y.Z
$ mkdir build
$ cd build

Configure your environment using “cmake” (this is an example):

$ cmake -DCMAKE_INSTALL_PREFIX=/opt \
-DCMAKE_PREFIX_PATH=/usr/local/pgsql/91:/usr/local:/opt \
-DWITH_CLIENT_WFS=ON \
-DWITH_CLIENT_WMS=ON \
-DWITH_CURL=ON \
-DWITH_SOS=ON \
-DWITH_PHP=ON \
-DWITH_PERL=ON \
-DWITH_RUBY=ON \
-DWITH_JAVA=ON \
-DWITH_CSHARP=ON \
-DWITH_PYTHON=ON \
-DWITH_SVGCAIRO=ON \
-DWITH_ORACLESPATIAL=ON \
-DWITH_MSSQL2008=ON \
../ >../configure.out.txt

Note: As of MapServer 7.4.0, you can pass the –WITH_PHPNG=ON argument for the new PHP 7 support
through the SWIG API .

The following options are enabled by default (version 7.0: WITH_PROJ, WITH_WMS, WITH_FRIBIDI,
WITH_HARFBUZZ, WITH_ICONV, WITH_CAIRO, WITH_FCGI, WITH_GEOS, WITH_POSTGIS,
WITH_GDAL, WITH_OGR, WITH_WFS, WITH_WCS, WITH_LIBXML2, WITH_GIF.

If you want to also build a static version of the library, the BUILD_STATIC and
LINK_STATIC_LIBMAPSERVER options can be used,

There are a number of other options available. For an up-to-date list of available CMake options, refer to the
CMakeLists.txt.

It can be a good idea to place the configuration commands in a file and change its mode to executable (+x) to
save typing and have a record of how MapServer was configured.
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7. Now that you have configured your build options and selected all the libraries you wish mapserver to use, you’re
ready to compile the source code.

This is actually quite simple, just execute “make”:

$ make

8. Install the MapServer libraries:

# make install

To make sure all went well, look for the file called mapserv:

$ ls -al mapserv
-rwxr-xr-x 1 user user 13745 mars 11 17:45 mapserv

A simple test is to try and run it:

$ ./mapserv
This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

The message above is perfectly normal, and means exactly what it says. If you get anything else, something went
terribly wrong.

Installation

MapServer binary

The MapServer program itself consists of only one file, the “mapserv” binary executable. This is a CGI executable,
meant to be called and run by your web server.

In this section, we will assume you are running Apache under its default directory structure in /usr/local/apache2. You
may need to have privileges to edit your httpd.conf (the main apache configuration file), or have someone (such as your
webmaster) help you with the configuration details.

If you don’t have apache installed, and you want apache, php, fastcgi, etc, that might look something like this:

$ apt-get install -y apache2 apache2-mpm-worker libapache2-mod-fastcgi
$ a2enmod actions fastcgi alias
$ apt-get install libapache2-mod-php5 php5-common php5-cli php5-fpm php5

The main goal is to get the “mapserv” binary installed in a publicly accessible directory that is configured to run CGI
programs and scripts.

1. Locate your cgi-bin directory. Under a default configuration, the CGI directory is “/usr/local/apache2/cgi-bin”
(RedHat: “/home/httpd/cgi-bin”, Debian: “/usr/lib/cgi-bin”). If you’re using apache, there should be a ScriptAl-
ias directive in your http.conf, or default site, something like:

$ cat /etc/apache2/sites-available/default | grep 'cgi-bin'
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

2. Locate the installation path of your freshly compiled mapserv executable. This is shown when you run “make
install”, something like this:
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-- Installing: /usr/local/bin/mapserv
-- Set runtime path of "/usr/local/bin/mapserv" to

"/usr/local/lib:/usr/local/pgsql/91/lib"

3. You’ll want to setup a symlink to that executable from your cgi-bin directory:

# ln -s /usr/local/bin/mapserv /usr/lib/cgi-bin/mapserv

Warning: Make sure you are linking against the installed mapserv file (after running ‘make install’) and
NOT against where it was compiled in your source tree.

Testing your new Install

Placing the mapserv file in this directory makes it accessible by the following URL: “http://yourhostname.com/cgi-bin/
mapserv”. When accessing this URL through your web client, you should expect the following output if all has worked
well: “No query information to decode. QUERY_STRING is set, but empty.” If you get this message, you’re done
installing MapServer.

Common problems

File permissions

The most common problem one is likely to encounter when attempting to install the binary are permissions issues:

• You do not have write permissions into your web server’s CGI Directory. Ask your webmaster to install the file
for you.

• The web server gives you a “403 Permission denied” error. Make sure the user the web server runs as (usually
“nobody”) has execute permission on the binary executable. Making the file world executable is perfectly fine
and safe:

$ chmod o+x mapserv

Apache errors

You may receive a few different type of errors as well if your web server configuration isn’t right:

• 500 Internal server error: This is a fairly generic error message. All it basically tells you is that the web server
was unsuccessful in running the program. You will have to consult the web server’s error log to find out more,
and may need to enlist the help of your webmaster/system administrator. The apache docs also have pointers on
setting up cgi-bin.

::
Check your server logs $ tail /var/log/apache2/error.log
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Where to go once you’ve got it compiled

The An Introduction to MapServer document provides excellent coverage of getting started with MapServer.

3.1.2 Compiling on Win32

Author
Pericles Nacionales

Contact
pnaciona at gmail.com

Table of Contents

• Compiling on Win32

– Introduction

– Compiler Requirements

– Compiling

– Set up a Project Directory

– Download MapServer Source Code and Supporting Libraries

– The MapServer source code

– Set Compilation Options

– Compile the Libraries

– Compile MapServer

– Compiling MapServer with PostGIS support

– Common Compiling Errors

– Installation

– Other Helpful Information

– Acknowledgements

Warning: This part of the documentation is outdated. nmake is no longer used. cmake is used also for Win32.
cmake instructions can be found on https://github.com/MapServer/MapServer/blob/main/README.WIN32. See
also https://github.com/MapServer/MapServer/blob/main/appveyor.yml.
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Introduction

This document provides a simple set of compilation procedures for MapServer on Win32 platforms.

If you’ve made it this far, chances are you already know about MapServer and are at least tempted to try compiling it
for yourself. Pre-compiled binaries for MapServer are available from a variety of sources. Refer to windows. Building
MapServer for win32 platforms can be a daunting task, so if existing binaries are sufficient for your needs, it is strongly
advised that they be used in preference to trying to build everything from source.

However, there can be a variety of reasons to want to build MapServer from source on win32. Reasons include the
need to enable specific options, to build with alternate versions of support libraries (such as GDAL), the desire for
MapScript support not part of the core builds, the need to debug and fix bugs or even to implement new features in
MapServer. To make it easy for users and developers, I’ve made a list of steps to compile MapServer. Background
information is provided in each step, along with examples. Each example is a continuation of the previous one and in
the end will produce the MapServer DLL (libmap.dll), the CGI program (the mapserv.exe), and utility programs.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Compiler Requirements

As of MapServer 8.0, a C++11 and C99 capable compiler is required to build MapServer. This means for example
using Microsoft Visual Studio 2015 or more recent.

Compiling

If you are new to Windows programming, please follow this document carefully. The compilation steps are fairly simple
but I’ve added a few blurbs in each step to help you understand how MapServer compiles. For the more experienced
programmers, perhaps reading the README.Win32 that accompanies the MapServer source code would be more
useful. For those who are antsy, compiling MapServer involves download and unpacking the source codes, editing the
make files, and invoking Microsoft’s Visual C++ compiler from the command prompt. The resulting mapserv.exe is
the CGI program that installs in the cgi-bin directory of your web server.

For those who are willing to take the time, the compilation steps follow.

Set up a Project Directory

Before you start to compile MapServer, I recommend creating a directory called “projects” where you can put the
source code for MapServer and its supporting libraries. Since you will be working with DOS-style commands, you
might as well get used to the Windows command prompt. For Windows 95/98 users the command processor would be
called command.com. For Windows NT/2000/XP, it would be cmd.exe. So fire up the old command prompt and go to
the drive where you want to create the project directory.

Here is an example of how to create a directory called projects on the C: drive:

C:\Users> mkdir C:\Projects

To go to that directory:

C:\Users> cd \Projects
C:\Projects>
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From the projects directory, you can extract the source codes for MapServer and its libraries. Now you’re ready to
download the source codes.

Download MapServer Source Code and Supporting Libraries

After creating a project directory, download the MapServer source code and the codes for the supporting libraries and
save the source code packages in the newly created “projects” directory. These source codes are usually packaged as
ZIP, or as UNIX TAR and GZIP files. You’ll need a software that can unzip these packages. 7-Zip is an example of
software that can handle these files.

Cygwin is a free, open-source software package which is a port of these tools on Windows. You can use the gzip and
tar utilities from this tool collection. Cygwin is available from http://www.cygwin.com.

In order to compile the MapServer CGI program, you must download a few required and optional libraries. At its
simplest configuration, MapServer only requires the GD (to provide the image output) and REGEX (to provide regular
expression support) libraries. This configuration allows the developer/data provider to use shapefiles as input and,
depending on the version of GD library used, GIF or PNG images as output. Additional libraries are needed for input
data in alternative formats. The libraries that work with MapServer are listed below.

The MapServer source code

The MapServer source code can be downloaded from the download page. If you’d like to get the current development
version of the software, following the nightly snapshot link under the Interim Builds title. The absolute latest copy of
the source code can be obtained from git; however, the GitHub repository does not contain several important source
files (maplexer.c, mapparser.c and mapparser.h) normally generated on unix, so if possible, using a nightly snaphot is
substantially easier than working directly from git.

Required Libraries

GD Library:
MapServer uses the GD graphics library for rendering map images in GIF, PNG and JPEG format. These map
images are displayed in web browser clients using the MapServer CGI. The current official version of GD is
2.0.33. The distributed makefiles are setup to use the prebuilt GD Win32 DLL binaries which include GD,
libjpeg, libpng, libz, libgif and FreeType 2 all within one DLL. This package is generally listed as “Windows
DLL .zip” and the latest version is normally available at http://www.boutell.com/gd/http/gdwin32.zip.

Regex:
Regex is the regular expression library used by MapServer. It can be downloaded at http://ftp.gnu.org/old-gnu/
regex/regex-0.12.tar.gz

Optional Libraries

JPEG library:
This library is required by GD to render JPEG images, if building GD from source. You may download this
library at http://www.ijg.org/files/jpegsrc.v6b.tar.gz

PNG library:
This library is required by GD to render PNG images, if building GD from source. You may download this
library at http://sourceforge.net/projects/libpng/

Zlib:
This library is required by libpng to provide graphics compression support. It can be downloaded at https:
//zlib.net/ .
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FreeType 2:
FreeType provides TrueType support in MapServer via GD. We only need to build FreeType separately if building
GD from source. It can be downloaded at http://gnuwin32.sourceforge.net/packages/freetype.htm .

PROJ:
PROJ provides on-the-fly projection support to MapServer. Users whose data are in different projection systems
can use this library to reproject into a common projection. It is also required for WMS, WFS or WCS services.

GDAL/OGR:
The GDAL/OGR library allows MapServer to read a variety of geospatial raster formats (GDAL) and vector
formats (OGR). It can be downloaded at https://gdal.org/.

ArcSDE:
ArcSDE is an ESRI proprietary spatial database engine. Most users will not have access to it but if you have
ArcSDE license, you can use its libraries to give MapServer access to SDE databases.

EPPL7:
This library allows MapServer to read EPPL7 (“Environmental Planning and Programming

Language”) datasets, as well as the older Erdas LAN/GIS files. This library is set as a default library in
MapServer so there’s no special source code to download.

Now that you have reviewed the libraries that provide support to MapServer, it is time to decide which ones to compile
and use. We will work with the pre-built GD distributed on Boutell.com with PNG, GIF, JPEG, and FreeType “built
in”. If you want to provide OGC Web Services (ie. WMS, WFS) or want to perform on the fly reprojection then the
PROJ library will be needed. If you need additional raster and vector data sources consider including GDAL/OGR
support. GDAL is also required for WCS service.

Our example calls for the required libraries and on-the-fly projection support so we need to download GD, regex, and
PROJ libraries. Go ahead and get those libraries.

Set Compilation Options

MapServer, like many of it’s support libraries, comes with a Visual C++ makefile called Makefile.vc. It includes the
file nmake.opt which contains many of the site specific definitions. We will only need to edit the nmake.opt file to
configure the build for our local site options, and support libraries. The Makefile.vc, and nmake.opt template file have
been provided by Assefa Yewondwossen, and the DM Solutions folks.

As of MapServer 4.4, the default MapServer build options only include GD, and regex. MapServer is built using the
/MD option (which means MSVCRT.DLL should be used), so if any support libraries are being built statically (rather
than as DLLs) we need to use /MD when building them as well. By default modern PROJ builds use /MD so we should
be able to use the default PROJ build without tweaking.

The example will compile with the GDWin32 pre-built DLL as well as regex-0.12, and PROJ. The PROJ support will
ensure we can enable MapServer OGC-WMS compatibility. Use notepad or another text editor to open the nmake.opt
file and make the following changes.

Comments

Use the pound sign ( # ) to comment out the lines that you want to disable, or remove the pound sign to enable an option
for NMAKE.

A. Enable PROJ support, and update the path to the PROJ directory. Uncomment the PROJ= line, and the PROJ_DIR=
line as follows, and update the PROJ_DIR path to point to your PROJ build.
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# Reprojecting.
# If you would like mapserver to be able to reproject data from one
# geographic projection to another, uncomment the following flag
# PROJ distribution (cartographic projection routines). PROJ is
# also required for all OGC services (WMS, WFS, and WCS).
#
# For PROJ_DIR use full path to PROJ distribution
PROJ=-DUSE_PROJ -DUSE_PROJ_API_H
PROJ_DIR=c:\projects\proj-4.4.9

If you look down later in the file, you can see that once PROJ is enabled, MapServer will be linked with proj_i.lib, the
PROJ stub library, meaning that MapServer will be using the PROJ.DLL as opposed to statically linking in PROJ.

B. Uncomment the WMS option.

# Use this flag to compile with WMS Server support.
# To find out more about the OpenGIS Web Map Server Specification go to
# http://www.opengis.org/
WMS=-DUSE_WMS_SVR

C. Update to use GD. Here’s what it should look like in our example.

GD_DIR=c:/projects/gdwin32
GD_LIB=$(GD_DIR)/bgd.lib

Note: As distributed the GDWin32 binary build does not include the bgd.lib stub library. It is necessary to run the
makemsvcimport.bat script in the gdwin32 directory first.

D. Make sure the regex path is set correctly. In order for the “delete” command in the “nmake /f makefile.vc clean”
target to work properly it is necessary to use backslashes in the REGEX_DIR definition.

# REGEX Library
#
# VC++ does not include the REGEX library... so we must provide our one.
# The following definitions will try to build GNU regex-0.12 located in the
# regex-0.12 sub-directory.
# If it was not included in the source distribution, then you can get it from:

# ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz
# Provide the full path to the REGEX project directory
# You do not need this library if you are compiling for PHP mapscript.
# In that case the PHP regex library will be used instead
!IFNDEF PHP
REGEX_DIR=c:\projects\regex-0.12
!ENDIF

Your Makefile is now set.
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Compile the Libraries

Before compiling MapServer, you must first compile its supporting libraries. How this is done varies for each library.
For the PROJ library a nmake /f makefile.vc command in the proj-4.4.9src directory should be sufficient. The regex-
0.12 code is actually built by the MapServer build process, so you don’t need to do anything there.

Compiling libcurl

Previously, curl libraries can be compiled using the following command:

nmake /f makefile.vc6 CFG=release

This creates a static library, libcurl.lib, to which you compile against. Versions newer than version 7.10.x should be
compiled as dynamic library. This is accomplished using the command:

nmake /f makefile.vc6 CFG=release-dll

You will then need to edit MapServer’s nmake.opt to replace the CURL_LIB variable with this line:

CURL_LIB = $(CURL_DIR)/lib/libcurl_imp.lib

Compile MapServer

Once you have compiled the supporting libraries successfully, you are ready to take the final compilation step. If you
have not already done so, open a command prompt and set the VC++ environment variables by running the vcvars32.bat
usually located in C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat.

C:\Users> cd \projects\mapserver
C:\Projects\mapserver&> C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat"
C:\Projects\mapserver>

Setting environment for using Microsoft Visual C++ tool.
C:\Projects\mapserver>

Now issue the command: nmake /f Makefile.vc and wait for it to finish compiling. If it compiles successfully, you
should get mapserver.lib, libmap.dll, mapserv.exe, and other .EXE files. That’s it for the compilation process. If you
run into problems, read section 4 about compiling errors. You can also ask for help from the helpful folks in the
MapServer-dev e-mail list.

Compiling MapServer with PostGIS support

To compile PostGIS support into MapServer, here’s what you need to do:

1. download the PostgreSQL 8.0.1 (or later) source from: ftp://ftp.heanet.ie/pub/postgresql/source/

2. I extracted them to C:projectspostgresql-8.0.1

3. download the Microsoft Platform SDK otherwise you get link errors on shfolder.lib.

4. compile libpq under C:projectspostgresql-8.0.1srcinterfaceslibpq using the win32.mak makefile

5. copy everything from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease to C:projectspostgresql-
8.0.1srcinterfaceslibpq as the MapServer makefile will try to find it there
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6. Define the following in the nmake.opt for MapServer: POSTGIS =-DUSE_POSTGIS POSTGIS_DIR
=c:/projects/postgresql-8.0.1/src

7. nmake /f makefile.vc

8. don’t forget to copy libpq.dll (from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease) into a location where
MapServer can find it.

Common Compiling Errors

Following are a few common errors you may encounter while trying to build MapServer.

• Visual C++ Tools Not Properly Initialized.

C:\projects\mapserver> nmake -f /makefile.vc
'nmake' is not recognized as an internal or external command,
operable program or batch file.

This occurs if you have not properly defined the path and other environment variables required to use MS Vi-
sualC++ from the command shell. Invoke the VCVARS32.BAT script, usually with the command C:Program
FilesMicrosoft Visual StudioVC98binvcvars32.bat or something similar if visual studio was installed in an
alternate location. To test if VC++ is available, just type “nmake” or “cl” in the command shell and ensure it is
found.

• Regex Build Problems.

regex.obj : error LNK2001: unresolved external symbol _printchar
libmap.dll : fatal error LNK1120: 1 unresolved externals
NMAKE : fatal error U1077: 'link' : return code '0x460'
Stop.

This occurs if you use the stock regex-0.12 we referenced. I work around this by commenting out the “extern”
statement for the printchar() function, and replacing it with a stub implementation in regex-0.12regex.c.

//extern void printchar ();
void printchar( int i ) {}

• GD Import Library Missing.

LINK : fatal error LNK1104: cannot open file 'c:/projects/gdwin32/bgd.lib'
NMAKE : fatal error U1077: 'link' : return code '0x450'
Stop.

If you are using the pre-built GD binaries, you still need to run the makemsvcimport.bat script in the gdwin32
directory to create a VC++ compatible stub library (bgd.lib).
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Installation

The file we are most interested in is mapserv.exe. The other executable files are the MapServer utility programs.

See also:
MapServer Utilities

to learn more about these utilities.

To test that the CGI program is working, type mapserv.exe at the command prompt. You should see the following
message:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

You may instead get a popup indicating that a DLL (such as bgd.dll) is missing. You will need to copy all the required
DLLs (ie. bgd.dll, and proj.dll) to the same directory as the mapserv.exe program.

Now type mapserv -v at the command prompt to get this message:

MapServer version 4.4.0-beta3 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER INPUT=SHAPEFILE
DEBUG=MSDEBUG

This tells us what data formats and other options are supported by mapserv.exe. Assuming you have your web server
set up, copy mapserv.exe, libmap.dll, bgd.dll, proj.dll and any other required DLLs to the cgi-bin directory.

You are now ready to download the demo application and try out your own MapServer CGI program. If you wish,
you can also create a directory to store the utility programs. I’d suggest making a subdirectory called “bin” under the
directory “projects” and copy the executables to that subdirectory. You might find these programs useful as you develop
MapServer applications.

Other Helpful Information

The MapServer Unix Compilation and Installation HOWTO has good descriptions of some MapServer compilation
options and library issues. I will write more about those options and issues on the next revision of this HOWTO.

The README documents of each of the supporting libraries provide compilation instructions for Windows.

The MapServer User community has a collective knowledge of the nuances of MapServer compilation. Seek their
advice wisely.
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3.1.3 PHP MapScript Installation
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Table of Contents

• PHP MapScript Installation

– Introduction

– Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module

– FAQ / Common Problems

Introduction

The PHP/MapScript module is a PHP dynamically loadable module that makes MapServer’s MapScript functions and
classes available in a PHP environment.

The original version of MapScript (in Perl) uses SWIG, but at that time SWIG did not support the PHP language, so
the PHP module had to be maintained separately and was not always in sync with other mapscripts. As of MapServer
7.4.0, PHP/MapScript is also available through the SWIG API .

The original PHP module was developed by DM Solutions Group and Mapgears and is currently maintained by Gateway
Geomatics and other contributors.

This document assumes that you are already familiar with certain aspects of your operating system:

• For Unix/Linux users, a familiarity with the build environment, notably make.

• For Windows users, some compilation skills if you don’t have ready access to a pre-compiled installation and
need to compile your own copy of MapServer with the PHP/MapScript module.

Which version of PHP is supported?

PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 was dropped. As
of the last update of this document, PHP 5.6 or more recent was required, and PHP 7 is recommended.

The best combinations of MapScript and PHP versions are:

• MapScript 7.4.0 with PHP 7.0 and up (through the new SWIG API)

• MapScript 4.10 with PHP 5.2.1 and up

• MapScript 4.10 with PHP 4.4.6 and up

Note: As of MapServer 7.4.0, PHP 7 is available through the SWIG API , and all existing MapServer users are encour-
aged to update their scripts for the new SWIG syntax; see the MapServer Migration Guide for example syntax.
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How to Get More Information on the PHP/MapScript Module for MapServer

• For a list of all classes, properties, and methods available in the module:

– through SWIG (and PHP 7) see the SWIG API

– for the legacy module, see the PHP MapScript API reference document.

• More information on the original PHP/MapScript module can be found on the PHP/MapScript page on Map-
Tools.org.

• The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snippets.

• As many users rely on MS4W for MapScript, you can also see user-contributed PHP 7 scripts through the SWIG
API, on the MS4W wiki.

• Questions regarding the module should be forwarded to the MapServer mailing list.

Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module

Download PHP and PHP/MapScript

• The PHP source or the Win32 binaries can be obtained from the PHP web site.

• Once you have verified that PHP is installed and is running, you need to get the latest MapServer source and
compile MapServer and the PHP module.

Setting Up PHP on Your Server

Unix
• Check if you have PHP already installed (several Linux distributions have it built in).

• If not, see the PHP manual’s “Installation on Unix systems” section.

Windows
• MS4W (MapServer For Windows) is a popular product maintained by Gateway Geomatics that contains Apache,

PHP, and PHP/MapScript ready to use in a zipfile or installer. Several Open Source applications are also available
for use in MS4W.

• Windows users can follow steps in the Installing Apache, PHP and MySQL on Windows tutorial to install Apache
and PHP manually on their system.

• Window users running IIS can follow iis.net’s howto for installing PHP.

Note: When setting up PHP on Windows, make sure that PHP is configured as a CGI and not as an Apache module
because php_mapscript.dll is not thread-safe and does not work as an Apache module (See the Example Steps of a Full
Windows Installation section of this document).
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Build/Install the PHP/MapScript Module

Building on a Linux Box
NOTE: For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the Compiling on Unix
HowTo.

• The main MapServer configure script will automatically setup the main makefile to compile php_mapscript.so
if you pass the –WITH_PHP=ON argument to the configure script.

Note: As of MapServer 7.4.0, you can pass the –WITH_PHPNG=ON argument for the new PHP 7 support
through the SWIG API .

• Copy the php_mapscript.so library to your PHP extensions directory, and then use the dl() function to load the
module at the beginning of your PHP scripts. See also the PHP function extension_loaded() to check whether
an extension is already loaded.

Note: The dl() function was deprecated as of PHP 5.3.

• The file mapscript/php/examples/phpinfo_mapscript.phtml will test that the php_mapscript module is properly
installed and can be loaded.

• If you get an error from PHP complaining that it cannot load the library, then make sure that you recompiled and
reinstalled PHP with support for dynamic libraries. On RedHat 5.x and 6.x, this means adding “-rdynamic” to
the CLDFLAGS in the main PHP3 Makefile after running ./configure Also make sure all directories in the path
to the location of php_mapscript.so are at least r-x for the HTTPd user (usually ‘nobody’), otherwise dl() may
complain that it cannot find the file even if it’s there.

Building on Windows
• For Windows users, it is recommended to look for a precompiled binary for your PHP version on the MapServer

download page or use the MS4W installer.

• If for some reason you really need to compile your own Windows binary then see the README.WIN32 file in
the MapServer source (good luck!).

Installing PHP/MapScript

Simply copy the file php_mapscript.dll to your PHP extensions directory (pathto/php/extensions)

Using phpinfo()

To verify that PHP and PHP/MapScript were installed properly, create a ‘.php’ file containing the following code and
try to access it through your web server:

<HTML>
<BODY>

<?php
if (PHP_OS == "WINNT" || PHP_OS == "WIN32")
{
dl("php_mapscript.dll");

}
else

(continues on next page)
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(continued from previous page)

{
dl("php_mapscript.so");

}
phpinfo();

?>

</BODY>
</HTML>

If PHP and PHP/MapScript were installed properly, several tables should be displayed on your page, and ‘MapScript’
should be listed in the ‘Extensions’ table.

Example Steps of a Full Windows Installation

Using MS4W (MapServer for Windows)
1. Download the latest MS4W base package.

2. Extract the files in the archive to the root of one of your drives (e.g. C:/ or D:/).

3. Double-click the file /ms4w/apache-install.bat to install and start the Apache Web server.

4. In a web browser goto http://127.0.0.1. You should see an MS4W opening page. You are now running PHP,
PHP/MapScript, and Apache.

5. You can now optionally install other applications that are pre-configured for MS4W, which are located on the
MS4W download page.

Manual Installation Using Apache Server
1. Download the Apache Web Server and extract it to the root of a directory (eg. D:/Apache).

2. Download PHP and extract it to your Apache folder (eg. D:/Apache/PHP).

3. Create a temp directory to store MapServer created GIFs. NOTE: This directory is specified in the IMAGEPATH
parameter of the WEB Object in the Mapfile reference. For this example we will call the temp directory “ms_tmp”
(eg. E:/tmp/ms_tmp).

4. Locate the file httpd.conf in the conf directory of Apache, and open it in a text viewer (eg. TextPad, Emacs,
Notepad).

In the Alias section of this file, add aliases to the ms_tmp folder and any other folder you require (for this example
we will use the msapps folder):

Alias /ms_tmp/ "path/to/ms_tmp/"
Alias /msapps/ "path/to/msapps/"

In the ScriptAlias section of this file, add an alias for the PHP folder.

ScriptAlias /cgi-php/ "pathto/apache/php/"

In the AddType section of this file, add a type for php files.

AddType application/x-httpd-php .php

In the Action section of this file, add an action for the php.exe file.
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Action application/x-httpd-php "/cgi-php/php.exe"

5. Copy the file php.ini-dist located in your Apache/php directory and paste it into your WindowsNT folder (eg.
c:/winnt), and then rename this file to php.ini in your WindowsNT folder.

6. If you want specific extensions loaded by default, open the php.ini file in a text viewer and uncomment the
appropriate extension.

7. Place the file php_mapscript.dll into your Apache/php/extensions folder.

Installation Using Microsoft’s IIS
(please see the Running MapServer on IIS document for uptodate steps)

1. Install IIS if required (see the IIS installation procedure).

2. Install PHP and PHP/MapScript (see above).

3. Open the Internet Service Manager (eg. C/WINNT/system32/inetsrv/inetmgr.exe).

4. Select the Default web site and create a virtual directory (right click, select New/Virtual directory). For this
example we will call the directory msapps.

5. In the Alias field enter msapps and click Next.

6. Enter the path to the root of your application (eg. “c:/msapps”) and click Next.

7. Set the directory permissions and click Finish.

8. Select the msapps virtual directory previously created and open the directory property sheets (by right clicking
and selecting properties) and then click on the Virtual directory tab.

9. Click on the Configuration button and then click the App Mapping tab.

10. Click Add and in the Executable box type: path/to/php/php.exe %s %s. You MUST have the %s %s on the end,
PHP will not function properly if you fail to do this. In the Extension box, type the file name extension to be
associated with your PHP scripts. Usual extensions needed to be associated are phtml and php. You must repeat
this step for each extension.

11. Create a temp directory in Explorer to store MapServer created GIFs.

Note: This directory is specified in the IMAGEPATH parameter of the WEB Object in the Mapfile. For this
example we will call the temp directory ms_tmp (eg. C:/tmp/ms_tmp).

12. Open the Internet Service Manager again.

13. Select the Default web site and create a virtual directory called ms_tmp (right click, select New/Virtual directory).
Set the path to the ms_tmp directory (eg. C:/tmp/ms_tmp) . The directory permissions should at least be set to
Read/Write Access.
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FAQ / Common Problems

Questions Regarding Documentation

Q
Is there any documentation available?

A
The main reference document is the SWIG API (or the legacy PHP MapScript reference), which de-
scribes all of the current classes, properties and methods associated with the PHP/MapScript module.

To get a more complete description of each class and the meaning of their member variables, see the
MapScript reference and the MapFile reference.

The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snip-
pets.

Q
Where can I find sample scripts?

A
Some examples are included in directory mapserver/mapscript/php/examples/ in the MapServer
source distribution. A good one to get started is test_draw_map.phtml: it’s a very simple script
that just draws a map, legend and scalebar in an HTML page.

A good intermediate example is the PHP MapScript By Example guide (note that this document was
created for an earlier MapServer version but the code might be still useful).

As many users rely on MS4W for MapScript, you can also see user-contributed PHP 7 scripts through
the SWIG API, on the MS4W wiki.

The original example is the “Gmap demo”, download the whole source and data files from the Map-
Tools.org download page.

Questions About Installation

Q
How can I tell that the module is properly installed on my server?

A
Create a file called phpinfo.phtml with the following contents:

<?php dl("php_mapscript.so");
phpinfo();

?>

Make sure you replace the php_mapscript.so with the name under which you installed it, it could be
php_mapscript_74.so on Unix, or php_mapscript_74.dll on Windows

You can then try the second test page mapserver/mapscript/php/examples/test_draw_map.phtml.
This page simply opens a MapServer .map file and inserts its map, legend, and scalebar in an HTML
page. Modify the page to access one of your own MapServer .map files, and if you get the expected
result, then everything is probably working fine.
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Q
I try to display my .phtml or .php page in my browser but the page is shown as it would it
Notepad.

A
The problem is that your PHP installation does not recognize “.phtml” as a PHP file extension. As-
suming you’re using PHP under Apache then you need to add the following line with the other PHP-
related AddType lines in the httpd.conf:

AddType application/x-httpd-php .phtml

For a more detailed explanation, see the Example Steps of a Full Windows Installation section of this
document.

Q
I installed PROJ (formerly `PROJ.4`), GDAL, and other support libraries on my system, they
are recognized by MapServer’s “configure” as a system lib but at runtime I get an error:
“libproj.so.0: No such file or directory”.

A
You are probably running a RedHat Linux system if this happened to you. This happens because
the libraries install themselves under /usr/local/lib but this directory is not part of the runtime library
path by default on your system.

(I’m still surprised that “configure” picked PROJ as a system lib since it’s not in the system’s lib
path. . . probably something magic in autoconf that we’ll have to look into)

There are a couple of possible solutions:

1. Add a “setenv LD_LIBRARY_PATH” to your httpd.conf to contain that directory

2. Edit /etc/ld.so.conf to add /usr/local/lib, and then run “/sbin/ldconfig”. This will permanently
add /usr/local/lib to your system’s runtime lib path.

3. Configure MapServer with the following options:

--with-proj=/usr/local --enable-runpath

and the /usr/local/lib directory will be hardcoded in the exe and .so files

I (Daniel Morissette) personally prefer option #2 because it is permanent and applies to everything
running on your system.

Q
Does PHP/MapScript have to be setup as a CGI? If so, why?

A
Yes, please see the PHP/MapScript CGI page in the MapServer Wiki for details.

Q
I have compiled PHP as a CGI and when PHP tries to load the php_mapscript.so, I get an
“undefined symbol: _register_list_destructors” error. What’s wrong?
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A
Your PHP CGI executable is probably not linked to support loading shared libraries. The MapServer
configure script must have given you a message about a flag to add to the PHP Makefile to enable
shared libs.

Edit the main PHP Makefile and add “-rdynamic” to the LDFLAGS at the top of the Makefile, then
relink your PHP executable.

Note: The actual parameter to add to LDFLAGS may vary depending on the system you’re running
on. On Linux it is “-rdynamic”, and on *BSD it is “-export-dynamic”.

Q
What are the best combinations of MapScript and PHP versions?

A
The best combinations are:

• MapScript 7.4.0 with PHP 7.0 and up (through the new SWIG API)

• MapScript 4.10 with PHP 5.2.1 and up

• MapScript 4.10 with PHP 4.4.6 and up

3.1.4 .NET MapScript Compilation

Author
Tamas Szekeres

Contact
szekerest at gmail.com

Compilation

Before compiling C# MapScript you should compile MapServer with the options for your requirements. For more
information about the compilation of MapServer please see Win32 Compilation and Installation Guide. It is highly
recommended to minimize the library dependency of your application, so when compiling MapServer enable only the
features really needed. To compile the C# binding SWIG 1.3.31 or later is required.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Win32 compilation targeting the MS.NET framework 1.1

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2003. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio .NET
2003 Command Prompt and step into the /mapscript/csharp directory. Edit makefile.vc and set the SWIG variable to
the location of your swig.exe

Use:

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.
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Win32 compilation targeting the MS.NET framework 2.0

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2005. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio 2005
Command Prompt and step into the /mapscript/csharp directory Edit makefile.vc and set the SWIG variable to the
location of your swig.exe.

Use:

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Win32 setup package (eg. mono-1.1.13.2-
gtksharp-2.8.1-win32-1.exe) Edit makefile.vc and set the CSC variable to the location of your mcs.exe. Alternatively
you can define:

MONO = YES

in your nmake.opt file.

You should use the same compiler for compiling MapScript as the compiler has been used for the MapServer compi-
lation. To compile MapScript open the Command Prompt supplied with your compiler and use:

nmake -f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Alternative compilation methods on Windows

Beginning from MapServer 4.8.3 you can invoke the C# compilation from the MapServer directory by uncommenting
DOT_NET in nmake.opt:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# .NET/C# MapScript
# ----------------------------------------------------------------------
# .NET will of course only work with MSVC 7.0 and 7.1. Also note that
# you will definitely want USE_THREAD defined.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#DOT_NET = YES

and invoking the compilation by:

nmake -f makefile.vc csharp

You can also use:

nmake -f makefile.vc install

for making the compilation an copying the targets into a common output directory.
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Testing the compilation

For testing the compilation and the runtime environment you can use:

nmake -f makefile.vc test

within the csharp directory for starting the sample applications compiled previously. Before making the test the location
of the corresponding libraries should be included in the system PATH.

Linux compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Linux package. Some distributions have pre-
compiled binaries to install, but for using the latest version you might want to compile and install it from the source.
Download and uncompress the latest SWIG release. You should probably compile it from the source if pre-compiled
binaries are not available for your platform.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable paths if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.so and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

OSX compilation targeting the MONO framework

Beginning from 4.10.0 the csharp/Makefile supports the OSX builds. Before making the build the recent MONO
package should be installed on the system.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable paths if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.dylib and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

To run the applications mapscript_csharp.dll.config is needed along with the mapscript_csharp.dll file. This file is
created during the make process
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Installation

The files required for your application should be manually installed. It is highly recommended to copy the files into the
same folder as the executable resides.

Known issues

Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper

If you have compiled MapServer for using the CRT libraries and you are using the MS.NET framework 2.0 as the
execution runtime you should supply a proper manifest file along with your executable, like:

<?xml version="1.0" encoding="utf-8"?>
<assembly xsi:schemaLocation="urn:schemas-microsoft-com:asm.v1
assembly.adaptive.xsd" manifestVersion="1.0"
xmlns:asmv1="urn:schemas-microsoft-com:asm.v1"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"
xmlns="urn:schemas-microsoft-com:asm.v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<assemblyIdentity name="drawmap.exe" version="1.0.0.0" type="win32" />
<dependency>
<dependentAssembly asmv2:dependencyType="install"
asmv2:codebase="Microsoft.VC80.CRT.manifest" asmv2:size="522">
<assemblyIdentity name="Microsoft.VC80.CRT" version="8.0.50608.0"
publicKeyToken="1fc8b3b9a1e18e3b" processorArchitecture="x86"
type="win32" />
<hash xmlns="urn:schemas-microsoft-com:asm.v2">
<dsig:Transforms>
<dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
</dsig:Transforms>
<dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<dsig:DigestValue>UMOlhUBGeKRrrg9DaaPNgyhRjyM=</dsig:DigestValue>
</hash>
</dependentAssembly>
</dependency>
</assembly>

This will inform the CLR that your exe depends on the CRT and the proper assembly wrapper is to be used. If you are
using the IDE the manifest file could be pregenerated by adding a reference to Microsoft.VC80.CRT.manifest within
the /Microsoft Visual Studio 8/VC/redist/x86/Microsoft.VC80.CRT directory.

Manifests for the dll-s must be embedded as a resource

According to the windows makefile the MapScript compilation target (mapscript.dll) is linked with the /MD option. In
this case the VS2005 linker will generate a manifest file containing the unmanaged assembly dependency. The sample
contents of the manifest file are:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<assembly xmlns='urn:schemas-microsoft-com:asm.v1' manifestVersion='1.0'>
<dependency>
<dependentAssembly>

(continues on next page)
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(continued from previous page)

<assemblyIdentity type='win32' name='Microsoft.VC80.CRT'
version='8.0.50608.0' processorArchitecture='x86'
publicKeyToken='1fc8b3b9a1e18e3b' />
</dependentAssembly>
</dependency>
</assembly>

Like previously mentioned if you are creating a windows application the common language runtime will search for a
manifest file for the application. The name of the manifest file should be the same as the executable append and end
with the .manifest extension. However if the host process is not controlled by you (like web mapping applications using
aspnet_wp.exe as the host process) you will not be certain if the host process (.exe) will have a manifest containing a
reference to the CRT wrapper. In this case you may have to embed the manifest into the dll as a resource using the mt
tool like:

mt /manifest mapscript.dll.manifest /outputresource:mapscript.dll;#2

the common language runtime will search for the embedded resource and load the CRT assembly properly.

Normally it is enough to load the CRT with the root dll (mapscript.dll), but it is not harmful embedding the manifest
into the dependent libraries as well.

Issue with regex and Visual Studio 2005

When compiling with Microsoft Visual Studio 2005 variable name collision may occur between regex.c and crtdefs.h.
For more details see:

https://github.com/MapServer/MapServer/issues/1651

C# MapScript library name mapping with MONO

Using the MapScript interface created by the SWIG interface generator the communication between the C# wrapper
classes (mapscript_csharp.dll) and the C code (mapscript.dll) takes place using platform invoke like:

[DllImport("mapscript", EntryPoint="CSharp_new_mapObj")]
public static extern IntPtr new_mapObj(string jarg1);

The DllImport declaration contains the library name, however to transform the library name into a file name is platform
dependent. On Windows the library name is simply appended with the .dll extension (mapscript.dll). On the Unix
systems the library file name normally starts with the lib prefix and appended with the .so extension (libmapscript.so).

Mapping of the library name may be manually controlled using a dll.config file. This simply maps the library file
the DllImport is looking for to its unix equivalent. The file normally contains the following information (map-
script_csharp.dll.config):

<configuration>
<dllmap dll="mapscript" target="libmapscript.so" />

</configuration>

and with the OSX builds:

<configuration>
<dllmap dll="mapscript" target="libmapscript.dylib" />

</configuration>
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The file should be placed along with the corresponding mapscript_csharp.dll file, and created by default during the
make process. For more information see:

https://github.com/MapServer/MapServer/issues/1596 http://www.mono-project.com/Interop_with_Native_
Libraries

Localization issues with MONO/Linux

According to https://github.com/MapServer/MapServer/issues/1762 MapServer may not operate equally well on dif-
ferent locale settings. Especially when the decimal separator is other than “.” inside the locale of the process may cause
parse errors when the mapfile contains float numbers. Since the MONO process takes over the locale settings of the
environment it is worth considering to set the default locale to “C” of the host process, like:

LC_ALL=C mono ./drawmap.exe ../../tests/test.map test_csharp.png

Most frequent errors

This chapter will summarize the most frequent problems the user can run into. The issues were collected mainly from
the -users list and the IRC.

Unable to load dll (MapScript)

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared library.
The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll depends on.
So firstly you might want to check for the dependencies of your libmap.dll in your application directory. You can use the
Visual Studio Dependency Walker to accomplish this task. You can also use a file monitoring tool (like SysInternal’s
filemon) to detect the dll-s that could not be loaded. I propose to store all of the dll-s required by your application in
the application folder. If you can run the drawmap C# sample application with your mapfile your compilation might be
correct and all of the dlls are available.

You may find that the MapScript C# interface behaves differently for the desktop and the ASP.NET applications. Al-
though you can run the drawmap sample correctly you may encounter the dll loading problem with the ASP.NET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’ by
default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The appli-
cation will run under a different security context than the interactive user (under the context of the ASPNET user by
default). When placing the dll-s outside of your application directory you should consider that the PATH environment
variable may differ between the interactive and the ASPNET user and/or you may not have enough permission to access
a dll outside of your application folder.

Bug reports

If you find a problem dedicated to the MapScript C# interface feel free to file a bug report to the Issue Tracker.
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3.1.5 Running MapServer on IIS

Author
Seth Girvin

Contact
sgirvin at compass.ie

Last Updated
2021-04-22

• MapServer Set-up

• Configuring with IIS

• Setting up Applications

• Setting up Logging

• Further Configuration

– Setting a Default Mapfile

– Setting a Certificates File

• Securing MapServer in IIS

• Troubleshooting

This document details how to configure a pre-built version of MapServer to run on IIS (Microsoft’s web server - Internet
Information Services). These steps have a minimum requirement of IIS 7 and Windows 7, and have been tested on IIS
10 running on Windows 10.

MapServer can also be run on Windows using MS4W (MapServer for Windows) - which installs its own preconfigured
Apache web server, and other related tools such as PHP, TinyOWS, and MapCache. Running MapServer under IIS
may be necessary when deploying to servers where the installation of an additional web server is restricted, or where
system administrators have more experience maintaining IIS.

Note: The MapServer executables from MS4W can also be used under IIS as well; for more information see the
section in MS4W’s README, or ask the MS4W community for assistance (subscribe).

MapServer Set-up

Pre-compiled versions of MapServer and GDAL (a required dependency) can be downloaded from http://www.
gisinternals.com/release.php. These downloads are built and maintained by Tamas Szekeres a long term contributor to
MapServer, and Project Steering Committee (PSC) member.

Note: Which version should I download?

• Unless you are using deprecated features in your Mapfiles you should download the latest stable release.

• Nearly all servers will now have a x64 (64-bit) architecture, so unless you are restricted to a win32 (32-bit) server
download a x64 rather than a win32 release.

• Unless you have a good reason you should use the latest compiler version. MSVC 2017 means the binaries were
compiled with using Visual C++ 2017.
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• This installation guide uses the “Compiled binaries in a single .zip package” download (release-1911-x64-gdal-
3-2-1-mapserver-7-6-2.zip). There is also a “MapServer installer with IIS registration support” option, which
has an inbuilt installer.

Once you have downloaded the zip file follow the steps below.

1. Unzip the folder to your machine. In this example we will assume it has been unzipped to C:\MapServer. Make
sure that you have “unblocked” the zip, to avoid and security related issues later. Right-click on the zip file, select
properties and click the “Unblock” button on the General tab.

2. Test that MapServer is working by double clicking C:\MapServer\SDKShell.bat to start a new Windows
command session configured with MapServer environment settings, and then type:

mapserv -v

The MapServer version and supported format types should be displayed in the command window.

Configuring with IIS

These steps assume IIS 7 or higher is installed on the development machine, and MapServer is using the default website
location of C:\Inetpub\wwwroot. MapServer is installed as a FastCGI application, which improves performance by
allowing MapServer to share objects such as database connections between requests.

All command line steps should be “Run as Administrator” (to select this option this right-click on the Windows com-
mand line icon). Make sure IIS is on the machine - if you have a folder named C:\Inetpub then it is likely IIS is
already installed.

You can install IIS (for Windows 10) from the command line with:
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dism /online /enable-feature /featurename:IIS-WebServer

More details on setting up a FastCGI application with IIS can be found in the Microsoft FastCGI documentation.

1. First copy the required .exes into the same folder as the MapServer DLLs. This can be done using the command
below:

xcopy C:\MapServer\bin\ms\apps\* C:\MapServer\bin

2. Create a new folder C:\Inetpub\wwwroot\mapserver

md C:\Inetpub\wwwroot\mapserver

3. Create a new, empty C:\Inetpub\wwwroot\mapserver\web.config file, and open it (as an administrator) in
Notepad:

copy NUL C:\Inetpub\wwwroot\mapserver\web.config
notepad C:\Inetpub\wwwroot\mapserver\web.config

4. Paste in the following configuration:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<system.webServer>
<handlers>

<add name="MapServerFastCgi" path="*" verb="*" type="" modules=
→˓"FastCgiModule" scriptProcessor="C:\Mapserver\bin\mapserv.exe"

resourceType="Unspecified" requireAccess="Script" allowPathInfo="true"␣
→˓preCondition="" />

</handlers>
<caching enabled="true" enableKernelCache="true" />

</system.webServer>
</configuration>

5. Next set up the web application in IIS:

"%systemroot%\system32\inetsrv\appcmd" add app /site.name:"Default Web Site" /path:/
→˓mapserver /physicalPath:"C:\Inetpub\wwwroot\mapserver"

6. Allow request handlers to be set in the web.config file (above), rather than just at the web site level.

%windir%\system32\inetsrv\appcmd.exe unlock config -section:system.webServer/
→˓handlers

7. Next make sure the required IIS CGI module (which includes FastCGI) is installed in IIS with the following
command:

Dism /Online /Enable-Feature /FeatureName:IIS-CGI

Note: You can also enable IIS modules through the user interface as follows:

1. Click “Start button”

2. In the Search box, enter “Turn windows features on or off”

3. In the Features window, Click: “Internet Information Services”
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4. Click: “World Wide Web Services”

5. Click: “Application Development Features”

6. Check (enable) the features.

7. IIS may then need to be restarted

8. Next we set the mapserver.exe to be a FastCGI application and allow it to run in IIS:

"%systemroot%\system32\inetsrv\appcmd" set config -section:system.webServer/fastCgi␣
→˓/+"[fullPath='C:\Mapserver\bin\mapserv.exe']" /commit:apphost
"%systemroot%\system32\inetsrv\appcmd" set config /section:isapiCgiRestriction /+
→˓"[path='C:\MapServer\bin\mapserv.exe',description='MapServer',allowed='True']"

These settings can also be viewed and configured using IIS Manager:
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9. Test the set-up was successful by entering the following URL in a browser: http://localhost/mapserver/. If the
following text is displayed then MapServer has been successfully configured as a FastCGI application in IIS.

No query information to decode. QUERY_STRING is set, but empty.

Setting up Applications

MapServer applications consist of a Mapfile, and additional optional files for data, symbols, logs, and images. The same
instance of MapServer can be used to serve many applications. In this example we will create a new test subfolder
for a test application in a C:\MapServer\apps folder.

md C:\MapServer\apps\test

Now create a new test.map file in this folder and paste in the test Mapfile below.

copy NUL C:\MapServer\apps\test\test.map
notepad C:\MapServer\apps\test\test.map

MAP
EXTENT -180 -90 180 90
# Set the path to where the map projections are stored
CONFIG "PROJ_LIB" "C:\MapServer\bin\proj\SHARE"
NAME "TestMap"
WEB
METADATA

(continues on next page)
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(continued from previous page)

"ows_enable_request" "*"
END

END
PROJECTION
"init=epsg:4326"

END
LAYER
NAME "country_bounds"
TYPE RASTER
CONNECTION "http://demo.mapserver.org/cgi-bin/wms?"
CONNECTIONTYPE WMS
METADATA
"wms_srs" "epsg:4326"
"wms_name" "country_bounds"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

END
END

END

You should now be able to test the application is accessible through IIS using the following URL to
retrieve an image via WMS: http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&
SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:
4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png

3.1. Installation 68

http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png
http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png
http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png


MapServer Documentation, Release 7.6.6

Setting up Logging

You can set-up MapServer logging by adding the following lines to your MAP block.

DEBUG 5 # a value from 0 (OFF) to 5 (detailed)
CONFIG "MS_ERRORFILE" "logs\ms.log"

The path to the log file is relative to the Mapfile, so in this example you need to create a new C:\MapServer\apps\
test\logs folder:

md C:\MapServer\apps\test\logs

You may need to set read-write permissions on the log file to the IIS application pool user (in this example we are using
the default IIS AppPoolDefaultAppPool account under which the MapServer FastCGI runs). In IIS10 the “Authenticated
Users” group normally has Modify access to all folders on the C drive, so this step may not be necessary.

icacls "C:\MapServer\apps\test\logs" /grant "IIS AppPool\DefaultAppPool":(OI)(CI)RW

If a different application pool is used, or you don’t set the permissions you will receive the following message (also
check that the C:\MapServer\apps\test\logs folder exists as it will not be created automatically).

msSetErrorFile(): General error message. Failed to open MS_ERRORFILE C:/MapServer/apps/
→˓test/logs/ms.log

Further Configuration

MapServer makes use of Environment Variables to create application-wide settings. When using IIS these need to be set
as FastCGI environment settings, rather than standard system-wide environment variables. Each FastCGI application
can be configured with different environment variables and can be modified by IIS Manager, or using the command
line.

FastCGI configurations are stored in C:\Windows\System32\inetsrv\config\applicationHost.config in the
format below:

<environmentVariables>
<environmentVariable name="CURL_CA_BUNDLE" value="C:\MapServer\bin\curl\

→˓curl-ca-bundle.crt" />
</environmentVariables>
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Setting a Default Mapfile

The MS_MAPFILE environment variable can be set to a default map as follows:

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/
→˓fastCgi /+"[fullPath='C:\Mapserver\bin\mapserv.exe'].environmentVariables.
→˓[name='MS_MAPFILE',value='C:\MapServer\apps\test\test.map']" /commit:apphost

You can make then make a request without the query string requiring map=C:/MapServer/apps/test/
test.map: http://localhost/mapserver/mapserv?SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&
LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=
300&FORMAT=image/png

In addition to this method the URL Rewrite module can be used to set different Mapfiles dependent on query string
parameters or domain names.

Setting a Certificates File

To access remote data sources via HTTPS (for example when cascading a WMS), you may need to point to a certificates
file. This can be set using the CURL_CA_BUNDLE environment variable:

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapserv.exe'].environmentVariables.[name='CURL_CA_BUNDLE',
→˓value='C:\MapServer\bin\curl\curl-ca-bundle.crt']" /commit:apphost

See Accessing OGC services over HTTPS for further details.

Securing MapServer in IIS

MapServer has two environment variables that can be used to restrict which Mapfiles can be accessed.

MS_MAP_NO_PATH can be used to ensure that users can’t provide their own map= parameter to the query string. This can
be set to any value (“True” in this example) so that only the MS_MAPFILE environment value can be used (see “Setting
a Default Mapfile” above).

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapserv.exe'].environmentVariables.[name='MS_MAP_NO_PATH',
→˓value='True']" /commit:apphost

MS_MAP_PATTERN can be set to limit the folders from which Mapfiles can be accessed using a regular expression.
For example to limit to the C:\MapServer\apps\test folder use the following regular expression: "^^(C:)?\/
MapServer\/apps\/test\/((?!\.{2})[_A-Za-z0-9\-\.]+\/{1})*([_A-Za-z0-9\-\.]+\.(map))$"

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapserv.exe'].environmentVariables.[name='MS_MAP_PATTERN',
→˓value='"^(C:)?\/MapServer\/apps\/test\/((?!\.{2})[_A-Za-z0-9\-\.]+\/{1})*([_A-Za-z0-9\-
→˓\.]+\.(map))$"']" /commit:apphost

In addition to these methods IIS itself can be used to block or filter query string parameters. The denyQueryStringSe-
quences element can be set to block a Mapfile being set by a URL. Both map= and the encoded map%3d are blocked.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

(continues on next page)
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(continued from previous page)

<system.webServer>
<security>

<requestFiltering>
<denyQueryStringSequences>

<add sequence="map=" /> <!-- will return HTTP Error 404.18 - Not␣
→˓Found -->

</denyQueryStringSequences>
</requestFiltering>

</security>
<handlers>

<add name="MapServerFastCgi" path="*" verb="*" type="" modules="FastCgiModule
→˓" scriptProcessor="C:\Mapserver\bin\mapserv.exe" resourceType="Unspecified"␣
→˓requireAccess="Script" allowPathInfo="false" preCondition="" responseBufferLimit=
→˓"4194304" />

</handlers>
<httpErrors errorMode="Detailed" />

</system.webServer>
</configuration>

Troubleshooting

Common error messages and how to resolve them are listed below.

• Check that the file exists if you receive the following error. If it does exist then check the file permissions.

msLoadMap(): Unable to access file. (C:/MapServer/apps/test/test.map)

• MapServer projections are stored in C:\MapServer\bin\proj\SHARE (or C:\MapServer\bin\proj6\
SHARE when using PROJ 6). When the projection is specified in the following form “init=epsg:3857”,
MapServer will try to find this code in the epsg file, where it is listed as <3857> +proj=merc +a=6378137. . . .
If you receive the error below then make sure the CONFIG "PROJ_LIB" "C:\MapServer\bin\proj\SHARE"
setting is pointing to the correct path. Note on one installation this message was shown as forward slashes rather
than backslashes were used.

msProcessProjection(): Projection library error. proj error "No such file or␣
→˓directory" for "init=epsg:3857"

• The following error is caused if IIS has been locked-down so settings cannot be overridden at the web.config
level.

HTTP Error 500.19 - Internal Server Error
The requested page cannot be accessed because the related configuration data for␣
→˓the page is invalid.

This configuration section cannot be used at this path. This happens when the␣
→˓section is locked at a parent level.
Locking is either by default (overrideModeDefault="Deny"), or set explicitly by a␣
→˓location tag with
overrideMode="Deny" or the legacy allowOverride="false".

Run the following in a command window (with administrator permissions). This enables the handlers section
in the /mapserver/web.config file to override the ones set at the machine level. See http://stackoverflow.com/
questions/9794985/iis-this-configuration-section-cannot-be-used-at-this-path-configuration-lock
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%windir%\system32\inetsrv\appcmd.exe unlock config -section:system.webServer/
→˓handlers

• Check C:\MapServer\bin\mapserv.exe exists if you encounter the error below.

HTTP Error 500.0 - Internal Server Error
The FastCGI executable could not be found

• To view the CGI applications registered with IIS you can use the command below (this reads the C:\Windows\
System32\inetsrv\config):

"%systemroot%\system32\inetsrv\appcmd" list config /section:isapiCgiRestriction

This should output XML similar to below for this section:

<system.webServer>
<security>
<isapiCgiRestriction>
<add path="C:\MapServer\bin\mapserv.exe" allowed="true" description="MapServer

→˓" />
</isapiCgiRestriction>

</security>
</system.webServer>

• The following error is returned (from MapServer 8.0) if allowPathInfo="false" is set in the handlers
section for MapServer in the web.config file. This should be set to true.

msLoadMap(): Regular expression error. MS_DEFAULT_MAPFILE_PATTERN validation failed.

3.1.6 Oracle Installation

Author
Till Adams

Last Updated
2007-02-16

Table of Contents

• Oracle Installation
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– Set Environment Variables
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Preface

This document explains the whole configuration needed to get the connect between MapServer CGI and an Oracle
database server on a linux (Ubuntu) box. The aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did!

This manual was written, because I spent several days googling around to get my UMN having access to an oracle
database. I’m NOT an oracle expert, so the aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did! (Or: If you have the
choice: Try PostGIS ;-))

Before we start, some basic knowledge, I didn’t know before:

• MapServer can access oracle spatial as well as geodata from any oracle locator installation! Oracle locator comes
with every oracle instance, there is no need for an extra license.

• There is no need for further installation of any packages beside oracle/oracle OCI

System Assumptions

We assume that Oracle is already installed, there is a database and there is some geodata in the database. The following
paths should be known by the reader:

• ORACLE_HOME

• ORACLE_SID

• ORACLE_BASE

• LD_LIBRARY_PATH

We also assume that you have installed apache2 (our version was 2.0.49) and you are used to work with Linux/UNIX
systems. We also think you are able to handle the editor vi/vim.

We ensure that the Oracle user who later accesses the database has write-access to the oracle_home directory.

We also assume, that you already have setup the tnsnames.ora file. It should look like that:

MY_ORACLE =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = host)(PORT = 1521))
(CONNECT_DATA =

(SERVICE_NAME = your_name)
)

)

It is important that you know the NAME of the datasource, in this example this is “MY_ORACLE” and will be used fur-
ther on. Done that, you’re fine using User/Password@MY_ORACLE in your mapfile to connect to the oracle database.
But first we have to do some more stuff.
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Compile MapServer

Compile as normal compilation and set this flag:

--with-oraclespatial=/path/to/oracle/home/</p>

If MapServer configure and make runs well, try

./mapserv -v

This should at least give this output:

INPUT=ORACLESPATIAL

If you got that, you’re fine from the MapServer point of view.

Set Environment Variables

It is important to set all environment variables correctly. There are one the one hand system-wide environment variables
to be set, on the other hand there should be set some for the cgi-directory in your Apache configuration.

System Variables

On Ubuntu (and on many other systems) there is the file “/etc/profile” which sets environment variables for all users on
the system (you may also dedicate user-specific environment variables by editing the users “.profile” file in their home
directory, but usually the oracle database users are not users of the system with their own home)

Set the following variables:

$ cd /etc

$ echo export ORACLE_HOME=/path/to/oracle/home >> /etc/profile

# **(e.g. ORACLE_HOME=/app/oracle/ora10g)

$ echo export ORACLE_BASE=path/to/oracle >> /etc/profile

# **(e.g. ORACLE_HOME=/app/oracle)

$ echo export ORACLE_SID=MY_ORACLE >> /etc/profile

$ echo export LD_LIBRARY_PATH=path/to/oracle/home/lib >> /etc/profile

# **(e.g. ORACLE_HOME=/app/oracle/ora10g/lib)

The command comes silent, so there is no system output if you didn’t mistype anything!
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Setting the Apache Environment

Sometimes it is confusing WHERE to set WHAT in the split apache2.conf files. In the folder
/etc/apache2/sites_available you find your site’s file. If you did not do anything special (e.g. installing virtual
hosts) the file is named “default”. In this file, the apache cgi-directory is defined. Our file looks like this:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/
<Directory "/var/www/cgi-bin">

AllowOverride None
Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all

</Directory></p>

In this file, the local apache environment variables must be set. We did it within a location-block like this:

<Location "/cgi-bin/">
SetEnv ORACLE_HOME "/path/to/oracle/home"

</Location></p>

Where /cgi-bin/ in the opening location block refers to the script alias /cgi-bin/ and the TNS_ADMIN directory point
to the location of the tnsnames.ora file.

Then restart apache:

$ /etc/init.d/apache2 force-reload

Create mapfile

Before we start creating our mapfile ensure that you have a your access data (User/Password) and that you know the
Oracle SRID, which could be different from the proj-EPSG!

The data access parameters:

CONNECTIONTYPE oraclespatial
CONNECTION 'user/password@MY_ORACLE'
DATA 'GEOM FROM MY_LAYER USING SRID 82032'

[. . . ]

Where:

• GEOM is the name of the geometry column

• MY_LAYER the name of the table

• 82032 is equivalent to the EPSG code 31468 (German projection system)

3.1. Installation 75



MapServer Documentation, Release 7.6.6

Testing & Error handling

So you are fine now. Load the mapfile in your application and try it. If everything goes well: Great, if not, possibly this
ugly error-emssage occurs (this one cmae by querying MapServer through the WMS interface as a GetMap-request):

<ServiceExceptionReport version="1.0.1">
<ServiceException>

msDrawMap(): Image handling error. Failed to draw layer named 'test1'.
msOracleSpatialLayerOpen(): OracleSpatial error. Cannot create OCI Handlers.
Connection failure. Check the connection string. Error: .

</ServiceException>
</ServiceExceptionReport>

This points us towards, that there might be a problem with the connection to the database. First of all, let’s check, if
the mapfile is all right. Therefore we use the MapServer utility program shp2img.

Let’s assume you are in the directory, where you compiled MapServer and run shp2img:

$ cd /var/src/mapserver_version/

$ shp2img -m /path/to/mapfile/mapfile.map -i png -o /path/to/output/output.png

The output of the command should look like this:

[Fri Feb 2 14:32:17 2007].522395 msDrawMap(): Layer 0 (test1), 0.074s
[Fri Feb 2 14:32:17 2007].522578 msDrawMap(): Drawing Label Cache, 0.000s
[Fri Feb 2 14:32:17 2007].522635 msDrawMap() total time: 0.075s

If not, this possibly points you towards any error in your mapfile or in the way to access the data directly. In this case,
take a look at Oracle Spatial. If there is a problem with your oracle connect, the same message as above (MsDrawMap()
. . . ) occurs. Check your mapfile syntax and/or the environment settings for Oracle.

For Debian/Ubuntu it’s worth also checking the file “/etc/environment” and test-wise to add the system variables com-
parable to System Variables

If the output is OK, you may have a look at the generated image (output.png). Then your problem reduces to the access
of apache to oracle home directory. Carefully check your apache configuration. Please note, that the apache.config file
differs in several linux-distributions. For this paper we talk about Ubuntu, which should be the same as Debian.

3.1.7 V8 MapScript Support

Author
Alan Boudreault

Contact
aboudreault@mapgears.com
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Introduction

The V8/MapScript cannot be used as its own like other mapscripts. V8 is currently used internally to add 2 function-
alities:

• Javascript Styleitem: rfc102

• Javascript Geomtransform: rfc106

These instructions are for Unix/Linux users.

Version of V8 supported

You have to use v8 3.20, which is the version of the nodejs release:0.11.7. For future compatibility, this is a good thing
to be synchronized to nodejs project.

Obtaining, Compiling, and Installing V8 and V8/MapScript

Download and Compile V8

• The V8 source can be obtained from the v8 website.

Download v8:

git clone git://github.com/v8/v8.git v8

Compile the v8 library:

cd v8
git checkout 3.20
make dependencies
library=shared make -j8 x64.release

Note: Use ia32.release if you are using a 32bits machine.

Install the v8 library and include headers:

mkdir -p /opt/v8/lib && cp ./out/x64.release/lib.target/libv8.so /opt/v8/lib
mkdir /opt/v8/include && cp include/v8* /opt/v8/include

Note: Modify the library path if needed (32bits)

Setup the v8 lib in the system paths:

echo "/opt/v8/lib" > /etc/ld.so.conf.d/v8.conf
ldconfig
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Compile MapServer with V8 Support

Configure:

cd mapserver
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/opt/v8 -DWITH_V8=yes ..

Compile and install: (from the build directory)

make install

Verify the V8 support:

/path/to/mapserv -v

You should see: SUPPORTS=V8. You can now refer to the following pages to try the javascript functionalities:

• Javascript Styleitem: STYLEITEM Javascript

• Javascript Geomtransform: Javascript transformation
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The Mapfile is the heart of MapServer. It defines the relationships between objects, points MapServer to where data
are located and defines how things are to be drawn.

The Mapfile consists of a MAP object, which has to start with the word MAP.

There are some important concepts that you must understand before you can reliably use mapfiles to configure
MapServer. First is the concept of a LAYER. A layer is the combination of data plus styling. Data, in the form of
attributes plus geometry, are given styling using CLASS and STYLE directives.

See also:
An Introduction to MapServer for “An Introduction to the Mapfile”

Note: As you setup your server and mapfiles, it is strongly recommended to review the security steps for the MAP= call
to the MapServer executable, by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter
on public servers, as recommended in the document Limit Mapfile Access. All possible environment variables to secure
your server are listed in Environment Variables.
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4.1.1 Cartographical Symbol Construction with MapServer
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• Abstract
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– Multiple Rendering and Overlay

– Symbol Scaling

– MapServer and symbol specification

• Using Cartographical Symbols in MapServer

– Output formats

– Symbol units

– Scaling of Symbols

• Construction of Point Symbols

– Symbols of TYPE vector and ellipse

– Symbols of TYPE truetype

– Symbols of TYPE pixmap

– Symbol definitions for the figure that demonstrates point symbols

– Combining symbols

• Construction of Line Symbols

– Overlaying lines

– Use of the PATTERN and GAP parameters

∗ LINECAP

∗ LINEJOIN

∗ LINEJOINMAXSIZE (only relevant for LINEJOIN miter)

– Use of the OFFSET parameter
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– Asymmetrical line styling with point symbols

• Area Symbols

– Hatch fill

– Polygon fills with symbols of TYPE pixmap

– Polygon fills with symbols of TYPE vector

∗ Excerpts from the map file for the polygon fill vector examples above

– Polygon outlines

• Examples (MapServer 4)

– Basic Symbols

– Complex Symbols

• Tricks

– Changing the center of a point symbol

• Mapfile changes related to symbols

– Version 6.2

– Version 6.0

• Current Problems / Open Issues

– GAP - PATTERN incompatibility

– GAP - not full support for 2D

• The End

Abstract

This Document refers to the syntax of map and symbol files for MapServer 6. The first version of the document
was based on the results of a project carried out at the University of Hannover, Institute of Landscape and Nature
Conservation. It was initiated by Mr. Dipl. Ing. Roland Hachmann. Parts have been taken from a study carried
through by Karsten Hoffmann, student of Geography and Cartography at the FU Berlin. In the context of a hands-on
training in the company GraS GmbH, Mr. Hoffman mainly dealt with the development of symbols. (Download study
report in German) His degree dissertation will also concern this subject.

The document has been heavily revised for MapServer 6.

Introduction

A map is an abstract representation that makes use of point, line and area symbols. Bertin (1974) created a clear
and logical symbol scheme in which symbols can be varied referring to graphical variables. The following graphical
variables can be used within MapServer: FORM, SIZE, PATTERN, COLOR and LIGHTNESS. Point and area symbols
as well as text fonts (ttf) can additionally be displayed with a frame which we call OUTLINE.

The following figure shows the theoretical structure of cartographical symbols, which is also used in MapServer:
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Fig. 1: Structure of Cartographical Symbols`
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Multiple Rendering and Overlay

Say you want to display a highway with a black border line, two yellow lanes and a red center lane. This calls for a
combination of signatures.

Complex cartographical effects can be achieved by rendering the same vector data with different symbols, sizes and
colours on top of each other. This can be done using separate LAYERs. This could, however, have performance effects
for the application, as every rendering process of the same geometry will take up additional processor time. The
preferred solution is to use multiple STYLEs to create complex symbols by overlay.

To create the highway symbol mentioned above with a total width of 9 units, the lowest STYLE (in drawing order) will
be a broad black line with a width of 9 units. The second level STYLE will be a yellow line with a width of 7 units, and
the topmost STYLE will be a red line with a width of 1 unit. That way each yellow coloured lane will have a width of
(7-1)/2 = 3 units.

Combining symbols can be a solution for many kinds of cartographical questions. A combination of different geometry
types is also possible. A polygon data set can be rendered as lines to frame the polygons with a line signature. It can
also be rendred as polygons with a symbol filling the polygon. When the polygon fill is rendered on top of the lines, the
inner part of the underlying outline is covered by the fill symbol of the polygon. What is observed here is a clipping
effect tha in will result in an asymmetric symbol for the boundary line. To present the outline without clipping, just
reorder the LAYERs or STYLEs and put the outline presentation on top of the fill.

Yet another way to construct advanced line signatures for framed polygons is to tamper with the original geometries by
buffering or clipping the original geometry such that the new objects lie inside the original polygons or grow over the
borders. PostGIS can help achieve a lot of effects.

The OPACITY parameter of LAYER and STYLE can be used to achieve transparency (making lower symbols “shine”
through upper symbols).

Symbol Scaling

There are two basically different ways of handling the display size of symbols and cartographical elements in a map at
different scales. The size of cartographical elements is either set in screen pixels or in real world units.

• If the size is set in real world units (for example meters), the symbol will shrink and grow according to the scale
at which the map is displayed.

• If the size is set in screen pixels, symbols look the same at all scales.

The default behaviour of MapServer is to implement the “screen pixels” size type for displaying cartographical ele-
ments.

“Real world units”, as described above, can be achieved using either the SIZEUNITS or the SYMBOLSCALEDENOM
parameter of the LAYER.

• When SIZEUNITS is set (and is not pixels), symbol sizes are specified in real world units (for instance meters).
For available units, see the SIZEUNIT documentation.

• When SYMBOLSCALEDENOM is set, the given symbols size is used for the map scale 1:SYMBOLSCALEDE-
NOM, for other scales, the symbols are scaled proportionally.

STYLE MAXSIZE and MINSIZE limits the scaling of symbols.
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MapServer and symbol specification

In a MapServer application, SYMBOL parameters are organised in the map file as follows:

• Each LAYER has a TYPE parameter that defines the type of geometry (point, line or polygon). The symbols are
rendered at points, along lines or over areas accordingly.

• Basic symbols are defined in SYMBOL elements, using the parameters TYPE, POINTS, IMAGE, FILLED, AN-
CHORPOINT and more (SYMBOL elements can be collected in separate symbol files for reuse).

• Colour, lightness, size and outline are defined inside the STYLE sections of a CLASS section using the parameters
COLOR, SIZE, WIDTH and OUTLINECOLOR.

• Patterns for styling lines and polygons are defined in STYLE sections using GAP and PATTERN.

• Several basic elements can be combined to achieve a complex signature using several STYLEs inside one CLASS.

The following example shows the interaction of some of these elements and explains the configuration in the LAYER
and the SYMBOL sections necessary for rendering a cartographical point symbol (a red square with a 1 pixel wide black
outline and a smaller blue circle inside):

Fig. 2: The generated overlay symbol
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Table 1: Commented LAYER and SYMBOL sections.

LAYER section of the map file SYMBOL (from a separate symbol file or in-line in
the map file)

# Start of layer definition
LAYER
# Name of the layer
NAME "mytest"
TYPE POINT # Point geometries
STATUS DEFAULT # Always draw
# Use the dataset test.shp
DATA test
# Start of a Class definition
CLASS
# Start of the first Style
STYLE
# Symbol to be used (reference)
SYMBOL "square"
# Size of the symbol in pixels
SIZE 16
# Colour (RGB) - red
COLOR 255 0 0
# Outline colour (RGB) - black
OUTLINECOLOR 0 0 0

END # end of STYLE
# Start of the second Style
STYLE
# Symbol to be used (reference)
SYMBOL "circle"
# Size of the symbol in pixels
SIZE 10
# Colour (RGB) - blue
COLOR 0 0 255

END # end of STYLE
END # end of CLASS

END # end of LAYER

# Start of symbol definition
SYMBOL
# Symbol name (referenced in STYLEs)
NAME "square"
TYPE vector # Type of symbol
# Start of the symbol geometry
POINTS
0 0
0 1
1 1
1 0
0 0

END # end of POINTS
# The symbol should be filled
FILLED true
# Place the according to its center
ANCHORPOINT 0.5 0.5

END # end of SYMBOL

# Start of symbol definition
SYMBOL
# Symbol name (referenced in STYLEs)
NAME "circle"
TYPE ellipse # Type of symbol
# Start of the symbol geometry
POINTS
1 1

END # end of POINTS
# The symbol should be filled
FILLED true
# Place the according to its center
ANCHORPOINT 0.5 0.5

END # end of SYMBOL
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Using Cartographical Symbols in MapServer

Vectors, truetype fonts and raster images are basic graphical elements that are defined by the TYPE parameter in the
STYLE element. This and the following sections explain how these elements can be combined to create complex
cartographical symbols, and they describes some other important aspects of map rendering in MapServer .

Output formats

MapServer support raster output formats (e.g. PNG, JPEG and GIF) and vector output formats (e.g. PDF, SVG). The
raster formats (except for GIF) use anti-aliasing. See OUTPUTFORMAT (and MAP IMAGETYPE) for more.

Symbol units

The units used for specifying dimensions is defined in the SIZEUNITS parameter of the LAYER. The available units
are listed there. The default unit is pixels.

The MAP element’s RESOLUTION and DEFRESOLUTION parameters will determine the resolution of the resulting
map and hence the size in pixels of the symbols on the map. DEFRESOLUTION is by default 72 dpi (dots per inch). If
RESOLUTION is set to 144 (and DEFRESOLUTION is 72), all dimensions specified in the map file will be multiplied
by 144/72 = 2. This can be used to produce higher resolution images.

Dimensions can be specified using decimals.

Scaling of Symbols

The SYMBOLSCALEDENOM parameter in the LAYER section specifies the scale at which the symbol or text label is
displayed in exactly the dimensions defined in the STYLEs (for instance using SIZE and WIDTH). Observe that all the
parameters concerned with the symbol dimensions (SIZE, WIDTH, . . . ) are tightly connected to the SYMBOLSCALE-
DENOM parameter. The MAXSIZE and MINSIZE parameters inside the STYLE element limit the scaling of symbols
to the maximum and minimum size specified here (but does not affect the size calculations).

When symbols are scaled as the scale changes, the elements (defined in STYLEs) of a composite cartographical symbol
may change their positions relative to each other. This is due to rounding effects when creating the image. The effect
is most noticeable at small scales (large scale denominators), when the symbols get small. Due to the same effects,
symbols can also slightly change their shape when they get small.

It is not possible to define the display intervals with MINSCALEDENOM and MAXSCALEDENOM in the STYLE-
section, so this kind of tuning has to be solved at the LAYER level. To do this, create several LAYERs with the same
geometries for different scale levels.

Always observe that cartographical symbols depend a lot on the scale! So be careful with the interaction of content,
symbols and scale. All three parameters heavily interact and have to be coordinated to produce a good map.
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Construction of Point Symbols

In the figure below, point symbols of TYPE truetype, pixmap, ellipse and vector are demonstrated. The precise position
of the point for which the symbol is rendered is shown with a small red dot. A small blue dot is used to show an offset
position.

Fig. 3: Basic point symbol TYPEs, showing effects of size, offset, angle and outlinecolor

All point symbols can be rotated using the ANGLE parameter.

Since version 6.2, the anchor point / reference point of all point symbols can be set using the SYMBOL ANCHORPOINT
parameter. The default anchorpoint is at the center of the boundingbox of the symbol (ANCHORPOINT 0.5 0.5).

Symbols of TYPE vector and ellipse

For symbols of TYPE vector and ellipse the shape of the symbol by setting X and Y values in a local two dimensional
coordinate system with X values increasing to the right and Y values increasing downwards. The coordinates defining
the symbol is listed in the POINTS parameter, which is explicitly ended using END. Negative values should not be
used.

• TYPE ellipse is used to create ellipses (and circles). The shape of the ellipse is defined in the POINTS parameter
(X - size in the horizontal direction, Y - size in the vertical direction). To create a circle, let X and Y have the
same value.

• TYPE vector is used to define advanced vector symbols. The shape of the symbol is defined in the POINTS
parameter. A vector symbol can consist of several elements. The coordinates -99 -99 are used to separate the
elements.

To create a polygon vector symbol, the SYMBOL FILLED parameter must be set to true. If the end point is not
equal to the start point of a polygon geometry, it will be closed automatically.
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The maximum number of points is 100, but this can be increased by changing the parameter
MS_MAXVECTORPOINTS in the file mapsymbols.h before compilation.

When creating symbols of TYPE vector you should observe some style guidelines.

– Avoid downtilted lines in area symbols, as they will lead to heavy aliasing effects.

– Do not go below a useful minimum size. This is relevant for all types of symbols.

– Keep in mind that for pixel images, every symbol of TYPE vector has to be rendered using pixels.

Note: The bounding box of a vector symbol has (0,0) in the symbol coordinate system as its upper left corner.
This can be used to precisely control symbol placement. Since version 6.2 SYMBOL ANCHORPOINT should
be used instead.

Symbols of TYPE truetype

You can use symbols from truetype fonts. The symbol settings are defined in the SYMBOL element. Specify the
character or the ASCII number of the character to be used in the CHARACTER parameter. The FONT parameter is
used to specify the font to be used (the alias name from the font file - often “fonts.list”). The FONTSET parameter of
the MAP element must be set for fonts to work.

For gif output (GD renderer), you can define that you want to apply antialiasing to the characters by using the parameter
ANTIALIAS. It is recommended to do this especially with more complex symbols and whenever they don’t fit well into
the raster matrix or show a visible pixel structure.

Colours for truetype symbols can be specified in LAYER CLASS STYLE (as with symbols of the TYPE vector and
ellipse). You can specify both fill colour and outline colour.

To find out the character number of a symbol use one of the following options:

• Use the software FontMap (Shareware, with free trial version for download, thanks Till!).

• Use the MS Windows truetype map.

• Trial and Error. :-)

Please note that the numbering of the so-called “symbol fonts” starts at 61440! So if you want to use character &#84,
you have to use 61440 + 84 = &#61524. (ain’t that a pain!!)

You can also place truetype characters and strings on the map using LABEL. Then you can control the placing of the text
by using the POSITION parameter [ul|uc|ur|cl|cc|cr|ll|lc|lr], that specifies the position relative to the geometric origin
of the geometry.

Symbols of TYPE pixmap

Symbols of the TYPE pixmap are simply small raster images. The file name of the raster image is specified in the
IMAGE parameter of the SYMBOL element. MapServer supports the raster formats GIF and PNG for pixmaps.

Observe the colour depth of the images and avoid using 24 bit PNG symbols displayed in 8 bit mode as this may cause
unexpected colour leaps.

When using raster images, the colour cannot be modified in the SYMBOL element subsequently.

You can specify a colour with the TRANSPARENT parameter which will not be displayed - i.e. it will be transparent.
As a result, underlying objects and colours are visible.
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The SIZE parameter defines the height of pixmap symbols when rendered. The pixel structure will show when the
SIZE grows too large. If you are using symbol scaling (LAYER SYMBOLSCALEDENOM is set or LAYER SIZEUNITS
is not pixels) and want to prevent this from happening, you should set the STYLE MAXSIZE parameter.

Symbol definitions for the figure that demonstrates point symbols

This code was used to produce the symbols in the point symbol figure.

First, the symbol definitions:

SYMBOL
NAME "o-flag-trans"
TYPE pixmap
IMAGE "o-flag-trans.png"

END # SYMBOL

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "P"
TYPE truetype
FONT "arial"
CHARACTER "P"

END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
FILLED false
POINTS
0 0
5 10
10 0

END # POINTS
END # SYMBOL

SYMBOL
NAME "v-poly"
TYPE vector
FILLED true
POINTS
0 0
3.5 8
7 0
5.2 0
3.5 4

(continues on next page)
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(continued from previous page)

1.8 0
0 0

END # POINTS
END # SYMBOL

Then, the LAYERs and STYLEs used for producing the polygon V symbols in the point symbol figure:

LAYER # Vector v - polygon
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
10 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
20 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, angle
STATUS DEFAULT

(continues on next page)
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(continued from previous page)

TYPE POINT
FEATURE
POINTS
30 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
ANGLE 60

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
40 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OFFSET 0 15

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, angle, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
50 30

END # Points
END # Feature

(continues on next page)
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CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
ANGLE 60
OFFSET 0 15

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size outline
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
60 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OUTLINECOLOR 0 255 0

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, outline, width
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
70 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30

(continues on next page)
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OUTLINECOLOR 0 255 0
WIDTH 4

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

LAYER # Vector v - polygon, size, outline, no color
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
80 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
SIZE 30
OUTLINECOLOR 0 255 0

END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

Combining symbols

The following figure shows how to combine several basic symbols to create a complex point symbol. The combination
is achieved by adding several STYLEs within one LAYER. Each STYLE element references one SYMBOL element. All
the basic symbols are centered and overlaid when rendered.

Notice that the SIZE parameter in the STYLE element refers to the height of the symbol (extent in the Y direction).
A standing rectangle will thus display with a smaller area than a lying rectangle, although both have the same SIZE
parameter and the same maximum Y value in the SYMBOL element. When combining several basic point symbols on
top of each other, they will not always be centered correctly due to the integer mathematics required when rendering
raster images. It is recommended not to combine elements with even and odd numbered SIZE parameters, as this tends
to produce larger irregularities.
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Fig. 4: Construction of Point Symbols
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Construction of Line Symbols

For displaying line geometries, you specify the width of the lines using the WIDTH parameter and the colour using the
COLOR parameter. If no colour is specified, the line will not be rendered. If no width is specified, a thin line (one unit
(pixel) wide) will be rendered. The LINECAP, LINEJOIN and LINEJOINMAXSIZE parameters are used to specify
how line ends and corners are to be rendered.

Overlaying lines

When combining several styles / symbols on a line, they will be positioned on the baseline which is defined by the
geometry of the object. In most cases MapServer correctly centers symbols. The combination of a line displayed in 16
units width and overlaid with a 10 unit width line, results in a line symbol with a 3 unit border. If the cartographical
symbol is to contain a centered line with a width of 1 pixel, then the widths should be reconfigured, for example to 11
and 17 units. As a rule of thumb don’t combine even numbered and odd numbered widths.

Use of the PATTERN and GAP parameters

The PATTERN and GAP parameters can be used to produce styled lines in MapServer.

To create line patterns, use the PATTERN parameter of the STYLE. Here you define dashes by specifying the length of
the first dash, followed by the length of the first gap, then the length of the second dash, followed by the second gap,
and so on. This pattern will be repeated as many times as that pattern will fit into the line. LINECAP can be used to
control how the ends of the dashes are rendered. LINEJOIN can be used to control how sharp bends are rendered. In
the left column of the figure, you will find three examples where PATTERN has been used. Number 2 from below uses
LINECAP butt, number 3 from below uses LINECAP round (and LINEJOIN miter) and number 4 from below uses
LINECAP butt (and is overlaid over a wider, dark grey line). To produce dots, use 0 for dash length with LINECAP
‘round’.

Styled lines can be specified using GAP and a symbol for styling. In the figure, you will find examples where GAP has
been used (in the right column). At the bottom a SYMBOL of TYPE ellipse has been used, then a SYMBOL of TYPE
vector, then a SYMBOL of TYPE font and then a SYMBOL of TYPE pixmap. To control the placement of the symbols
relative to the line (to get asymmetrical styling), use SYMBOL ANCHORPOINT (as explained later).

Note: Since version 6.2 it is possible to specify an offset (start gap) when creating asymmetrical patterns using the
STYLE INITIALGAP parameter. INITIALGAP can be used with GAP and with PATTERN.

The following figure shows how to use styles to define different kinds of line symbols.

• PATTERN usage is demonstrated in the 2nd, 3rd, 4th and 5th symbol from the bottom in the left column.

• GAP usage is demonstrated in the 2nd symbol from the bottom in the left column and all the symbols in the right
column.

• negative GAP value usage is demonstrated in the all the symbols in the right column, except for the one at the
bottom.

• INITIALGAP usage is demonstrated in the 2nd and 5th symbol from the bottom in the left column.

• STYLE OFFSET usage is demonstrated in the 5th symbol from the bottom in the right column

Below you will find the SYMBOLs and STYLEs that were used to produce the line symbols in “Construction of Line
Symbols”. The LAYERs are ordered from bottom to top of the figure.

Styles and symbols for lines
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Fig. 5: Construction of Line Symbols

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

SYMBOL
NAME "P"
TYPE truetype
FONT "arial"
CHARACTER "P"

END # SYMBOL

SYMBOL
NAME "vertline"
TYPE vector
FILLED true
POINTS
0 0
0 10
2.8 10

(continues on next page)
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2.8 0
0 0

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

SYMBOL
NAME "o-flag-trans"
TYPE pixmap
IMAGE "o-flag-trans.png"

END # SYMBOL

######## Left column ###############

LAYER # Simple line
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 5
25 10
45 10
35 5

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6.5

END # STYLE
END # CLASS

END # LAYER

LAYER # Dashed line with symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 15
25 20
45 20
35 15

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 5.0
PATTERN 40 10 END

END # STYLE
STYLE
SYMBOL "circlef"

(continues on next page)
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COLOR 0 0 0
SIZE 8
INITIALGAP 20
GAP 50

END
END # CLASS

END # LAYER

LAYER # Dashed line, varying
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 25
25 30
45 30
35 25

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 5.0
LINECAP round #[butt|round|square|triangle]
LINEJOIN miter #[round|miter|bevel]
LINEJOINMAXSIZE 3
PATTERN 40 17 0 17 0 17 0 17 END

END # STYLE
END # CLASS

END # LAYER

LAYER # Line dash overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 35
25 40
45 40
35 35

END # Points
END # Feature
CLASS
STYLE
COLOR 102 102 102
WIDTH 4.0

END # STYLE
STYLE
COLOR 255 255 255
WIDTH 2.0
LINECAP BUTT
PATTERN 8 12 END

(continues on next page)
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END # STYLE
END # CLASS

END # LAYER

LAYER # Line dashed with dashed overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 45
25 50
45 50
35 45

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 16.0
PATTERN 40 20 20 20 10 20 END

END # STYLE
STYLE
COLOR 209 66 0
WIDTH 12.0
INITIALGAP 2
PATTERN 36 24 16 24 6 24 END

END # STYLE
END # CLASS

END # LAYER

LAYER # Line overlay - 3
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 55
25 60
45 60
35 55

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 17.0

END # STYLE
STYLE
COLOR 209 66 0
WIDTH 11.0

END # STYLE
STYLE
COLOR 0 0 0

(continues on next page)
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WIDTH 1.0
END # STYLE

END # CLASS
END # LAYER

######## right column ############

LAYER # Line - ellipse overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 5
70 10
90 10
80 5

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 3.6

END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "circlef"
SIZE 10
GAP 42

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 42

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 15
70 20
90 20
80 15

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0

(continues on next page)
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WIDTH 2.8
END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "vertline"
SIZE 10.0
ANGLE 30
GAP -50

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 50

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - font overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 25
70 30
90 30
80 25

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE
COLOR 102 0 0
SYMBOL "P"
SIZE 20
GAP -30

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE

(continues on next page)
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FEATURE
POINTS
50 35
70 40
90 40
80 35

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE
COLOR 102 0 0
SYMBOL "o-flag-trans"
SIZE 20
GAP -30

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 45
70 50
90 50
80 45

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE
COLOR 102 0 0
SYMBOL "o-flag-trans"
SIZE 20
GAP -30
OFFSET -10 -99

END # STYLE
STYLE

(continues on next page)
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COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE
END # CLASS

END # LAYER

LINECAP

By default, all lines (and patterns) will be drawn with rounded ends (extending the lines slightly beyond their ends).
This effect gets more obvious the larger the width of the line is. It is possible to alter this behaviour using the LINECAP
parameter of the STYLE. LINECAP butt will give butt ends (stops the line exactly at the end), with no extension of the
line. LINECAP square will give square ends, with an extension of the line. LINECAP round is the default.

LINEJOIN

The different values for the parameter LINEJOIN have the following visual effects. Default is round. miter will follow
line borders until they intersect and fill the resulting area. none will render each segment using linecap butt. The figure
below illustrates the different linejoins.

Fig. 6: Different kinds of linejoins

LINEJOINMAXSIZE (only relevant for LINEJOIN miter)

Specify the maximum length of miter linejoin factor m (see the figure below). The value is a multiplication factor
(default 3).

The max length of the miter join is calculated as follows (d is the line width, specified with the WIDTH parameter of
the STYLE):

m_max = d * LINEJOINMAXSIZE

If m > m_max, then the connection length will be set to m_max.
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Fig. 7: Miter linejoin

Use of the OFFSET parameter

In STYLE, an OFFSET parameter can be set to shift symbols in the X and Y direction. The displacement is not
influenced by the direction of the line geometry. Therefore the point symbols used for styling are all shifted in the same
direction, independent of the direction of the line (as defined in style number 2 in the map file example below - red line
in the map image). A positive X value shifts to the right. A positive Y value shifts downwards.

To generate lines that are shifted relative to the original lines, -99 has to be used for the Y value of the OFFSET. Then
the X value defines the distance to the line from the original geometry (perpendicular to the line). A positive X value
will shift to the right (when viewed in the direction of the line), a negative X value will shift to the left.

The example below shows how OFFSET works with the use of -99 (blue and green lines) and without the use of -99
(red line). The thin black line shows the location of the line geometry.

Fig. 8: Use of the OFFSET parameter with lines - map image

LAYER #
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 20

(continues on next page)
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280 160
280 20
160 20
160 60

END # Points
END # Feature
CLASS
STYLE # no offset
COLOR 0 0 0 # black
WIDTH 1

END # STYLE
STYLE # simple offset left and down
COLOR 255 0 0 # red
WIDTH 2
OFFSET -8 12

END # STYLE
STYLE # left offset rel. to line direction
COLOR 0 0 255 # blue
WIDTH 5
OFFSET -16 -99

END # STYLE
STYLE # right offset rel. to line direction
COLOR 0 255 0 # green
WIDTH 5
OFFSET 16 -99

END # STYLE
END # CLASS

END # LAYER

Asymmetrical line styling with point symbols

Line number 2 and 5 from the bottom in the right column of the “Construction of Line Symbols” figure are examples
of asymmetrical line styling using a point symbol. This can be achieved either by using an OFFSET (with a Y value
of -99), or by using ANCHORPOINT, as described in the tricks section below. Line number 2 from the bottom can
be produced using ANCHORPOINT - this is the best method for placing symbols on lines. Line number 5 from the
bottom is produced using STYLE OFFSET. As can be seen, the symbols are here rendered on the offset line, meaning
that at sharp bends, some symbols will be placed far away from the line.

Area Symbols

Areas (polygons) can be filled with full colour. Areas can also be filled with symbols to create for instance hatches and
graticules.

The symbols are by default used as tiles, and rendered (without spacing) one after the other in the x and y direction,
filling the whole polygon.

If the SIZE parameter is used in the STYLE, the symbols will be scaled to the specified height.

The GAP parameter of the STYLE can be used to increase the spacing of the symbols.

The AGG renderer uses anti-aliasing by default, so edge effects around the symbols can occur.
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Hatch fill

Simple line hatches (e.g. horizontal, vertical and diagonal) can be created by filling the polygon with a hatch symbol.

Fig. 9: Hatch examples

The SIZE parameter in the STYLE that uses a SYMBOL of type hatch specifies the distance from center to center
between the lines (the default is 1). The WIDTH parameter specifies the width of the lines in the hatch pattern (default
is 1). The ANGLE parameter specifies the direction of the lines (default is 0 - horizontal lines). Since version 6.2, the
PATTERN parameter can be used to create hatches with dashed lines.

The figure demonstrates the use of SIZE (bottom left); WIDTH (bottom right); ANGLE, PATTERN and SIZE (top left);
and overlay (top right) of hatches.

The code below shows excerpts of the map file that was used to produce the figure.

First, the SYMBOL definition:

SYMBOL
NAME "hatchsymbol"
TYPE hatch

END

Then the CLASS definitions:

LAYER # hatch
...
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10

END # STYLE
(continues on next page)
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END # CLASS
END # LAYER

LAYER # hatch with angle and pattern
...
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10
WIDTH 3
ANGLE 45
PATTERN 20 10 10 10 END

END # STYLE
END # CLASS
END # LAYER

LAYER # hatch with wide lines
...
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 0
SIZE 10
WIDTH 5

END # STYLE
END # CLASS
END # LAYER

LAYER # cross hatch
...
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 255 153 0
SIZE 10
WIDTH 4

END # STYLE
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 255
SIZE 20
ANGLE 90

END # STYLE
END # CLASS
END # LAYER
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Polygon fills with symbols of TYPE pixmap

Polygons can be filled with pixmaps.

Note: If the STYLE SIZE parameter is different from the image height of the pixmap, there can be rendering artifacts
around the pixmaps (visible as a grid with the “background” colour).

Pixmap symbols can be rotated using the ANGLE parameter, but for polygon fills, this produces strange effects, and is
not recommended.

To create complex area symbols, e.g. with defined distances between single characters or hatches with broad lines,
pixmap fill is probably the best option. Depending on the desired pattern you have to generate the raster image with
high precision using a graphical editor. The figure below is an example of how to obtain a regular allocation of symbols
with defined spacing.

Fig. 10: Raster image for a regular symbol fill

You can use other shapes than circles. B defines the width and H the height of the raster image. For a regular arrange-
ment of symbols in a 45 degree angle B = H. For symbols, which are regularly arranged in parallel and without offset
between each other one centered symbol with the same x and y distances to the imageborder is enough.

The following figure shows an example of how you can design a pixmap to produce a hatch with wide lines.

To create a 45 degree hatch use:

B = H and x = y

Note: When using the MapServer legend, observe that each raster pixmap is displayed only once in the original size
in the middle of the legend box.

The example below shows some pixmap symbols which can be used as area symbols with transparency. The raster
images were created using FreeHand, finished with Photoshop and exported to PNG with special attention to the colour
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Fig. 11: Raster image for a hatched fill

palette.

Table 2: Construction of a horizontally arranged area symbol

CLASS section SYMBOL definition

CLASS
STYLE
COLOR 255 255 0

END
STYLE
SYMBOL "in_the_star"

END
STYLE
OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_the_star"
TYPE PIXMAP
IMAGE "stern.png"
TRANSPARENT 8

END

Fig. 12: Polygon fill - regular grid pattern
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Table 3: Construction of a diagonally arranged area symbol

CLASS section SYMBOL definition

CLASS
STYLE
SYMBOL "in_point1"

END
STYLE
OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_point1"
TYPE PIXMAP
IMAGE "flaeche1_1.png"
TRANSPARENT 13

END

Fig. 13: Polygon fill - diagonal pattern

Table 4: Construction of a hatch

CLASS section SYMBOL definition

CLASS
STYLE
COLOR 255 255 0

END
STYLE
SYMBOL "in_hatch"

END
STYLE
OUTLINECOLOR 0 0 0
WIDTH 1

END
END

SYMBOL
NAME "in_hatch"
TYPE PIXMAP
IMAGE "schraffur.png"
TRANSPARENT 2

END

Fig. 14: Polygon fill - hatch
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Polygon fills with symbols of TYPE vector

Polygons can be filled with symbols of TYPE vector. As for the other symbol fills, the pattern will be generated by
using the specified symbol for the tiles. The bounding box of the symbol is used when tiling.

Creating vector symbols for polygon fills is done in much the same way as for pixmap symbols. Precision is necessary
to get nice symmetrical symbols.

The upper left corner of the bounding box of a symbol of TYPE vector is always (0, 0) in the symbol’s coordinate
system. The lower right corner of the bounding box is determined by the maximum x and y values of the symbol
definition (POINTS parameter). The fact that the upper left corner always is at (0,0) makes it convenient to construct
symbols such as the dash signature found as number two from the bottom in the centre column of the example below.

Both polygon (FILLED true) and line (FILLED false) vector symbols can be used. For line symbols, the WIDTH
parameter of the STYLE will give the line width and the SIZE parameter will specify the height of the symbol.

Note: For vector line symbols (FILL off), if a width greater than 1 is specified, the lines will grow to extend outside
the original bounding box of the symbol. The parts that are outside of the bounding box will be cut away.

STYLE ANGLE can be used for polygon fills, but will only rotate each individual symbol, not the pattern as a whole.
It is therefore quite demanding to generate rotated patterns.

Below you will find some examples of vector symbols used for polygon fills. The polygon fill is accompanied by the
vector symbol used for the fill. The center of the vector symbol is indicated with a red dot.

Fig. 15: Polygon fills - vector
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Excerpts from the map file for the polygon fill vector examples above

First, the LAYERs

LAYER # chess board
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
5 5
5 25
45 25
45 5
5 5

END # Points
END # Feature
CLASS
STYLE
SYMBOL "chess"
COLOR 0 0 0
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # x - line
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
5 30
5 50
45 50
45 30
5 30

END # Points
END # Feature
CLASS
STYLE
SYMBOL "x-line"
COLOR 0 0 0
WIDTH 5
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # v polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
5 55

(continues on next page)
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5 75
45 75
45 55
5 55

END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # Circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
5 80
5 100
45 100
45 80
5 80

END # Points
END # Feature
CLASS
STYLE
SYMBOL "circlef"
COLOR 0 0 0
SIZE 20
GAP 25

END # STYLE
END # CLASS

END # LAYER

LAYER # x polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 5
55 25
95 25
95 5
55 5

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0

(continues on next page)
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SYMBOL "x-poly-fill"
SIZE 35

END # STYLE
END # CLASS

END # LAYER

LAYER # indistinct marsh
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 30
55 50
95 50
95 30
55 30

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25

END # STYLE
END # CLASS

END # LAYER

LAYER # diagonal circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 55
55 75
95 75
95 55
55 55

END # Points
END # Feature
CLASS
STYLE
COLOR 255 230 51
SYMBOL "diag_dots"
SIZE 30

END # STYLE
END # CLASS

END # LAYER

LAYER # diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON

(continues on next page)
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FEATURE
POINTS
55 80
55 100
95 100
95 80
55 80

END # Points
END # Feature
CLASS
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 102

END # STYLE
END # CLASS

END # LAYER

LAYER # v line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
100 5
100 25
140 25
140 5
100 5

END # Points
END # Feature
CLASS
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 30
GAP 45

END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "v-line"
LINEJOIN miter
LINECAP butt
SIZE 35
WIDTH 10
GAP 45

END # STYLE
END # CLASS

END # LAYER

LAYER # indistinct marsh + diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON

(continues on next page)
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FEATURE
POINTS
100 30
100 50
140 50
140 30
100 30

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25

END # STYLE
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 0
OPACITY 75

END # STYLE
END # CLASS

END # LAYER

LAYER # x line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
100 55
100 75
140 75
140 55
100 55

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "circle"
WIDTH 5
SIZE 20
GAP 30

END # STYLE
STYLE
COLOR 0 204 0
SYMBOL "x-line"
SIZE 10
WIDTH 3
GAP 30

END # STYLE
END # CLASS

(continues on next page)
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END # LAYER

Then the SYMBOLs:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "circle"
TYPE ellipse
FILLED false
POINTS
10 10

END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 0
5 10
10 0

END
END

SYMBOL
NAME "v-poly"
TYPE vector
FILLED false
FILLED true
POINTS
0 0
3.5 8
7 0
5.2 0
3.5 4
1.8 0
0 0

END
END

SYMBOL
NAME "x-line"
TYPE vector
POINTS

(continues on next page)
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0 0
1 1
-99 -99
0 1
1 0

END
END

SYMBOL
NAME "chess"
TYPE vector
FILLED true
POINTS
0 0
10 0
10 10
0 10
0 0
-99 -99
10 10
20 10
20 20
10 20
10 10

END
END

SYMBOL
NAME "x-poly-fill"
TYPE vector
FILLED true
POINTS
0 1.131
0 0
1.131 0
4.566 3.434
8 0
9.131 0
9.131 1.131
5.697 4.566
9.131 8
9.131 9.131
8 9.131
4.566 5.697
1.131 9.131
0 9.131
0 8
3.434 4.566
0 1.131

END # POINTS
END # SYMBOL

(continues on next page)
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SYMBOL
NAME "ind_marsh_poly"
TYPE vector
FILLED true
POINTS
# Half line
0 2
4.5 2
4.5 3
0 3
0 2
-99 -99
# Half line
7 2
11.5 2
11.5 3
7 3
7 2
-99 -99
# Hole line
1.25 5
10.25 5
10.25 6
1.25 6
1.25 5

END
END

SYMBOL
NAME "diag_dots"
TYPE vector
FILLED true
POINTS
# Central circle:
0.7450 0.4500
0.7365 0.5147
0.7115 0.5750
0.6718 0.6268
0.6200 0.6665
0.5597 0.6915
0.4950 0.7000
0.4303 0.6915
0.3700 0.6665
0.3182 0.6268
0.2785 0.5750
0.2535 0.5147
0.2450 0.4500
0.2535 0.3853
0.2785 0.3250
0.3182 0.2732
0.3700 0.2335
0.4303 0.2085

(continues on next page)
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0.4950 0.2000
0.5597 0.2085
0.6200 0.2335
0.6718 0.2732
0.7115 0.3250
0.7365 0.3853
0.7450 0.4500
-99 -99
0.25 0.0
0.2415 0.0647
0.2165 0.1250
0.1768 0.1768
0.1250 0.2165
0.0647 0.2415
0.0 0.25
0.0 0.0
0.25 0.0
-99 -99
1 0.25
0.9252 0.2415
0.8649 0.2165
0.8132 0.1768
0.7734 0.1250
0.7485 0.0647
0.74 0.0
1 0.0
1 0.25
-99 -99
0.74 1
0.7485 0.9252
0.7734 0.8649
0.8132 0.8132
0.8649 0.7734
0.9252 0.7485
1 0.74
1 1
0.74 1
-99 -99
0.0 0.74
0.0647 0.7485
0.1250 0.7734
0.1768 0.8132
0.2165 0.8649
0.2415 0.9252
0.25 1
0.0 1
0.0 0.74

END
END

SYMBOL
NAME "diag_holes"

(continues on next page)
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TYPE vector
FILLED true
POINTS
0.0 0.0
# Left half circle
0.0 0.24
0.0647 0.2485
0.1250 0.2734
0.1768 0.3132
0.2165 0.3649
0.2415 0.4252
0.25 0.5
0.2415 0.5647
0.2165 0.6250
0.1768 0.6768
0.1250 0.7165
0.0647 0.7415
0.0 0.75

0.0 1.0
# Bottom half circle
0.24 1
0.2485 0.9252
0.2734 0.8649
0.3132 0.8132
0.3649 0.7734
0.4252 0.7485
0.5 0.74
0.5647 0.7485
0.6250 0.7734
0.6768 0.8132
0.7165 0.8649
0.7415 0.9252
0.75 1

1.0 1.0
# Right half circle
1 0.75
0.9252 0.7415
0.8649 0.7165
0.8132 0.6768
0.7734 0.6250
0.7485 0.5647
0.74 0.5
0.7485 0.4252
0.7734 0.3649
0.8132 0.3132
0.8649 0.2734
0.9252 0.2485
1 0.24

1.0 0.0

(continues on next page)
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# Top half circle
0.75 0.0
0.7415 0.0647
0.7165 0.1250
0.6768 0.1768
0.6250 0.2165
0.5647 0.2415
0.5 0.25
0.4252 0.2415
0.3649 0.2165
0.3132 0.1768
0.2734 0.1250
0.2485 0.0647
0.24 0.0

0.0 0.0
END

END

Polygon outlines

Polygon outlines can be created by using OUTLINECOLOR in the STYLE. WIDTH specifies the width of the outline.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3

END # STYLE

Dashed polygon outlines can be achieved by using OUTLINECOLOR, WIDTH and PATTERN (together with LINECAP,
LINEJOIN and LINEJOINMAXSIZE). For more information on the use of PATTERN, see Use of the PATTERN and
GAP parameters.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3
PATTERN
10 5

END # PATTERN
LINECAP BUTT

END # STYLE

For some symbol types, it is even possible to style polygon outlines using OUTLINECOLOR, SYMBOL and GAP.

STYLE
OUTLINECOLOR 0 255 0
SYMBOL 'circle'
SIZE 5
GAP 15

END # STYLE
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Examples (MapServer 4)

The examples in this section were made for MapServer 4.

Note: Many of these symbols will not work with later versions of MapServer , but they contain a lot of useful symbol
definitions and are therefore provided as reference.

The symbols were created with map files and symbol files (download_old_symbols). If you want to use these MAP
files please note, that your MapServer must at least be able to handle 50 symbols. Otherwise you will get an error while
loading the symbol files.

Basic Symbols
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Complex Symbols
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Tricks

Changing the center of a point symbol

MapServer does all transformations (offset, rotation) with respect to the symbol anchor point. By default, the anchor
point is calculated from the symbol’s bounding box. In some cases it can be useful to change the anchor point of a
symbol. Since version 6.2, this can be done using the SYMBOL ANCHORPOINT.

Here are some examples of what can be achieved by using the ANCHORPOINT mechanisms for point symbols and
decorated lines. There are three examples in the illustration, and each example shows the result with and without the
use of ANCHORPOINT. At the top, arrows are added to lines using GEOMTRANSFORM start / end. In the middle,
tags are added to lines using GAP and ANGLE. At the bottom, a point symbol is shifted and rotated. The red dots
represent the center points, and the blue dots the offsets.

Below you will find three tables that contain the SYMBOLs and the STYLE mechanisms that were used to generate the
shifted symbols in the illustration.
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Fig. 16: Shifting trick
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Table 5: Symbol tricks - shift - arrows

SYMBOLs LAYER STYLEs

SYMBOL
NAME "arrow-start"
TYPE vector
FILLED true
POINTS
0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2
0 0.4

END # POINTS
ANCHORPOINT 0 0.5

END # SYMBOL
SYMBOL
NAME "arrow-end"
TYPE vector
FILLED true
POINTS
0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2
0 0.4

END # POINTS
ANCHORPOINT 1 0.5

END # SYMBOL

LAYER # Line
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 80
40 85
60 85
70 80

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 15
LINECAP butt

END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 0 255 0
SYMBOL "arrow-start"
SIZE 15.0
ANGLE AUTO

END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3

END # STYLE
STYLE
GEOMTRANSFORM "end"
COLOR 0 255 0
SYMBOL "arrow-end"
SIZE 15.0
ANGLE AUTO

END # STYLE
STYLE
GEOMTRANSFORM "end"
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3

END # STYLE
END # CLASS

END # LAYER
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Table 6: Symbol tricks - shift - asymmetrical tags

SYMBOLs LAYER STYLEs

SYMBOL
NAME "vert-line-shift"
TYPE vector
POINTS
0 0
0 10

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

SYMBOL
NAME "vert-line"
TYPE vector
POINTS
0 0
0 10

END # POINTS
END # SYMBOL

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 50
40 55
60 55
70 50

END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "vert-line-shift"
SIZE 20.0
WIDTH 3
ANGLE 30
GAP -50

END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 50

END # STYLE
END # CLASS

END # LAYER
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Table 7: Symbol tricks. Unshifted symbol (top) and shifted symbol

SYMBOLs

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 0
5 10
10 0

END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line-shift"
TYPE vector
POINTS
0 0
5 10
10 0

END # POINTS
ANCHORPOINT 0.5 0

END # SYMBOL

Shifting combined with rotation can also be used to good effect:
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Table 8: Symbol tricks - shift plus rotation

SYMBOLs LAYER STYLEs

SYMBOL
NAME "circle"
TYPE ellipse
POINTS
1 1

END # POINTS
FILLED true
ANCHORPOINT 0.5 0.5

END # SYMBOL

SYMBOL
NAME "stick"
TYPE vector
POINTS
-0.5 0.5
0.5 0.5
0.51223 0.42274
0.54774 0.35305
0.60305 0.29774
0.67274 0.26223
0.75 0.25
0.82725 0.26223
0.89694 0.29774
0.95225 0.35305
0.98776 0.42274
1 0.5
0.98776 0.57725
0.95225 0.64694
0.89694 0.70225
0.82725 0.73776
0.75 0.75
0.67274 0.73776
0.60305 0.70225
0.54774 0.64694
0.51223 0.57725
0.5 0.5
-0.5 0.5

END # POINTS
FILLED true
ANCHORPOINT 0 0.5

END # SYMBOL

LAYER # Hole
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS
20 20

END # POINTS
END # FEATURE
FEATURE
POINTS
80 30

END # POINTS
END # FEATURE
FEATURE
POINTS
50 80

END # POINTS
END # FEATURE
CLASS
STYLE
SYMBOL "circle"
SIZE 25
COLOR 102 102 102
OUTLINECOLOR 51 51 102

END
END

END # layer

LAYER # Methods
TYPE POINT
STATUS DEFAULT
PROCESSING "ITEMS=method"
FEATURE
POINTS
20 20

END # POINTS
ITEMS "1"

END # FEATURE
FEATURE
POINTS
20 20

END # POINTS
ITEMS "5"

END # FEATURE
FEATURE
POINTS
20 20

END # POINTS
ITEMS "8"

END # FEATURE
FEATURE
POINTS
20 20

END # POINTS
ITEMS "13"

END # FEATURE
FEATURE
POINTS
80 30

END # POINTS
ITEMS "8"

END # FEATURE

...

CLASSITEM "method"
CLASS
EXPRESSION "1"
STYLE
SYMBOL "stick"

SIZE 10
COLOR 102 0 0
OUTLINECOLOR 102 102 102
ANGLE 0

END # STYLE
END # CLASS

CLASS
EXPRESSION "2"
STYLE
SYMBOL "stick"
SIZE 10
COLOR 204 0 0
OUTLINECOLOR 102 102 102
ANGLE 36

END # STYLE
END # CLASS

...

CLASS
EXPRESSION "14"
STYLE
SYMBOL "stick"
SIZE 10
COLOR 0 204 204
OUTLINECOLOR 102 102 102
ANGLE 324
END # STYLE

END # CLASS
END # layer
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Mapfile changes related to symbols

Version 6.2

The ANCHORPOINT SYMBOL parameter was added.

The INITIALGAP STYLE parameter was added.

The GAP STYLE parameter’s behaviour was modified to specify center to center spacing.

PATTERN support for symbols of TYPE hatch.

Version 6.0

Parameters related to styling was moved from the SYMBOL element to the STYLE element of CLASS (in LAYER):

PATTERN (introduced in 5.0, previously called STYLE), GAP, LINECAP, LINEJOIN, LINEJOINMAX-
SIZE

The SYMBOL TYPE cartoline is no longer needed, and therefore not available in version 6.0.

Current Problems / Open Issues

GAP - PATTERN incompatibility

Creating advanced line symbols involving dashed lines is difficult due to the incompatibility of the dashed line mech-
anisms (PATTERN) and the symbol on line placement mechanisms (GAP). If GAP could be a list instead of a single
number (and perhaps renaming it to GAPS or DISTANCES), it would solve the issue, since we already have the IN-
TIALGAP parameter (that specifies the distance to the first symbol on the line - added in ersion 6.2).

GAP - not full support for 2D

GAP does not support two dimensions (relevant for polygon fills), so the same gap will have to be used for for the x
and the y directions. The introduction of new parameters - GAPX and GAPY could be a solution to this.

The End

We hope that this document will help you to present your data in a cartographically nice manner with MapServer and
explains some basics and possibilities of the concept of MapServer as well as some weaknesses. It would be great to
put together a cartographical symbols library for the profit of everyone. This especially concerns truetype fonts, which
have been developed for some projects and contain some typical signatures for cartographical needs.

You can also view the discussion paper for the improvement of the MapServer Graphic-Kernel (German only).
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4.1.2 CLASS

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string]

Deprecated since version 6.0: Use CLASS STYLEs.

COLOR [r] [g] [b] | [hexadecimal string]

Deprecated since version 6.0: Use CLASS STYLEs.

DEBUG [on|off]
Enables debugging of the class object. Verbose output is generated and sent to the standard error output
(STDERR) or the MapServer logfile if one is set using the LOG parameter in the WEB object.

See also:
Debugging MapServer

EXPRESSION [string]
Four types of expressions are now supported to define which class a feature belongs to: String comparisons,
regular expressions, logical expressions, and string functions (see Expressions). If no expression is given, then
all features are said to belong to this class.

• String comparisons are case sensitive and are the fastest to evaluate. No special delimiters are necessary
although strings must be quoted if they contain special characters. (As a matter of good habit, it is recom-
mended that you quote all strings). The attribute to use for comparison is defined in the LAYER CLASSITEM
parameter.

• Regular expression are limited using slashes (/regex/). The attribute to use for comparison is defined in the
LAYER CLASSITEM parameter.

• Logical expressions allow the building of fairly complex tests based on one or more attributes. Logical
expressions are delimited by parentheses “(expression)”. Attribute names are delimited by square brack-
ets “[ATTRIBUTE]”. Attribute names are case sensitive and must match the items in the shapefile. For
example:

EXPRESSION ([POPULATION] > 50000 AND '[LANGUAGE]' eq 'FRENCH')

The following logical operators are supported: =, >, <, <=, >=, =, or, and, lt, gt, ge, le, eq, ne, in, ~, ~*. As
one might expect, this level of complexity is slower to process.

• One string function exists: length(). It computes the length of a string:

EXPRESSION (length('[NAME_E]') < 8)

String comparisons and regular expressions work from the classitem defined at the layer level. You may mix
expression types within the different classes of a layer.

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.

GROUP [string]
Allows for grouping of classes. It is only used when a CLASSGROUP at the LAYER level is set. If the CLASS-
GROUP parameter is set, only classes that have the same group name would be considered at rendering time.
An example of a layer with grouped classes might contain:

LAYER
...
CLASSGROUP "group1"

(continues on next page)
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(continued from previous page)

...
CLASS
NAME "name1"
GROUP "group1"
...

END
CLASS
NAME "name2"
GROUP "group2"
...

END
CLASS
NAME "name3"
GROUP "group1"
...

END
...

END # layer

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.

KEYIMAGE [filename]
Full filename of the legend image for the CLASS. This image is used when building a legend (or requesting a
legend icon via MapScript or the CGI application).

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.

LABEL
Signals the start of a LABEL object. A class can contain multiple labels (since MapServer 6.2).

LEADER
Added in version 6.2.

Signals the start of a LEADER object. Use this along with a LABEL object to create label leader lines.

MAXSCALEDENOM [double]
Minimum scale at which this CLASS is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
MAXSCALE parameter.

See also:
Map Scale

MAXSIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

METADATA
This keyword allows for arbitrary data to be stored as name value pairs.

MINSCALEDENOM [double]
Maximum scale at which this CLASS is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
MINSCALE parameter.
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See also:
Map Scale

MINFEATURESIZE [integer]
Minimum feature size (in pixels) at which a feature should be rendered.

MINSIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

NAME [string]
Name to use in legends for this class. If not set class won’t show up in legend.

OUTLINECOLOR [r] [g] [b] | [hexadecimal string]

Deprecated since version 6.0: Use CLASS STYLEs.

SIZE [integer]

Deprecated since version 6.0: Use CLASS STYLEs.

STATUS [on|off]
Sets the current display status of the class. Default turns the class on.

STYLE
Signals the start of a STYLE object. A class can contain multiple styles. Multiple styles can be used create
complex symbols (by overlay/stacking). See Cartographical Symbol Construction with MapServer for more
information on advanced symbol construction.

SYMBOL [integer|string|filename]

Deprecated since version 6.0: Use CLASS STYLEs.

TEMPLATE [filename]
Template file or URL to use in presenting query results to the user. See Templating for more info.

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.

TEXT [string|expression]
Text to label features in this class with. This overrides values obtained from the LAYER LABELITEM. The string
can contain references to feature attributes. This allows you to concatenate multiple attributes into a single label.
You can for example concatenate the attributes FIRSTNAME and LASTNAME like this:

TEXT '[FIRSTNAME] [LASTNAME]'

More advanced Expressions can be used to specify the labels. Since version 6.0, there are functions available for
formatting numbers:

TEXT ("Area is: " + tostring([area],"%.2f"))

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.

TITLE [string]
Text used for legend labelling.

Note: This attribute can be replaced using runtime substitution. See Run-time Substitution.
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VALIDATION
Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1.3 CLUSTER

Table of Contents

• CLUSTER

– Description

– Supported Layer Types

– Mapfile Parameters

– Supported Processing Options

– Mapfile Snippet

– Feature attributes

– Handling GetFeatureInfo

– PHP MapScript Usage

– Example: Clustering Railway Stations

Description

Since version 6.0, MapServer has the ability to combine multiple features from a point layer into single (aggregated)
features based on their relative positions. Only POINT layers are supported. This feature was added through rfc69.

Supported Layer Types

Only layers of TYPE POINT are supported.

Mapfile Parameters

MAXDISTANCE [double]
Specifies the distance of the search region (rectangle or ellipse) in pixel positions.

REGION [string]
Defines the search region around a feature in which the neighbouring features are negotiated. Can be ‘rectangle’
or ‘ellipse’.

BUFFER [double]
Defines a buffer region around the map extent in pixels. Default is 0. Using a buffer allows that the neighbouring
shapes around the map are also considered during the cluster creation.

GROUP [string]
This expression evaluates to a string and only the features that have the same group value are negotiated. This
parameter can be omitted. The evaluated group value is available in the ‘Cluster_Group’ feature attribute.
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FILTER [string]
We can define the FILTER expression filter some of the features from the final output. This expression evaluates
to a boolean value and if this value is false the corresponding shape is filtered out. This expression is evaluated
after the the feature negotiation is completed, therefore the ‘Cluster_FeatureCount’ parameter can also be used,
which provides the option to filter the shapes having too many or to few neighbors within the search region.

Supported Processing Options

The following processing options can be used with the cluster layers:

CLUSTER_GET_ALL_SHAPES=ON
Return all shapes contained by a cluster instead of a single shape. This setting affects both the drawing and
the query processing (especially useful for GetFeatureInfo requests). Example usage: PROCESSING “CLUS-
TER_GET_ALL_SHAPES=ON”

CLUSTER_KEEP_LOCATIONS=ON
Set whether the location of the cluster shape should be preserved (setting this will show all points in the cluster).
Example usage: PROCESSING “CLUSTER_KEEP_LOCATIONS=ON”

CLUSTER_ALGORITHM=SIMPLE
From MapServer 6.2 we can choose a more simplified clustering algorithm which performs better that the original
(more accurate) approach. usage: PROCESSING “CLUSTER_ALGORITHM=SIMPLE” For more information
see:

Bug 5503

CLUSTER_USE_MAP_UNITS=ON
Provide scale independent clustering (maxdistance and the buffer parameters are specified in map units). Exam-
ple usage: PROCESSING “CLUSTER_USE_MAP_UNITS=ON”

ITEMS
Specify the feature attributes in the cluster to expose during a query, separated by a comma. Example usage:
PROCESSING “ITEMS=attribute_x,attribute_y,attribute_z”

Mapfile Snippet

LAYER
NAME "my-cluster"
TYPE POINT
...
CLUSTER
MAXDISTANCE 20 # in pixels
REGION "ellipse" # can be rectangle or ellipse
GROUP (expression) # an expression to create separate groups for each value
FILTER (expression) # a logical expression to specify the grouping condition

END
LABELITEM "Cluster_FeatureCount"
CLASS
...
LABEL
...
END

END
...

END
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Feature attributes

The clustered layer itself provides the following aggregated attributes:

1. Cluster_FeatureCount - count of the features in the clustered shape

2. Cluster_Group - The group value of the cluster (to which the group expression is evaluated)

Note: If you are using MapServer version 6.x these attributes contain a “:” in their names instead, such
as Cluster:FeatureCount & Cluster:Group. The “_” was changed in MapServer 7.

These attributes (in addition to the attributes provided by the original data source) can be used to configure the labels
of the features and can also be used in expressions. The ITEMS processing option can be used to specify a subset of
the attributes from the original layer in the query operations according to the user’s preference.

We can use simple aggregate functions (Min, Max, Sum, Count) to specify how the clustered attribute should be
calculated from the original attributes. The aggregate function should be specified as a prefix separated by ‘:’ in the
attribute definition, like: [Max:itemname]. If we don’t specify aggregate functions for the source layer attributes, then
the actual value of the cluster attribute will be non-deterministic if the cluster contains multiple shapes with different
values. The Count aggregate function in fact provides the same value as Cluster_FeatureCount.

Handling GetFeatureInfo

If you want to allow WMS GetFeatureInfo on all features inside a cluster, you must 1) set the “wms_include_items”
metadata as usual, and 2) set the following PROCESSING parameters in the layer:

PROCESSING "CLUSTER_GET_ALL_SHAPES=ON"
PROCESSING "ITEMS=attribute_x,attribute_y,attribute_z"

So your layer might look like the following:

LAYER
NAME "my-cluster"
TYPE POINT
METADATA
"wms_title" "myttitle"
"wms_include_items" "all"

END
...
CLUSTER

...
END
LABELITEM "Cluster_FeatureCount"
CLASS
...
LABEL
...
END

END
...
PROCESSING "CLUSTER_GET_ALL_SHAPES=ON"
PROCESSING "ITEMS=name,description"

END
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PHP MapScript Usage

The CLUSTER object is exposed through PHP MapScript. An example follows:

$map = ms_newMapobj("/var/www/vhosts/mysite/httpdocs/test.map");
$layer1=$map->getLayerByName("test1");
$layer1->cluster;

Example: Clustering Railway Stations

The following example uses a point datasource, in this case in KML format, to display clusters of railway stations. Two
classes are used: one to style and label the cluster, and one to style and label the single railway station.

Note: Since we can’t declare 2 labelitems, for the single railway class we use the TEXT parameter to label the station.

Mapfile Layer

####################
# Lightrail Stations
####################
SYMBOL
NAME "lightrail"
TYPE PIXMAP
IMAGE "../etc/lightrail.png"

END
LAYER

NAME "lightrail"
GROUP "default"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "lightrail-stations.kml"
DATA "lightrail-stations"
LABELITEM "Cluster_FeatureCount"
CLASSITEM "Cluster_FeatureCount"
###########################
# Define the cluster object
###########################
CLUSTER
MAXDISTANCE 50
REGION "ellipse"

END
################################
# Class1: For the cluster symbol
################################
CLASS
NAME "Clustered Lightrail Stations"
EXPRESSION ("[Cluster_FeatureCount]" != "1")
STYLE

(continues on next page)
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(continued from previous page)

SIZE 30
SYMBOL "citycircle"
COLOR 255 0 0

END
LABEL
FONT scb
TYPE TRUETYPE
SIZE 8
COLOR 255 255 255
ALIGN CENTER
PRIORITY 10
BUFFER 1
PARTIALS TRUE
POSITION cc

END
END
################################
# Class2: For the single station
################################
CLASS
NAME "Lightrail Stations"
EXPRESSION "1"
STYLE
SIZE 30
SYMBOL "lightrail"

END
TEXT "[Name]"
LABEL
FONT scb
TYPE TRUETYPE
SIZE 8
COLOR 0 0 0
OUTLINECOLOR 255 255 255
ALIGN CENTER
PRIORITY 9
BUFFER 1
PARTIALS FALSE
POSITION ur

END
END
# the following is used for a query
TOLERANCE 50
UNITS PIXELS
HEADER "../htdocs/templates/cluster_header.html"
FOOTER "../htdocs/templates/cluster_footer.html"
TEMPLATE "../htdocs/templates/cluster_query.html"

END
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Map Image

4.1.4 COMPOSITE

Background

Available since MapServer 7.0, the COMPOSITE block is used to achieve blending effects with MapServer.

Some cartographic renderings benefit from the addition of advanced blending modes, as explained in detail in Blend
Modes. This functionality is essential for more pleasant renderings of raster hillshadings over vector surfaces. It is also
useful for simulating different kinds of overprinting effects.

See also:
rfc113

Performance is affected by advanced blending (all modes except src-over).

Parameters

COMPFILTER [string]
Added in version 7.2.

Name of the compositing filter. The primary purpose is to enable soft shadow and blurring effects, although
other usages can exist or could be added in the future. Several compfilters can be placed after another to create
a combined effect. For example a blur and translate effect can be combined to make a soft shadow effect behind
a feature.

The currently available filters are:
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• blur(integer)

• translate(integer,integer)

• grayscale()

• blacken()

• whiten()

COMPOP [string]
Name of the compositing operator to use when blending the temporary image onto the main map image. See
http://en.wikipedia.org/wiki/Blend_modes. The default compositing operator is “src-over”.

Available operators are:

• clear
Both the color and the alpha of the destination are cleared. Neither the source nor the destination are
used. This is an unusual compose method that essentially ignores the overlay image completely, and
just clears the background image.

• color-burn
Divides the inverted bottom layer by the top layer, and then inverts the result. This darkens the top
layer increasing the contrast to reflect the color of the bottom layer. The darker the bottom layer, the
more its color is used.

• color-dodge
Divides the bottom layer by the inverted top layer. This lightens the bottom layer depending on the
value of the top layer: the brighter the top layer, the more its color affects the bottom layer. Blending
any color with white gives white. Blending with black does not change the image.

• contrast*

• darken
Creates a image that retains the smallest components of the foreground and background pixels. If the
foreground pixel has the components r1, g1, and b1, and the background has r2, g2, b2, the resultant
pixel is [min(r1,r2), min(g1,g2), min(b1,b2)]

• difference
Subtracts the bottom layer from the top layer or the other way round, to always get a positive value.
Blending with black produces no change, as values for all colors are 0. (The RGB value for black is
0,0,0.) Blending with white inverts the picture.

• dst
This operator does nothing. The source, or overlay image, is completely ignored and the destination,
or background image, is left unchanged. The method’s real use is as a means of ‘turning off’ an alpha
composition operation in other image operators.

• dst-atop
The part of the source lying inside of the destination is composited onto the destination.

• dst-in
The part of the destination lying inside of the source replaces the destination. Areas not overlaid are
cleared. Will remove the overlay image’s shape from the background image like a cookie cutter which
cuts out a cookie’s shape from cookie dough (result is the cookie).

• dst-out
The part of the destination lying outside of the source replaces the destination. Using the ‘cookie
dough’ metaphor of ‘dst-in’ the result of the ‘dst-out’ method is the dough that was left behind once a
cookie has been cut out. It can be used to cut holes, or take bites out of the background image, using
the shape of the overlay. Any color in the overlay is again completely ignored.

4.1. Mapfile 144



MapServer Documentation, Release 7.6.6

• dst-over
The destination is composited over the source and the result replaces the destination. Equivalent to
placing the source overlay image ‘under’ the destination. The result is that only the parts of our source
or overlay image not hidden by the destination or background image will be visible as they peek out
from underneath.

• exclusion
This is sort of an averaged difference. White on white will produce black (no difference), the same
with black on black. However grey on grey will produce a grey result. White and black naturally still
produce white (maximum difference).

• hard-light
Hard Light is a combination of Multiply and Screen, each at half strength. Hard Light effects the blend
layer’s relationship to the base layer in the same way Overlay effects the base layer’s relationship to the
blend layer.

• invert*

• invert-rgb*

• lighten
Lighten has the opposite action of Darken. It selects the maximum of each component from the fore-
ground and background pixels. If the foreground pixel has the components r1, g1, and b1, and the
background has r2, g2, b2, the resultant pixel is [max(r1,r2), max(g1,g2), max(b1,b2)]

• minus*
Subtract the colors in the source image from the destination image. When transparency is involved,
opaque areas is subtracted from any destination opaque areas.

• multiply
A simple multiply of the two images. Its formula is: [Src * Dest]. This means that if one of the images
is pure white, the result will be the other image. On the other hand if one image is black the result
will be black. Between these extremes one image will darken the destination image by the amount
given. Note that ‘Multiply’ will only darken an image, it will never brighten it. That is, it ‘attenuates’
an image toward black, which makes this compose method a ‘Burn’ style of composition.

• overlay
Overlay combines Multiply and Screen blend modes, at half strength. The parts of the top layer where
the base layer is light become lighter, the parts where the base layer is dark become darker. Areas
where the top layer are mid grey are unaffected.

• plus
The source is added to the destination and replaces the destination. This operator is useful for averaging
or a controlled merger of two images, rather than a direct overlay.

• screen
The source and destination are complemented and then multiplied and then replace the destination.
The resultant color is always at least as light as either of the two constituent colors. Screening any
color with white produces white. Screening any color with black leaves the original color unchanged.

• soft-light
Soft light is most closely related to Overlay and is only similar to Hard Light by name. Will add
highlights and shadows to an existing color image. However, the colors of the destination image are
modified to produce a softer contrast, and smoother gradient in lighting effects.

• src
The source is copied to the destination. The destination is not used as input, though it is cleared. This
operator completely replaces the background image with the overlay image. The colors and trans-
parency in the background are completely junked leaving a blank image the same size as the original
destination over which is applied the source image.
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• src-atop
The part of the source lying inside of the destination is composited onto the destination. Like ‘src-over’
but limits the result to the original shape of the background image. In other words, the alpha channel on
the destination is unchanged but the image colors are overlaid by any non-transparent parts of the source
image. If the background image is fully opaque (no transparency), this operation will act exactly like
the normal ‘src-over’ composition. It only differs when the background contains transparency which
also clips the overlay. What makes this useful is for overlaying lighting and shading effects that are
limited to the object (shape) of the destination.

• src-in
The part of the source lying inside of the destination replaces the destination.

• src-out
The part of the source lying outside of the destination replaces the destination.

• src-over
The source is composited over the destination. This is the default composite option if no other is
specified.

• xor
The part of the source that lies outside of the destination is combined with the part of the destination
that lies outside of the source. Source or Destination, but not both.

Operators marked with a star (*) will only be supported when using an AGG backends and when pixman support
is not enabled, and will fall back to “src-over” when this is not the case.

OPACITY [integer]
Sets the opacity level (or the inability to see through the layer) of all classed pixels for a given layer. Must be
between 0 to 100. A value of 100 is opaque and 0 is fully transparent.

Usage

Simple transparency / opacity is achieved by only specifying the OPACITY parameter (this achieves the same effect as
the legacy LAYER OPACITY parameter):

LAYER
COMPOSITE
OPACITY 70

END # COMPOSITE
...
END # LAYER

The darkening effect is achieved by adding the COMPOP parameter with the value darken:

LAYER
COMPOSITE
OPACITY 100
COMPOP "darken"

END # COMPOSITE
...
END # LAYER
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4.1.5 Display of International Characters in MapServer

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
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Table of Contents

• Display of International Characters in MapServer

– Credit

– Related Links

– Requirements

– How to Enable in Your Mapfile (MapServer >= 7.0)

∗ Step 1: Verify ICONV Support and MapServer Version

∗ Step 2: Verify That Your Files’ Encoding is Supported by ICONV

∗ Step 3: Add ENCODING Parameter to your LAYER Object

∗ Step 4: Test with the shp2img utility

– How to Enable in Your Mapfile (MapServer < 7.0)

∗ Add ENCODING Parameter to your LABEL Object
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Credit

Initial functionality was added to MapServer 4.4.0 as a part of a project sponsored by the Information-technology
Promotion Agency (IPA), in Japan. Project members included: Venkatesh Raghavan, Masumoto Shinji, Nonogaki
Susumu, Nemoto Tatsuya, Hirai Naoki (Osaka City University, Japan), Mario Basa, Hagiwara Akira, Niwa Makoto,
Mori Toru (Orkney Inc., Japan), and Hattori Norihiro (E-Solution Service, Inc., Japan).

Related Links

• MapServer ticket:858 (original implementation)

• RFC 103: Layer Level Character Encoding changes in MapServer 7

• MapServer ticket:4758 (MapServer 7 updates)
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Requirements

• MapServer >= 4.4.0 (MapServer >= 7.0 for layer-level encoding)

• MapServer compiled with the libiconv library

Note: In terms of map labels with international characters, since the MapServer 7.0 release, other important dependant
libaries besides libiconv are Freetype (to get information about glyph sizes), Fribidi (to handle bidirectional text), and
Harfbuzz (for text shaping).

How to Enable in Your Mapfile (MapServer >= 7.0)

The MapServer 7.0 release contained changes in how MapServer handles encoding; new in 7.0 is that encoding is
set at the LAYER level. This makes it much easier to manage having multiple layers in different encodings, in the
same mapfile. The reason for this change was that the encoding of a dataset affects the whole layer, not only the
labels. MapServer 7 will also convert any strings into UTF8 in the background, and any output (such as through OGC
GetCapabilities, GetFeature, or queries) will be returned in UTF8.

The mapfile LAYER object’s ENCODING parameter accepts the encoding name as its parameter.

MapServer uses GNU’s libiconv library to deal with encodings. The libiconv web site has a list of supported encodings.
One can also use the “iconv -l” command on a system with libiconv installed to get the complete list of supported
encodings on that specific system.

Note: The label object’s ENCODING parameter is deprecated, but some logic still exists to handle that use in that
scenario, in MapServer 7.

Step 1: Verify ICONV Support and MapServer Version

Execute mapserv -v at the commandline, and verify that your MapServer version >= 7.0 and it includes SUP-
PORTS=ICONV, such as:

> mapserv -v

MapServer version 7.7.0-dev (MS4W 4.0.4) OUTPUT=PNG OUTPUT=JPEG
OUTPUT=KML SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE
SUPPORTS=CAIRO SUPPORTS=SVG_SYMBOLS SUPPORTS=SVGCAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS SUPPORTS=POINT_Z_M SUPPORTS=PBF
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

4.1. Mapfile 148

https://www.gnu.org/software/libiconv/
https://www.freetype.org/
https://github.com/fribidi/fribidi
https://github.com/harfbuzz/harfbuzz
https://www.gnu.org/software/libiconv/


MapServer Documentation, Release 7.6.6

Step 2: Verify That Your Files’ Encoding is Supported by ICONV

Since MapServer uses the libiconv library to handle encodings, you can check the list of supported encodings here:
https://www.gnu.org/software/libiconv/

Unix users can also use the iconv -l command on a system with libiconv installed to get the complete list of supported
encodings on that specific system.

Step 3: Add ENCODING Parameter to your LAYER Object

Now you can simply add the ENCODING parameter to your mapfile LAYER object, such as:

MAP
...
LAYER
...
ENCODING "SHIFT_JIS"
CLASS
...

END #class
END #layer
END #map

Note: Make sure you save your mapfile in the “UTF-8” encoding in your text editor.

LAYER
NAME "kanji1kanji2"
DATA "chimei.shp"
STATUS DEFAULT
TYPE POINT

ENCODING "SHIFT_JIS"
LABELITEM "NAMAE"

CLASS
NAME "kanji1kanji2"
STYLE
COLOR 10 100 100

END
LABEL
TYPE TRUETYPE
FONT "pgothic"
COLOR 220 20 20
SIZE 7
POSITION CL
PARTIALS FALSE
BUFFER 3

END
END

END
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Note: The MapServer 7.6.0 release included an important fix to allow special characters such as “ä” (umlauts) in
filenames and paths in a mapfile.

Step 4: Test with the shp2img utility

• see shp2img commandline utility
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How to Enable in Your Mapfile (MapServer < 7.0)

Older MapServer versions only allowed encoding to be set at the LABEL level in the mapfile.

Add ENCODING Parameter to your LABEL Object

Add the ENCODING parameter to your mapfile LABEL object, such as:

MAP
...
LAYER
...
CLASS
...
LABEL
...
ENCODING "SHIFT_JIS"

END
END

END
END

Here is an example layer using the encoding set at the LABEL level:

LAYER
NAME "chimei"
DATA "chimei.shp"
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI"
STYLE
COLOR 10 100 100

END
LABEL
TYPE TRUETYPE
FONT "kochi-gothic"
COLOR 220 20 20
SIZE 10
POSITION CL
PARTIALS FALSE
BUFFER 0
ENCODING "SHIFT_JIS"

END
END

END
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Example Using PHP MapScript

For PHP Mapscript, the Encoding parameter is included in the LabelObj Class (for MapServer < 7), so that the encoding
parameter of a layer can be modified such as:

// Loading the php_mapscript library
dl("php_mapscript.so");

// Loading the map file
$map = ms_newMapObj("example.map");

// get the desired layer
$layer = $map->getLayerByName("chimei");

// get the layer's class object
$class = $layer->getClass(0);

// get the class object's label object
$clabel= $class->label;

// get encoding parameter
$encode_str = $clabel->encoding;
print "Encoding = ".$encode_str."\n";

// set encoding parameter
$clabel->set("encoding","UTF-8");

Notes

Note: During initial implementation, this functionality was tested using the different Japanese encoding systems:
Shift-JIS, EUC-JP, UTF-8, as well as Thai’s TIS-620 encoding system.

Examples of encodings for the Latin alphabet supported by libiconv are: ISO-8859-1 (Latin alphabet No. 1 - also
known as LATIN-1 - western European languages), ISO-8859-2 (Latin alphabet No. 2 - also known as LATIN-2 -
eastern European languages), CP1252 (Microsoft Windows Latin alphabet encoding - English and some other Western
languages).

4.1.6 Expressions

Author
Dirk Tilger

Contact
dirk at MIRIUP.DE

Author
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Contact
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Last Updated
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Contents

• Expressions

– Introduction

∗ String quotation

∗ Quotes escaping in strings

∗ Using attributes

– Expression Types

– String comparison (equality)

– Regular expression comparison

– List expressions

– “MapServer expressions”

∗ Typing

∗ Logical expressions

∗ String expressions that return a logical value

∗ Arithmetic expressions that return a logical value

∗ Spatial expressions that return a logical value (GEOS)

∗ String operations that return a string

∗ Functions that return a string

∗ String functions that return a number

∗ Arithmetic operations and functions that return a number

∗ Spatial functions that return a number (GEOS)

∗ Spatial functions that return a shape (GEOS)

∗ Temporal expressions

Introduction

As of version 6.0, expressions are used in four places:

• In LAYER FILTER to specify the features of the dataset that are to be included in the layer.

• In CLASS EXPRESSION to specify to which features of the dataset the CLASS applies to.

• In CLASS TEXT to specify text for labeling features.

• In STYLE GEOMTRANSFORM.
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String quotation

Strings can be quoted using single or double quotes:

'This is a string'
"And this is also a string"

Quotes escaping in strings

Note: Quotes escaping is not supported in MapServer versions lower than 5.0.

Starting with MapServer 5.0, if your dataset contains double-quotes, you can use a C-like escape sequence:

"National \"hero\" statue"

To escape a single quote use the following sequence instead:

"National \'hero\' statue"

Starting with MapServer 6.0 you don’t need to escape single quotes within double quoted strings and you don’t need
to escape double quotes within single quoted strings. In 6.0 you can also write the string as follows:

'National "hero" statue'
...

To escape a single quote use the following sequence instead:

"National 'hero' statue"

Using attributes

Attribute values can be referenced in the Map file and used in expressions. Attribute references are case sensitive and
can be used in the following types of expressions:

• In LAYER FILTER

• In CLASS EXPRESSION

• In CLASS TEXT

Referencing an attribute is done by enclosing the attribute name in square brackets, like this: [ATTRIBUTENAME].
Then, every occurrence of “[ATTRIBUTENAME]” will be replaced by the actual value of the attribute “ATTRIBUTE-
NAME”.

Example: The data set of our layer has the attribute “BUILDING_NAME”. We want the value of this attribute to
appear inside a string. This can be accomplished as follows (single or double quotes):

'The [BUILDING_NAME] building'

For the building which has its BUILDING_NAME attribute set to “Historical Museum”, the resulting string is:

'The Historical Museum building'
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For Raster Data layers special attributes have been defined that can be used for classification, for example:

• [PIXEL] . . . will become the pixel value as number

• [RED], [GREEN], [BLUE] . . . will become the color value for the red, green and blue component in the pixel
value, respectively.

Expression Types

Expression are used to match attribute values with certain logical checks. There are three different types of expressions
you can use with MapServer:

• String comparisons: A single attribute is compared with a string value.

• Regular expressions: A single attribute is matched with a regular expression.

• List expressions: Compare a string attribute to a list of multiple possible values

• Logical “MapServer expressions”: One or more attributes are compared using logical expressions.

String comparison (equality)

String comparison means, as the name suggests, that attribute values are checked if they are equal to some value. String
comparisons are the simplest form of MapServer expressions and the fastest option.

To use a string comparison for filtering a LAYER, both FILTERITEM and FILTER must be set. FILTERITEM is set to
the attribute name. FILTER is set to the value for comparison. The same rule applies to CLASSITEM in the LAYER
object and EXPRESSION in the CLASS object.

Example for a simple string comparison filter

FILTER "2005"
FILTERITEM "year"

would match all records that have the attribute “year” set to “2005”. The rendered map would appear as if the dataset
would only contain those items that have the “year” set to “2005”.

Similarly, a classification for the items matched above would be done by setting the CLASSITEM in the LAYER and
the EXPRESSION in the CLASS:

LAYER
NAME "example"
CLASSITEM "year"
...
CLASS

NAME "year-2005"
EXPRESSION "2005"
...

END
END

For reasons explained later, the values for both CLASSITEM and FILTERITEM should start with neither a ‘/’ nor a ‘(’
character.
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Regular expression comparison

Regular expressions are a standard text pattern matching mechanism from the Unix world. The functionality of regular
expression matching is provided by the operating system on UNIX systems and therefore slightly operating system
dependent. However, their minimum set of features are those defined by the POSIX standard. The documentation of
the particular regular expression library is usually in the “regex” manual page (“man regex”) on Unix systems.

Regular expression with MapServer work similarly to string comparison, but allow more complex operation. They
are slower than pure string comparisons, but might be still faster than logical expression. As for string comparison,
when using a regular expressions, FILTERITEM (LAYER FILTER) or CLASSITEM (CLASS EXPRESSION) has to be
defined if the items are not included in the LAYER FILTER or CLASS EXPRESSION.

A regular expression typically consists of characters with special meanings and characters that are interpreted as they
are. Alphanumeric characters (A-Z, a-z and 0-9) are taken as they are. Characters with special meanings are:

• . will match a single character.

• [ and ] are used for grouping. For example [A-Z] would match the characters A,B,C,. . . ,X,Y,Z.

• {, }, and * are used to specify how often something should match.

• ^ matches the beginning, $ matches the end of the value.

• The backslash \ is used to take away the special meaning. For example \$ would match the dollar sign.

MapServer supports two regex operators:

• ~ case sensitive regular expression

• ~* case insensitive regular expression

The following LAYER configuration would have all records rendered on the map that have “hotel” in the attribute named
“placename”

LAYER
NAME 'regexp-example'
FILTERITEM 'placename'
FILTER /hotel/
...

END

Note: For FILTER, the regular expression is case-sensitive, thus records having “Hotel” in them would not have
matched.

Example: Match records that have a value from 2000 to 2010 in the attribute “year”:

FILTERITEM "year"
FILTER /^20[0-9][0-9]/

Example: Match all the records that are either purely numerical or empty

FILTER /^[0-9]*$/

Example: Match all the features where the name attribute ends with “by”, “BY”, “By” or “bY” (case insensitive
matching):

EXPRESSION ('[name]' ~* 'by$')

Example: Match all the features where the rdname attribute starts with “Main”.
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LAYER
...
CLASSITEM 'rdname'
CLASS

EXPRESSION /^Main.*$/

Note: If you experience frequently segmentation faults when working with MapServer and regular expressions, it
might be that your current working environment is linked against more than one regular expression library. This can
happen when MapServer is linked with components that bring their own copy, like the Apache httpd or PHP. In these
cases the author has made best experiences with making all those components using the regular expression library of
the operating system (i.e. the one in libc). That involved editing the build files of some of the components, however.

List expressions

Added in version 6.4.

List expressions (see rfc95) are a performant way to compare a string attribute to a list of multiple possible values.
Their behavior duplicates the existing regex or mapserver expressions, however they are significantly more performant.
To activate them enclose a comma separated list of values between {}, without adding quotes or extra spaces.

LAYER
NAME 'list-example'
CLASSITEM 'roadtype'
...
CLASS
EXPRESSION {motorway,trunk}
#equivalent to regex EXPRESSION /motorway|trunk/
#equivalent to mapserver EXPRESSION ("[roadtype]" IN "motorway,trunk")
...

END
CLASS
# spaces in attribute names are supported
EXPRESSION {primary road,secondary road}
...

END
END

Warning: List expressions do not support quote escaping, or attribute values that contain a comma in them.
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“MapServer expressions”

MapServer expressions are the most complex and depending how they are written can become quite slow. They can
match any of the attributes and thus allow filtering and classification depending on more than one attribute. Besides
pure logical operations there are also expressions that allow certain arithmetic, string and time operations.

To be able to use a MapServer expression for a FILTER or EXPRESSION value, the expression has to finally become
a logical value.

Typing

The type of attributes and literals is determined as followed :

• Strings: enclosed in quote or single quote characters

"[string_attribute]" or '[string_attribute]'

"string_literal" or 'string_literal'

• Numbers: no quoting

[numeric_attribute]

numeric_value

• Date-time: enclosed in backquote characters

`[date_time_attribute]`

`date_time_literal`

Logical expressions

Logical expressions take logical values as their input and return logical values. A logical expression is either ‘true’ or
‘false’. The full expression needs to be surrounded by brackets, but individual logical expressions only require brackets
to establish precedence or for clarity.

• ( Expression1 AND Expression2 )

( ( Expression1 ) AND ( Expression2 ) )

( ( Expression1 ) && ( Expression2 ) )

returns true when both of the logical expressions (Expression1 and Expression2) are true.

• ( ( Expression1 ) OR ( Expression2 ) )

( ( Expression1 ) || ( Expression2 ) )

returns true when at least one of the logical expressions (Expression1 or Expression2) is true.

• NOT ( Expression1 )

! ( Expression1 )

returns true when Expression1 is false.
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String expressions that return a logical value

Syntactically, a string is something encapsulated in single or double quotes.

• ( “String1” eq “String2” )

( “String1” == “String2” ) - deprecated since 6.0

( “String1” = “String2” )

returns true when the strings are equal. Case sensitive.

• ( “String1” =* “String2” )

returns true when the strings are equal. Case insensitive.

• ( “String1” != “String2” )

( “String1” ne “String2” )

returns true when the strings are not equal.

• ( “String1” < “String2” )

( “String1” lt “String2” )

returns true when “String1” is lexicographically smaller than “String2”

• ( “String1” > “String2” )

( “String1” gt “String2” )

returns true when “String1” is lexicographically larger than “String2”.

• ( “String1” <= “String2” )

( “String1” le “String2” )

returns true when “String1” is lexicographically smaller than or equal to “String2”

• ( “String1” >= “String2” )

( “String1” ge “String2” )

returns true when “String1” is lexicographically larger than or equal to “String2”.

• ( “String1” IN “token1,token2,. . . ,tokenN” )

returns true when “String1” is equal to one of the given tokens.

Note: The separator for the tokens is the comma. That means that there can not be unnecessary white space in
the list and that tokens that have commas in them cannot be compared.

• ( “String1” ~ “regexp” )

returns true when “String1” matches the regular expression “regexp”. This operation is identical to the regular
expression matching described earlier.

• ( “String1” ~* “regexp” )

returns true when “String1” matches the regular expression “regexp” (case insensitive). This operation is iden-
tical to the regular expression matching described earlier.
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Arithmetic expressions that return a logical value

The basic element for arithmetic operations is the number. Arithmetic operations that return numbers will be covered
in the next section.

• ( n1 eq n2 )

( n1 == n2 ) - deprecated since 6.0

( n1 = n2 )

returns true when the numbers are equal.

• ( n1 != n2 )

( n1 ne n2 )

returns true when the numbers are not equal.

• ( n1 < n2 )

( n1 lt n2 )

returns true when n1 is smaller than n2.

• ( n1 > n2 )

( n1 gt n2 )

returns true when n1 is larger than n2.

• ( n1 <= n2 )

( n1 le n2 )

returns true when n1 is smaller than or equal to n2.

• ( n1 >= n2 )

( n1 ge n2 )

returns true when n1 is larger than or equal to n2.

• ( n1 IN “number1,number2,. . . ,numberN” )

returns true when n1 is equal to one of the given numbers.

Spatial expressions that return a logical value (GEOS)

• ( shape1 eq shape2 )

returns true if shape1 and shape2 are equal

• ( shape1 intersects shape2 )

Added in version 6.0.

returns true if shape1 and shape2 intersect

• ( shape1 disjoint shape2 )

Added in version 6.0.

returns true if shape1 and shape2 are disjoint
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• ( shape1 touches shape2 )

Added in version 6.0.

returns true if shape1 and shape2 touch

• ( shape1 overlaps shape2 )

Added in version 6.0.

returns true if shape1 and shape2 overlap

• ( shape1 crosses shape2 )

Added in version 6.0.

returns true if shape1 and shape2 cross

• ( shape1 within shape2 )

Added in version 6.0.

returns true if shape1 is within shape2

• ( shape1 contains shape2 )

Added in version 6.0.

returns true if shape1 contains shape2

• ( shape1 dwithin shape2 )

Added in version 6.0.

returns true if the distance between shape1 and shape2 is equal to 0

• ( shape1 beyond shape2 )

Added in version 6.0.

returns true if the distance between shape1 and shape2 is greater than 0

String operations that return a string

• “String1” + “String2’

returns “String1String2”, that is, the two strings concatenated to each other.

Functions that return a string

• tostring ( n1, “Format1” )

Added in version 6.0.

uses “Format1” to format the number n1 (C style formatting - sprintf).

• commify ( “String1” )

Added in version 6.0.

adds thousands separators (commas) to a long number to make it more readable
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• upper ( “String1” )

Added in version 7.0.

force all characters to uppercase

• lower ( “String1” )

Added in version 7.0.

force all characters to lowercase

• initcap ( “String1” )

Added in version 7.0.

force the first character to uppercase and the rest of the characters to lower case for EACH word in the string.

• firstcap ( “String1” )

Added in version 7.0.

force the first character to uppercase and the rest of the characters to lower case in the first word in the string.

String functions that return a number

• length ( “String1” )

returns the number of characters of “String1”

Arithmetic operations and functions that return a number

• round ( n1 , n2 )

Added in version 6.0.

returns n1 rounded to a multiple of n2: n2 * round(n1/n2)

• round ( n1 )

Added in version 8.0.

returns n1 rounded to the closest integer (SLD interoperability addition)

• n1 + n2

returns the sum of n1 and n2

• n1 - n2

returns n2 subtracted from n1

• n1 * n2

returns n1 multiplied with n2

• n1 / n2>

returns n1 divided by n2

• -n1

returns n1 negated
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• n1 ^ n2

returns n1 to the power of n2

• n1 % n2

returns n1 % n2 (the modulus operator). This returns the remainder after division of one number by another, for
example 10 % 3 returns 1.

Note: When the numerical operations above are used like logical operations, the following rule applies: values equal
to zero will be taken as ‘false’ and everything else will be ‘true’. That means the expression

( 6 + 5 )

would return true, but

( 5 - 5 )

would return false.

Spatial functions that return a number (GEOS)

• area ( shape1 )

Added in version 6.0.

returns the area of shape1

Spatial functions that return a shape (GEOS)

• fromtext ( “String1” )

Added in version 6.0.

returns the shape corresponding to String1 (WKT - well known text)

fromText('POINT(500000 5000000)')

• buffer (shape1 , n1 )

Added in version 6.0.

returns the shape that results when shape1 is buffered with bufferdistance n1

• difference ( shape1 , shape2 )

Added in version 6.0.

returns the shape that results when the common area of shape1 and shape2 is subtracted from shape1
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Temporal expressions

MapServer uses an internal time type to do comparison. To convert a string into this time type it will check the list
below from the top and down to check if the specified time matches, and if so, it will do the conversion. The following
are integer values: YYYY - year, MM - month, DD - date, hh - hours, mm - minutes, ss - seconds. The following are
character elements of the format: - (dash) - date separator, : (colon) - time separator, T - marks the start of the time
component (ISO 8601), space - marks the end of the date and start of the time component, Z - zulu time (0 UTC offset).

• `YYYY-MM-DDThh:mm:ssZ`

• `YYYY-MM-DDThh:mm:ss`

• `YYYY-MM-DD hh:mm:ss`

• `YYYY-MM-DDThh:mm`

• `YYYY-MM-DD hh:mm`

• `YYYY-MM-DDThh`

• `YYYY-MM-DD hh`

• `YYYY-MM-DD`

• `YYYY-MM`

• `YYYY`

• `Thh:mm:ssZ`

• `Thh:mm:ss`

For temporal values obtained this way, the following operations are supported:

• ( t1 eq t2 )

( t1 == t2 ) - deprecated since 6.0

( t1 = t2 )

returns true when the times are equal.

• ( t1 != t2 )

( t1 ne t2 )

returns true when the times are not equal.

• ( t1 < t2 )

( t1 lt t2 )

returns true when t1 is earlier than t2

• ( t1 > t2 )

( t1 gt t2 )

returns true when t1 is later than t2.

• ( t1 <= t2 )

( t1 le t2 )

returns true when t1 is earlier than or equal to t2
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• ( t1 >= t2 )

( t1 ge t2 )

returns true when t1 is later than or equal to t2.

4.1.7 FEATURE

POINTS
A set of xy pairs terminated with an END, for example:

POINTS 1 1 50 50 1 50 1 1 END

Note: POLYGON/POLYLINE layers POINTS must start and end with the same point (i.e. close the feature).

Multipart features can be created by adding further sets of points, for example:

FEATURE
POINTS 1 1 50 50 1 50 1 1 END
POINTS 100 100 50 50 100 50 100 100 END

END

ITEMS
Semicolon separated list of the feature attributes:

ITEMS "value1;value2;value3"

Note: Specifying the same number of items is recommended for each feature of the same layer. The item names
should be specified as a PROCESSING option of the layer.

TEXT [string]
String to use for labeling this feature.

WKT [string]
A geometry expressed in OpenGIS Well Known Text geometry format. This feature is only supported if
MapServer is built with OGR or GEOS support.

WKT "POLYGON((500 500, 3500 500, 3500 2500, 500 2500, 500 500))"
WKT "POINT(2000 2500)"

Note: Inline features should be defined as their own layers in the mapfile. If another CONNECTIONTYPE is specified
in the same layer, MapServer will always use the inline features to draw the layer and ignore the other CONNECTION-
TYPEs.
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4.1.8 FONTSET

Author
Kari Guerts

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2020-10-22

Contents

• FONTSET

– Format of the fontset file

FONTSET is a MAP parameter. The syntax is:

FONTSET [filename]

Where filename gives the location of the fontset file of the system. The location of the system fontset file could for
instance be /usr/share/fonts/truetype/font.list (Debian) or C:/ms4w/apps/etc/fonts.txt (MS4W). The location can be
specified using a relative or absolute path. Here is an example using relative paths (relative to the mapfile):

FONTSET "../etc/fonts.txt"

Format of the fontset file

The format of the fontset file is very simple. Each line contains 2 items: An alias and the name/path of the font separated
by white space. The alias is simply the name you refer to the font as in your Mapfile (eg. times-bold). The name is the
actual name of the TrueType file. If not full path then it is interpreted as relative to the location of the fontset. Here’s
the fontset I use (the font.list file and all .ttf files are stored in the same sub-directory).

Note: Aliases are case sensitive. Excellent reference information about the TrueType format and online font resources
is available from the FreeType.

arial arial.ttf
arial-bold arialbd.ttf
arial-italic ariali.ttf
arial-bold-italic arialbi.ttf
arial_black ariblk.ttf
comic_sans comic.ttf
comic_sans-bold comicbd.ttf
courier cour.ttf
courier-bold courbd.ttf
courier-italic couri.ttf
courier-bold-italic courbi.ttf
georgia georgia.ttf

(continues on next page)
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(continued from previous page)

georgia-bold georgiab.ttf
georgia-italic georgiai.ttf
georgia-bold-italic georgiaz.ttf
impact impact.ttf
monotype.com monotype.ttf
recreation_symbols recreate.ttf
times times.ttf
times-bold timesbd.ttf
times-italic timesi.ttf
times-bold-italic timesbi.ttf
trebuchet_ms trebuc.ttf
trebuchet_ms-bold trebucbd.ttf
trebuchet_ms-italic trebucit.ttf
trebuchet_ms-bold-italic trebucbi.ttf
verdana verdana.ttf
verdana-bold verdanab.ttf
verdana-italic verdanai.ttf
verdana-bold-italic verdanaz.ttf

4.1.9 GEOMTRANSFORM - Geometry Transformations

Author
Håvard Tveite

Contact
havard.tveite@nmbu.no

Table of Contents

• Transformations for simple styling (CLASS STYLE only)

– bbox

– centroid

– end and start

– vertices

• Labels (LABEL STYLE only)

– labelpnt and labelpoly

• Expressions and advanced transformations (LAYER and CLASS STYLE)

– Combining / chaining expressions

∗ buffer

– generalize ([shape], tolerance)

– simplify([shape], tolerance)

– simplifypt([shape], tolerance)

– smoothsia ( [shape], smoothing_size, smoothing_iterations, preprocessing )
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∗ Tuning the behaviour of smoothsia

∗ Dataset resolution is too high

∗ Dataset resolution is too low

∗ Curves

• Javascript transformation

– Introduction

– Usage

∗ Example 1. Simple Geomtransform

∗ Example 2. Printing logs in MapServer logs

– Basic API

∗ pointObj

· Constructor

· Members

· Methods

∗ lineObj

· Constructor

· Members

· Methods

∗ shapeObj

· Constructor

· Members

· Methods

Geometry transformations return a new geometry. The purpose of a geometry transformation can be to achieve special
effects for symbol rendering and labeling.

Geometry transformation is available at the LAYER level and the STYLE level. At the LAYER level (since 6.4), the
original vector geometry (“real world” coordinates) is used. At the STYLE level, pixel coordinates are used.

It may be useful to apply pixel values also at the LAYER level, and that is possible. If UNITS is defined in the LAYER,
the [map_cellsize] variable can be used to convert to pixel values at the LAYER level:

GEOMTRANSFORM (simplify([shape], [map_cellsize]*10))
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Transformations for simple styling (CLASS STYLE only)

The following simple geometry transformations are available at the CLASS STYLE level:

• bbox

• centroid

• end

• start

• vertices

bbox

• GEOMTRANSFORM bbox returns the bounding box of the geometry.

– GEOMTRANSFORM “bbox”

Note: Only available for STYLE in the CLASS context.

Fig. 17: Geomtransform bbox

Class definitions for the example:

CLASS
STYLE
COLOR 0 0 0
WIDTH 6

END # STYLE
STYLE
GEOMTRANSFORM "bbox"
OUTLINECOLOR 255 0 0
WIDTH 1
PATTERN 1 2 END

END # STYLE
END # CLASS
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centroid

• GEOMTRANSFORM centroid returns the centroid of the geometry.

– GEOMTRANSFORM “centroid”

Note: Only available for STYLE in the CLASS context.

Fig. 18: Geomtransform centroid

Style definitions for the example.:

STYLE
GEOMTRANSFORM "centroid"
COLOR 255 0 0
SYMBOL circlef
SIZE 5

END # STYLE

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

end and start

• GEOMTRANSFORM end returns the end point of a line.

• GEOMTRANSFORM start returns the start point of a line.

– GEOMTRANSFORM “start”

– GEOMTRANSFORM “end” (since END is used to end objects in the map file, end must be embedded in
quotes)

The direction of the line at the start / end point is available for rendering effects.

Note: Only available for STYLE in the CLASS context.
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Fig. 19: Geomtransform start and end usage

Class definitions for the example.

Lower part of the figure:

CLASS
STYLE
GEOMTRANSFORM "start"
SYMBOL "circlef"
COLOR 255 0 0
SIZE 20

END # STYLE
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 255 0
SIZE 20

END # STYLE
END # CLASS

Upper part of the figure:

CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "start"
SYMBOL "startarrow"
COLOR 255 0 0
SIZE 20
ANGLE auto

END # STYLE
STYLE

(continues on next page)
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GEOMTRANSFORM "start"
SYMBOL "circlef"
COLOR 0 0 255
SIZE 5

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "endarrow"
COLOR 0 255 0
SIZE 20
ANGLE auto

END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 0 255
SIZE 5

END # STYLE
END # CLASS

The startarrow symbol definition (endarrow is the same, except for ANCHORPOINT (value for endarrow: 1 0.5):

SYMBOL
NAME "startarrow"
TYPE vector
FILLED true
POINTS
0 0.4
3 0.4
3 0
5 0.8
3 1.6
3 1.2
0 1.2
0 0.4

END # POINTS
ANCHORPOINT 0 0.5

END # SYMBOL

vertices

• GEOMTRANSFORM vertices produces the set of vertices of a line (with direction information).

– GEOMTRANSFORM “vertices”

Note: Only available for STYLE in the CLASS context.

Class definitions for the example:
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Fig. 20: Geomtransform vertices

CLASS
STYLE
COLOR 0 0 0
WIDTH 4

END # STYLE
STYLE
GEOMTRANSFORM "vertices"
SYMBOL "vertline"
COLOR 0 0 0
WIDTH 2
SIZE 20
ANGLE AUTO

END # STYLE
END # CLASS

The vertline symbol definition:

SYMBOL
NAME "vertline"
TYPE vector
POINTS
0 0
0 1

END # POINTS
END # SYMBOL

Labels (LABEL STYLE only)

The following simple geometry transformations are available at the LABEL STYLE level:

• labelpnt

• labelpoly

These are used for label styling (background colour, background shadow, background frame).

Note: The result of using labelpnt is affected by the LAYER LABELCACHE setting. If LABELCACHE is ON (the
default), the label will be shifted when a non-zero sized symbol is added using labelpnt.
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labelpnt and labelpoly

• GEOMTRANSFORM labelpnt produces the geographic position the label is attached to. This corresponds to the
center of the label text only if the label is in position CC.

– GEOMTRANSFORM “labelpnt”

• GEOMTRANSFORM labelpoly produces a polygon that covers the label plus a 1 pixel padding.

– GEOMTRANSFORM “labelpoly”

Note: Only available for STYLE in the LABEL context.

These transformations can be used to make background rectangles for labels and add symbols to the label points.

Fig. 21: Geomtransform labelpnt and labelpoly

Class definitions for the example:

CLASS
STYLE
OUTLINECOLOR 255 255 204

END # STYLE
LABEL
SIZE giant
POSITION UC
STYLE # shadow

GEOMTRANSFORM "labelpoly"
COLOR 153 153 153
OFFSET 3 3

END # Style
STYLE # background
GEOMTRANSFORM "labelpoly"
COLOR 204 255 204

END # Style
STYLE # outline
GEOMTRANSFORM "labelpoly"
OUTLINECOLOR 0 0 255
WIDTH 1

END # Style
STYLE
GEOMTRANSFORM "labelpnt"
SYMBOL 'circlef'
COLOR 255 0 0
SIZE 15

END # Style
(continues on next page)
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END # Label
END # Class

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
1 1

END # POINTS
END # SYMBOL

Expressions and advanced transformations (LAYER and CLASS STYLE)

Combining / chaining expressions

A geometry transformation produces a geometry, and that geometry can be used as input to another geometry transfor-
mation. There are (at least) two ways to accomplish this. One is to combine basic geometry transformation expressions
into more complex geometry transformation expressions, and another is to combine a geometry transformation expres-
sion at the LAYER level with a geometry transformation expressions or a simple geometry transformation at the CLASS
STYLE level.

Combining geometry transformation expressions A geometry transformation expression contains a [shape] part. The
[shape] part can be replaced by a geometry transformation expression.

For example:

GEOMTRANSFORM (simplify(buffer([shape], 20),10))

In this transformation, buffer is first applied on the geometry ([shape]). The resulting geometry is then used as input
to simplify.

A style that demonstrates this:

STYLE
GEOMTRANSFORM (simplify(buffer([shape], 20),10))
OUTLINECOLOR 255 0 0
WIDTH 2

END # STYLE

The result of this transformation is shown at the top of the following figure (red line). The original polygon is shown
with a full black line and the buffer with a dashed black line.

Combining expressions with simple geometry transformations Simple geometry transformations are only available for
CLASS STYLE, but can be combined with geometry transformation expressions at the LAYER level.

Excerpts from a layer definitions that does this kind of combination:

LAYER
...
GEOMTRANSFORM (simplify(buffer([shape], 10),5))
CLASS

(continues on next page)
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...
STYLE
GEOMTRANSFORM "vertices"
COLOR 255 102 102
SYMBOL vertline
SIZE 20
WIDTH 2
ANGLE auto

END # STYLE
END # CLASS

END # LAYER

The result of this transformation is shown at the bottom of the following figure (the red lines). The result of the LAYER
level geomtransform is shown with a full black line. The original polygon is the same as the one used at the top of the
figure.

Fig. 22: Combining geomtransform expressions

buffer

• GEOMTRANSFORM buffer returns the buffer of the original geometry. The result is always a polygon geometry.

– GEOMTRANSFORM (buffer ([shape], buffersize))

Note: Negative values for buffersize (setback) is not supported.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Note: Buffer does not seem to work for point geometries.

Some class definitions for the example.

Lower part (polygon with buffers):
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Fig. 23: Geomtransform buffer

CLASS
STYLE
OUTLINECOLOR 0 255 0
GEOMTRANSFORM (buffer([shape], 20))
WIDTH 1

END # STYLE
STYLE
OUTLINECOLOR 0 0 255
GEOMTRANSFORM (buffer([shape], 10)) #
WIDTH 1

END # STYLE
STYLE
COLOR 255 0 0
GEOMTRANSFORM (buffer([shape], 5)) #

END # STYLE
STYLE
COLOR 0 0 0

END # STYLE
END # CLASS

Upper right part (layer level geomtransform):

LAYER # line buffer layer
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
80 70
80 75

END # Points
END # Feature
GEOMTRANSFORM (buffer([shape], 10))
CLASS
STYLE
COLOR 0 0 255

END # STYLE
END # CLASS

(continues on next page)
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END # LAYER

generalize ([shape], tolerance)

• GEOMTRANSFORM generalize simplifies a geometry ([shape]) in a way comparable to FME’s ThinNoPoint
algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

– GEOMTRANSFORM (generalize([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line compared
to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Note: Depends on GEOS.

The figure below shows the result of applying generalize at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).

Fig. 24: Geomtransform generalize

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (generalize([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE
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simplify([shape], tolerance)

• GEOMTRANSFORM simplify simplifies a geometry ([shape]) using the standard Douglas-Peucker algorithm.

– GEOMTRANSFORM (simplify([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line compared
to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

The figure below shows the result of applying simplify at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).

Fig. 25: Geomtransform simplify

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (simplify([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

simplifypt([shape], tolerance)

• GEOMTRANSFORM simplifypt simplifies a geometry ([shape]), ensuring that the result is a valid geometry
having the same dimension and number of components as the input. tolerance must be non-negative.

– GEOMTRANSFORM (simplifypt([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line compared
to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

The figure below shows the result of applying simplifypt at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).
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Fig. 26: Geomtransform simplifypt

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (simplifypt([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

smoothsia ( [shape], smoothing_size, smoothing_iterations, preprocessing )

• GEOMTRANSFORM smoothsia returns a smoothed version of a line.

– GEOMTRANSFORM (smoothsia ( [shape], smoothing_size, smoothing_iterations, preprocessing ))

The following parameters are used:

– shape (mandatory). Specify the geometry to be used

– smoothing_size (optional). The window size (number of points) used by the algorithm. The default is 3.

– smoothing_iterations (optional). The number of iterations of the algorithm. The default is 1.

– preprocessing (optional). Preprocessing method to add more vertices to the geometry prior to smoothing,
described below. There are two possible preprocessing methods:

∗ all Adds two intermediate vertices on each side of each original vertex. This is useful to preserve the
general shape of the line with low resolution data.

∗ angle Add vertices at some specific places based on angle detection.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Example of a simple layer definition:

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA roads.shp

(continues on next page)
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GEOMTRANSFORM (smoothsia([shape], 3, 1, 'angle'))
CLASS
STYLE
WIDTH 2
COLOR 255 0 0

END
END

Here are some examples showing results with different parameter values.

Fig. 27: Original geometry (left) and smoothsia with default parameters (right)

Fig. 28: Smoothsia - Larger window size (left) and larger window size with more iterations (right)
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Tuning the behaviour of smoothsia

smoothsia has several parameters that can be used to tune its behaviour. The following sections describe some cases /
possibilities.

Dataset resolution is too high

If you are trying to smooth a line that has a very high resolution (high density of vertices at the current view scale),
you may not get the expected result because the vertices are too dense for the smoothing window size. In this case
you might want to simplify the geometries before the smoothing. You can combine smoothing and simplification in a
single geomtransform for that:

GEOMTRANSFORM (smoothsia(simplifypt([shape], 10)))

See RFC 89: Layer Geomtransform for more info. Here’s a visualization of the issue:

Fig. 29: High resolution geometry, smoothing and simplification

Dataset resolution is too low

If you are trying to smooth a long line that has a low density of vertices, you may not get the expected result in
some situations. You may lose some important parts of the geometry during the smoothing, for instance around acute
angles. You can improve the result by enabling a preprocessing step to add intermediate vertices along the line prior
to smoothing.

This behavior is controlled using the all value in the preprocessing argument of the smoothsia geomtransform:

GEOMTRANSFORM (smoothsia([shape], 3, 1, 'all'))

This preprocessing will be performed before the smoothing. It adds 2 intermediate vertices on each side of each original
vertex. This is useful if we really need to preserve the general shape of the low resolution line. Note that this might
have an impact on the rendering since there will be more vertices in the output.

Here’s a visualization of the issue:
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Fig. 30: Effects of normal smoothing and preprocessing

Curves

The preprocessing step might not be appropriate for all cases since it can impact the smoothing result significantly.
However, without it, you might notice bad smoothing for curved lines with large distances between the line vertices.
See this example:

Fig. 31: Effects of normal smoothing (without preprocessing)

You can improve that by enabling another type of preprocessing: angle. This one will add points at some specific places
based on angle detection to recognize the curves. Here’s how you can enable it:

GEOMTRANSFORM (smoothsia([shape], 3, 1, 'angle'))

Javascript transformation

Author
Alan Boudreault

Contact
aboudreault at mapgears.com

Last Updated
2013/16/12
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Fig. 32: The use of angle with smoothsia

Introduction

Using GEOMTRANSFORM this way makes it possible to modify the geometry programmatically in addition to the
built-in geomtransform functions.

Usage

Simply declare the javascript plugin this way:

MAP
...
LAYER
...
GEOMTRANSFORM "javascript://transform.js" # relative path
CLASS
END

END
END

The path can also be absolute.

MAP
...
LAYER
...
GEOMTRANSFORM "javascript:///home/user/transform.js" # absolute path
CLASS
END

END
END

The javascript plugin has to implement a function named geomtransform that will be automatically called. This
function has to return a new shape. Note that only the geometry of this new shape will be used, so your original shape
attributes will be preserved.

Access to the feature attributes is made through the shape.attributes javascript object.

The following javascript functions are available:
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• alert(str1, str2, . . . , str)
print some text in MapServer logs

• print(str1, str2, . . . , str)
print some text in MapServer logs

• require(path_to_lib1, path_to_lib2, . . . , path_to_lib)
include one or more javascript lib

Example 1. Simple Geomtransform

This example does a simple vertical translation . . .

function geomtransform() {
new_shape = new shapeObj();
new_shape.add(new lineObj());
new_point = new pointObj();
new_point.x = shape.line(0).point(0).x;
new_point.y = shape.line(0).point(0).y+30000;
new_shape.line(0).add(new_point);
return new_shape;

}

Example 2. Printing logs in MapServer logs

Extends example 1 by printing information to the MapServer log.

MAP
...
CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"
DEBUG 1
LAYER
...
GEOMTRANSFORM "javascript://transform.js"

...
END

END

function geomtransform() {
new_shape = new shapeObj();
new_shape.add(new lineObj());
new_point = new pointObj();
new_point.x = shape.line(0).point(0).x;
new_point.y = shape.line(0).point(0).y+30000;
print('Modified y value from: ' + shape.line(0).point(0).y + ' to: '+new_point.y);
new_shape.line(0).add(new_point);
return new_shape;

}
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Basic API

A minimal API is currently available to create a new shape.

pointObj

Constructor

new pointObj()

Members

Type Name Note
double x
double y
double z
double m

Methods

void setXY(double x, double y[, double m])
Set the x,y[,m] values.

void setXYZ(double x, double y, double Z[, double m])
Set the x,y,z[,m] values.

lineObj

Constructor

new lineObj()

Members

Type Name Note
int numpoints read-only
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Methods

pointObj point(int index)
Returns the point at the index position.

void add(pointObj point)
Add a point to the line.

void addXY(double x, double y[, double m])
Add point to the line from an x,y[,m] values.

void addXYZ(double x, double y, double Z[, double m])
Add point to the line from an x,y,z[,m] values.

shapeObj

Constructor

new shapeObj(int type)

‘type’ is one of shapeObj.Point, shapeObj.Line, shapeObj.Polygon or shapeObj.Null

Members

Type Name Note
int numvalues read-only
int numlines read-only
int index read-only
int type read-only
int tileindex read-only
int classindex read-only
text text
object attributes

Methods

shapeObj clone()
Returns a clone of the shape.

lineObj line(int index)
Returns the line at the index position.

void add(lineObj line)
Add a line to the shape.

void setGeometry(shapeObj shape)
Replace the geometry of the object with the shape geometry.

4.1. Mapfile 187



MapServer Documentation, Release 7.6.6

4.1.10 GRID

Description

The GRID object can be used to add labeled graticule lines to your map. Initially developed in 2003 by John Novak, the
GRID object is designed to be used inside a LAYER object to allow multiple GRID objects for a single map (allowing
for example: a lat/long GRID, a State Plane GRID, and a UTM GRID to be displayed on the same map image).

Mapfile Parameters:

LABELFORMAT [DD|DDMM|DDMMSS|C format string]
Format of the label. “DD” for degrees, “DDMM” for degrees minutes, and “DDMMSS” for degrees, minutes,
seconds. A C-style formatting string is also allowed, such as “%g°” to show decimal degrees with a degree
symbol. The default is decimal display of whatever SRS you’re rendering the GRID with.

MINARCS [double]
The minimum number of arcs to draw. Increase this parameter to get more lines. Optional.

MAXARCS [double]
The maximum number of arcs to draw. Decrease this parameter to get fewer lines. Optional.

MININTERVAL [double]
The minimum number of intervals to try to use. The distance between the grid lines, in the units of the grid’s
coordinate system. Optional.

MAXINTERVAL [double]
The maximum number of intervals to try to use. The distance between the grid lines, in the units of the grid’s
coordinate system. Optional.

MINSUBDIVIDE [double]
The minimum number of segments to use when rendering an arc. If the lines should be very curved, use this to
smooth the lines by adding more segments. Optional.

MAXSUBDIVIDE [double]
The maximum number of segments to use when rendering an arc. If the graticule should be very straight, use
this to minimize the number of points for faster rendering. Optional, default 256.

Example1: Grid Displaying Degrees

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8

(continues on next page)
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POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:4326"

END
GRID
LABELFORMAT "DD"

END
END # Layer

Example2: Grid Displaying Degrees with Symbol

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"

(continues on next page)
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COLOR 0 0 0
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:4326"

END
GRID
LABELFORMAT '%g°'

END
END # Layer
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Example3: Grid Displayed in Other Projection (Google Mercator)

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"

END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255

END
END
PROJECTION
"init=epsg:3857"

END
GRID
LABELFORMAT '%.0fm'
MININTERVAL 5000000

END
END # Layer
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Note: Pay attention to the values you use for the INTERVAL parameter; it is possible to confuse/overload MapServer
by telling it to draw a graticule line every meter (MININTERVAL 1).

4.1.11 INCLUDE

When this directive is encountered parsing switches to the included file immediately. As a result the included file can
be comprised of any valid mapfile syntax. For example:

INCLUDE 'myLayer.map'

Performance does not seem to be seriously impacted with limited use, however in high performance instances you may
want to use includes in a pre-processing step to build a production mapfile. The C pre-processor can also be used (albeit
with a different syntax) and is far more powerful.

Notes

• Supported in versions 4.10 and higher.

• The name of the file to be included MUST be quoted (single or double quotes).

• Includes may be nested, up to 5 deep.

• File location can be given as a full path to the file, or (in MapServer >= 4.10.1) as a path relative to the mapfile.

• Debugging can be problematic because:

1) the file an error occurs in does not get output to the user
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2) the line number counter is not reset for each file. Here is one possible error that is thrown when the include
file cannot be found:

msyylex(): Unable to access file. Error opening included file "parks_include.map
→˓"

Example

MAP
NAME "include_mapfile"
EXTENT 0 0 500 500
SIZE 250 250

INCLUDE "test_include_symbols.map"
INCLUDE "test_include_layer.map"
END

where test_include_symbols.map contains:

SYMBOL
NAME 'square'
TYPE VECTOR
FILLED TRUE
POINTS 0 0 0 1 1 1 1 0 0 0 END

END

and test_include_layer.map contains:

LAYER
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS 10 10 40 20 300 300 400 10 10 400 END

END
CLASS
NAME 'Church'
COLOR 0 0 0
SYMBOL 'square'
SIZE 7
STYLE
SYMBOL "square"
SIZE 5
COLOR 255 255 255

END
STYLE
SYMBOL "square"
SIZE 3
COLOR 0 0 255

END
END

END
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4.1.12 JOIN

Description

Joins are defined within a LAYER object. It is important to understand that JOINs are ONLY available once a query
has been processed. You cannot use joins to affect the look of a map. The primary purpose is to enable lookup tables
for coded data (e.g. 1 => Forest) but there are other possible uses.

Supported Formats

• DBF/XBase files

• CSV (comma delimited text file)

• PostgreSQL tables

• MySQL tables

Mapfile Parameters:

CONNECTION [string]
Parameters required for the join table’s database connection (not required for DBF or CSV joins). The following
is an example connection for PostgreSQL:

CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=somename"
CONNECTIONTYPE POSTGRESQL

CONNECTIONTYPE [csv|mysql|postgresql]
Type of connection (not required for DBF joins). For PostgreSQL use postgresql, for CSV use csv, for MySQL
use mysql.

FOOTER [filename]
Template to use after a layer’s set of results have been sent. In other words, this header HTML will be displayed
after the contents of the TEMPLATE HTML.

FROM [column]
Join column in the dataset. This is case sensitive.

HEADER [filename]
Template to use before a layer’s set of results have been sent. In other words, this header HTML will be displayed
before the contents of the TEMPLATE HTML.

NAME [string]
Unique name for this join. Required.

TABLE [filename|tablename]
For file-based joins this is the name of XBase or comma delimited file (relative to the location of the mapfile) to
join TO. For PostgreSQL support this is the name of the PostgreSQL table to join TO.

TEMPLATE [filename]
Template to use with one-to-many joins. The template is processed once for each record and can only con-
tain substitutions for columns in the joined table. Refer to the column in the joined table in your template like
[joinname_columnname], where joinname is the NAME specified for the JOIN object.

TO [column]
Join column in the table to be joined. This is case sensitive.
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TYPE [ONE-TO-ONE|ONE-TO-MANY]
The type of join. Default is one-to-one.

Example 1: Join from Shape dataset to DBF file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
TABLE "../data/lookup.dbf"
FROM "ID"
TO "IDENT"
TYPE ONE-TO-ONE

END
END # layer

Ogrinfo

>ogrinfo lookup.dbf lookup -summary
INFO: Open of `lookup.dbf'
using driver `ESRI Shapefile' successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)
IDENT: Integer (2.0)
VAL: Integer (2.0)

>ogrinfo prov.shp prov -summary
INFO: Open of `prov.shp'
using driver `ESRI Shapefile' successful.

Layer name: prov
(continues on next page)
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Geometry: Polygon
Feature Count: 12
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)
NAME: String (30.0)
ID: Integer (2.0)

Template

<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_VAL]</td>

</tr>

Example 2: Join from Shape dataset to PostgreSQL table

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
CONNECTIONTYPE postgresql
TABLE "lookup"
FROM "ID"
TO "ident"
TYPE ONE-TO-ONE

END
END # layer
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Ogrinfo

>ogrinfo -ro PG:"host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
lookup -summary

INFO: Open of `PG:host=127.0.0.1 port=5432 user=pg password=pg dbname=join'
using driver `PostgreSQL' successful.

Layer name: lookup
Geometry: Unknown (any)
Feature Count: 12
Layer SRS WKT:
(unknown)
ident: Integer (0.0)
val: Integer (0.0)

Template

<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_val]</td>

</tr>

Example 3: Join from Shape dataset to CSV file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTIONTYPE CSV
TABLE "../data/lookup.csv"
FROM "ID"
#TO "IDENT" # see note below
TO "1" # see note below

(continues on next page)
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(continued from previous page)

TYPE ONE-TO-ONE
END

END # layer

CSV File Structure

"IDENT","VAL"
1,12
2,11
3,10
4,9
5,8
6,7
7,6
8,5
9,4
10,3
11,2
12,1

Note: The CSV driver currently doesn’t read column names from the first row. It just uses indexes (1, 2, . . . n) to
reference the columns. It’s ok to leave column names as the first row since they likely won’t match anything but they
aren’t used. Typically you’d see something like TO “1” in the JOIN block. Then in the template you’d use [name_1],
[name_2], etc. . .

Ogrinfo

>ogrinfo lookup.csv lookup -summary
INFO: Open of `lookup.csv'
using driver `CSV' successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)
IDENT: String (0.0)
VAL: String (0.0)
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Template (prov.html)

Ideally this the template should look like this:

<!-- MapServer Template -->
<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_VAL]</td>

</tr>

But since attribute names are not supported for CSV files (see note above), the following will have to be used:

<!-- MapServer Template -->
<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_2]</td>

</tr>

Example 4: Join from Shape dataset to MySQL

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END # style
END # class
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "mysql-join"
CONNECTIONTYPE MYSQL
CONNECTION 'server:user:password:database'
TABLE "mysql-tablename"
FROM "ID"
TO "mysql-column"
TYPE ONE-TO-ONE

END # join
END # layer
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Example 5: One-to-many join

In a join of type ONE-TO-MANY, the JOIN object needs to contain a TEMPLATE. This TEMPLATE is used for each
matching record in the join table. Columns in the join table are referenced using <join_name>_<join_column_name>.
Columns in the layer table are referenced using <column_name>.

For a one-to-many join, the LAYER TEMPLATE file has to contain a reference to the the JOIN object, as follows:
[join_<join_name>].

In this example, it is assumed that the join table many.dbf contains the columns MANYFIELD1 and MANYFIELD2
in addition to the join column (IDENT).

Layer object:

LAYER
NAME "joinonetomany"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END # style
END # class
TEMPLATE "oneToMany.html"
HEADER "oneToMany_header.html"
FOOTER "oneToMany_footer.html"
JOIN
NAME "onetomanytest"
TABLE "many.dbf"
FROM "ID"
TO "IDENT"
TYPE ONE-TO-MANY
TEMPLATE "oneToMany_join.html"

END # join
END # layer

Template oneToMany_header.html:

<!-- MapServer Template -->
<html>
<head><title>One to Many Join</title></head>
<body>
<h1>MapServer output</h1>
<table>

Template oneToMany.html:

<!-- MapServer Template -->
<tr>
<td><strong>[ID]</strong></td>
<td><table>

[join_onetomanytest]
(continues on next page)
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(continued from previous page)

</table></td>
</tr>

Template oneToMany_join.html:

<!-- MapServer Template -->
<tr>
<td>[NAME]</td>
<td>[onetomanytest_MANYFIELD1]</td>
<td>[onetomanytest_MANYFIELD2]</td>

</tr>

Template oneToMany_footer.html:

<!-- MapServer Template -->
</table>

</body>
<html>

4.1.13 LABEL

ALIGN [left|center|right|attribute]
Added in version 5.4.

Specifies text alignment for multiline labels (see WRAP) Note that the alignment algorithm is far from precise,
so don’t expect fabulous results (especially for right alignment) if you’re not using a fixed width font.

[attribute] was added in version 7.6. If an attribute is used, it is expected to be:

• of type string and should be one of the following: left, center, right.

• of type integer and should be [1,2,3] which means:

– 1 = “left”

– 2 = “center”

– 3 = “right”

if the [attribute] is of type integer as described above, the label generation will be much faster, since string
comparison is avoided.

ANGLE [double|auto|auto2|follow|attribute]
• Angle, counterclockwise, given in degrees, to draw the label. Default is 0.

• AUTO allows MapServer to compute the angle. Valid for LINE layers only.

• AUTO2 same as AUTO, except no logic is applied to try to keep the text from being rendered in reading
orientation (i.e. the text may be rendered upside down). Useful when adding text arrows indicating the line
direction.

• FOLLOW was introduced in version 4.10 and tells MapServer to compute a curved label for appropriate
linear features (see RFC11 for specifics). See also MAXOVERLAPANGLE.

• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for angle
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYAN-
GLE” that holds angle values for each record, your LABEL object might contain:
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LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
ANGLE [MYANGLE]
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

ANTIALIAS [true|false]
Should text be antialiased? Note that this requires more available colors, decreases drawing performance, and
results in slightly larger output images. Only useful for GD (gif) rendering. Default is false. Has no effect for
the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string]
Removed in version 6.0: Use a LABEL STYLE object with`GEOMTRANSFORM labelpoly` and COLOR in-
stead.

Color to draw a background rectangle (i.e. billboard). Off by default.

BACKGROUNDSHADOWCOLOR [r] [g] [b] | [hexadecimal string]
Removed in version 6.0: Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and OFFSET
instead.

Color to draw a background rectangle (i.e. billboard) shadow. Off by default.

BACKGROUNDSHADOWSIZE [x][y]
Removed in version 6.0: Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and OFFSET
instead.

How far should the background rectangle be offset? Default is 1.

BUFFER [integer]
Padding, in pixels, around labels. Useful for maintaining spacing around text to enhance readability. Available
only for cached labels. Default is 0.

COLOR [r] [g] [b] | [hexadecimal string] | [attribute]
• Color to draw text with.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

COLOR "#FF00FFCC"
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• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
COLOR” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR [MYCOLOR]
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

ENCODING [string]
Removed in version 7.0: UTF-8 is now the encoding used by MapServer, and dataset encodings are handled
using LAYER ENCODING instead.

Supported encoding format to be used for labels. If the format is not supported, the label will not be drawn.
Requires the iconv library (present on most systems). The library is always detected if present on the system, but
if not, the label will not be drawn.

Required for displaying international characters in MapServer. More information can be found in the Label
Encoding document.

EXPRESSION [string]
Added in version 6.2.

Expression that determines when the LABEL is to be applied. See EXPRESSION in CLASS.

FONT [name|attribute]
• Font alias (as defined in the FONTSET) to use for labeling.

• [Attribute] was introduced in version 5.6 to specify the font alias.

• May contain a comma-separated list of up to MS_MAX_LABEL_FONTS (usually 5) font aliases used as
fallback fonts in renderers supporting it, if a glyph is not available in a font. If specified directly, be sure to
enclose the list with quotes. See RFC80.

• Since version 7, MapServer supports language specific fonts. See RFC98.

FORCE [true|false|group]
Forces labels for a particular class on, regardless of collisions. Available only for cached labels. Default is false.
If FORCE is true and PARTIALS is false, FORCE takes precedence, and partial labels are drawn.

The GROUP parameter, added in version 6.2, determines if the label is allowed to intersect other labels from the
same feature. Multiple STYLE blocks can be used to render graphic symbols instead of or alongside text. See
announce-6-2-force-group.

MAXLENGTH [integer]
Added in version 5.4.

This keyword interacts with the WRAP keyword so that line breaks only occur after the defined number of char-
acters.
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Table 9: Interaction with WRAP keyword

maxlength = 0 maxlength > 0
wrap =
‘char’

always wrap at the WRAP char-
acter

newline at the first WRAP character after MAXLENGTH
characters

no wrap no processing skip label if it contains more than MAXLENGTH characters

The associated RFC document for this feature is RFC40.

Support for negative MAXLENGTH that implied forced linebreaks is not supported since version 7, a
workaround implies pre-processing such labels to include linebreaks or wrap characters.

MAXOVERLAPANGLE [double]
Angle threshold to use in filtering out ANGLE FOLLOW labels in which characters overlap (floating point value
in degrees). This filtering will be enabled by default starting with MapServer 6.0. The default MAXOVERLA-
PANGLE value will be 22.5 degrees, which also matches the default in GeoServer. Users will be free to tune the
value up or down depending on the type of data they are dealing with and their tolerance to bad overlap in labels.
As per RFC 60, if MAXOVERLAPANGLE is set to 0, then we fall back on pre-6.0 behavior which was to use
maxoverlapangle = 0.4*MS_PI (40% of 180 degrees = 72degree).

The associated RFC document for this feature is RFC60.

MAXSCALEDENOM [double]
Added in version 5.4.

Minimum scale at which this LABEL is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000.

See also:
Map Scale

MAXSIZE [double]
Maximum font size to use when scaling text (pixels). Default is 256. Starting from version 5.4, the value can
also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINDISTANCE [integer]
Minimum distance between duplicate labels. Given in pixels. Starting from version 7.2, the distance is calculated
from the label boundary. Prior versions used the label center.

MINFEATURESIZE [integer|auto]
Minimum size a feature must be to be labeled. Given in pixels. For line data the overall length of the displayed
line is used, for polygons features the smallest dimension of the bounding box is used. “Auto” keyword tells
MapServer to only label features that are larger than their corresponding label. Available for cached labels only.

MINSCALEDENOM [double]
Added in version 5.4.

Maximum scale at which this LABEL is drawn. Scale is given as the denominator of the actual scale fraction,
for example for a map at a scale of 1:24,000 use 24000.

See also:
Map Scale

MINSIZE [double]
Minimum font size to use when scaling text (pixels). Default is 4. Starting from version 5.4, the value can also
be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.
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OFFSET [x|attribute_x][y|attribute_y]
Offset values for labels, relative to the lower left hand corner of the label and the label point. Given in pixels. In
the case of rotated text specify the values as if all labels are horizontal and any rotation will be compensated for.

[attribute_x] and [attribute_y] were added in version 7.6. If an attribute is used, it must be of type integer.

When used with FOLLOW angle, two additional options are available to render the label parallel to the original
feature:

• OFFSET x -99 : will render the label to the left or to the right of the feature, depending on the sign of {x}.

• OFFSET x 99 : will render the label above or below the feature, depending on the sign of {x}.

See LAYER SYMBOLSCALEDENOM.

OUTLINECOLOR [r] [g] [b] | [hexadecimal string] | [attribute]
• Color to draw a one pixel outline around the characters in the text.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OUTLINECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OUTLINECOLOR "#FF00FFCC"

• [attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
OUTCOLOR” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR [MYOUTCOLOR]
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

OUTLINEWIDTH [integer]
Width of the outline if OUTLINECOLOR has been set. Defaults to 1. Currently only the AGG renderer supports
values greater than 1, and renders these as a ‘halo’ effect: recommended values are 3 or 5. If the renderer supports
it and the text size is variable, the outline will be scaled proportionally to the text and the value specified as
OUTLINEWIDTH is therefore the width at the same scale at which the SIZE is specified.

PARTIALS [true|false]
Can text run off the edge of the map? Default is false. If FORCE is true and PARTIALS is false, FORCE takes
precedence, and partial labels are drawn.
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Note: The default changed from true to false, since the MapServer 7.2 release.

POSITION [ul|uc|ur|cl|cc|cr|ll|lc|lr|auto|attribute]
Position of the label relative to the labeling point (layers only). First letter is “Y” position, second letter is “X”
position. “Auto” tells MapServer to calculate a label position that will not interfere with other labels. With
points, MapServer selects from the 8 outer positions (i.e. excluding cc). With polygons, MapServer selects from
cc (added in MapServer 5.4), uc, lc, cl and cr as possible positions. With lines, it only uses lc or uc, until it finds
a position that doesn’t collide with labels that have already been drawn. If all positions cause a conflict, then the
label is not drawn (Unless the label’s FORCE a parameter is set to “true”). “Auto” placement is only available
with cached labels.

When used with attribute, it must be of type string and use one of the following: ul|uc|ur|cl|cc|cr|ll|lc|lr|auto.

PRIORITY [integer]|[item_name]|[attribute]
Added in version 5.0.

The priority parameter takes an integer value between 1 (lowest) and 10 (highest). The default value is 1. It is
also possible to bind the priority to an attribute (item_name) using square brackets around the [item_name]. e.g.
“PRIORITY [someattribute]”

Labels are stored in the label cache and rendered in order of priority, with the highest priority levels rendered
first. Specifying an out of range PRIORITY value inside a map file will result in a parsing error. An out of range
value set via MapScript or coming from a shape attribute will be clamped to the min/max values at rendering
time. There is no expected impact on performance for using label priorities.

[Attribute] was introduced in version 5.6.

REPEATDISTANCE [integer]
Added in version 5.6.

The label will be repeated on every line of a multiline shape and will be repeated multiple times along a given
line at an interval of REPEATDISTANCE pixels.

The associated RFC document for this feature is RFC57.

SHADOWCOLOR [r] [g] [b] | [hexadecimal string]
Color of drop shadow. A label with the same text will be rendered in this color before the main label is drawn,
resulting in a shadow effect on the the label characters. The offset of the renderered shadow is set with SHAD-
OWSIZE.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

SHADOWCOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

SHADOWCOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

SHADOWCOLOR "#FF00FFCC"

SHADOWSIZE [x][y]|[attribute][attribute]|[x][attribute]|[attribute][y]
Shadow offset in pixels, see SHADOWCOLOR.

[Attribute] was introduced in version 6.0, and can be used like:
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SHADOWSIZE 2 2
SHADOWSIZE [shadowsizeX] 2
SHADOWSIZE 2 [shadowsizeY]
SHADOWSIZE [shadowsize] [shadowsize]

SIZE [integer]|[tiny|small|medium|large|giant]|[attribute]|[expression]
• Text size. Use a number to give the size in pixels of your TrueType font based label, or any of the other 5

listed keywords for bitmap fonts.

When scaling is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the size of the
font to be used at the map scale 1:SYMBOLSCALEDENOM.

• [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size values.
The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYSIZE” that
holds size values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE [MYSIZE]
POSITION AUTO
PARTIALS FALSE

END

The associated RFC document for this feature is RFC19.

• [expression] was added in version 7.6 to allow arithmetic expressions returning an integer value as part of
RFC124. Attributes can be used as part of this expression:

LABEL
TEXT "[name]"
COLOR 255 255 255
TYPE TRUETYPE
FONT vera-bold
SIZE (( [s12] * [s12] ) - 132 )

END

Note: The SIZE value can only be an integer (not a fractional value), because the renderer Freetype only accepts
integers.

STYLE
The start of a STYLE object.

Label specific mechanisms of the STYLE object are the GEOMTRANSFORM options:

GEOMTRANSFORM [labelcenter|labelpnt|labelpoly]
Added in version 6.0.

Creates a geometry that can be used for styling the label. Does not apply to ANGLE FOLLOW labels.

• labelcenter places the text in the center of the feature.

• labelpnt draws a marker on the geographic position the label is attached to. This corresponds to the
center of the label text only if the label is in position CC.
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• labelpoly generates the bounding rectangle for the text, with 1 pixel of padding added in all directions.

The resulting geometries can be styled using the mechanisms available in the STYLE object.

Example - draw a red background rectangle for the labels with a “shadow” (i.e. billboard) in gray
text, centered in the polygon feature:

STYLE
GEOMTRANSFORM 'labelcenter'
COLOR 153 153 153

END # STYLE
STYLE
GEOMTRANSFORM 'labelpoly'
COLOR 255 0 0

END # STYLE

TEXT [string|expression]
Added in version 6.2.

Text to label features with (useful when multiple labels are used). Overrides values obtained from the LAYER
LABELITEM and the CLASS TEXT. See TEXT in CLASS.

TYPE [bitmap|truetype]
Type of font to use. Generally bitmap fonts are faster to draw then TrueType fonts. However, TrueType fonts are
scalable and available in a variety of faces. Be sure to set the FONT parameter if you select TrueType.

Note: Bitmap fonts are only supported with the AGG and GD renderers.

WRAP [character]
Character that represents an end-of-line condition in label text, thus resulting in a multi-line label. Interacts with
MAXLENGTH for conditional line wrapping after a given number of characters.

Labels are also wrapped at Zero Width Space Unicode characters (0x200b) when WRAP is enabled. For example,
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allow wrapping after hyphens without removing the hyphen character at the wrap. You can insert this character
in your PostGIS query with replace(field, ‘-’, E’-u200b’).

Added in version 7.2.1: Wrapping at Zero Width Space

4.1.14 LAYER

BINDVALS
Added in version 6.0.

This keyword allows name value pairs to be created to bind variables in SQL statements. Variable binding
prevents SQL injection by properly escaping strings and integers. Applies to PostGIS and Oracle connections
only.

See also:
rfc59

Example:

DATA "the_geom from (select * from province where name_e = $1) as foo using unique␣
→˓gid"
BINDVALS

"1" "Nova Scotia"
END

CLASS
Signals the start of a CLASS object.

Inside a layer, only a single class will be used for the rendering of a feature. Each feature is tested against each
class in the order in which they are defined in the mapfile. The first class that matches the its min/max scale
constraints and its EXPRESSION check for the current feature will be used for rendering.

This can be controlled with RENDERMODE processing directive.

CLASSGROUP [string]
Specify the class’s group that would be considered at rendering time. The CLASS object’s GROUP parameter
must be used in combination with CLASSGROUP.

CLASSITEM [attribute]
Item name in attribute table to use for class lookups.

CLUSTER
Signals the start of a CLUSTER object.

The CLUSTER configuration option provides to combine multiple features from the layer into single (aggregated)
features based on their relative positions. Supported only for POINT layers.
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See also:
rfc69

COMPOSITE
Signals the start of a COMPOSITE object.

One or more COMPOSITE blocks can be used to signal that rendering should be done in a temporary image
and merged onto the final map image in a final step. The options defined inside the COMPOSITE block will
determine how this merging should be done (e.g. by appying opacity, composition operator, or pixel filters)

See also:
rfc113

CONNECTION [string]
Database connection string to retrieve remote data.

A PostGIS connection string is basically a regular PostgreSQL connection string, it takes the form of
“user=nobody password=****** dbname=dbname host=localhost port=5432”

An Oracle connection string: user/pass[@db]

An SDE connection string consists of a hostname, instance name, database name, username and password sep-
arated by commas.

Warning: MapServer’s native SDE driver was removed for the MapServer 7.0 release (see discussion).
SDE support can still be accessed through the OGR driver.

See also:
Vector Data for specific connection information for various data sources.

See also:
See Kernel Density Estimation (Dynamic Heatmap) for specific connection information for kernel density esti-
mation.

CONNECTIONOPTIONS
Added in version 7.6.0.

This keyword allows to define connection options expressed as key / value pairs. This is currently only imple-
mented for CONNECTIONTYPE OGR or raster layers, to pass open options to GDAL/OGR drivers.

Example for a GeoJSON datasource to specify the FLATTEN_NESTED_ATTRIBUTES open option of the
OGR GeoJSON driver.

CONNECTIONOPTIONS
"FLATTEN_NESTED_ATTRIBUTES" "YES"

END

See also:
rfc125

CONNECTIONTYPE
[contour|kerneldensity|local|ogr|oraclespatial|plugin|postgis|sde|union|uvraster|wfs|wms]

Type of connection. Default is local. See additional documentation for any other type.
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See also:
Vector Data for specific connection information for various data sources. See Union Layer for combining layers,
added in MapServer 6.0

See also:
See Kernel Density Estimation (Dynamic Heatmap) for specific connection information for kernel density esti-
mation.

Note: mygis is another connectiontype, but it is deprecated; please see the MySQL section of the Vector Data
document for connection details.

DATA [filename]|[sde parameters][postgis table/column][oracle table/column]
Full filename of the spatial data to process. No file extension is necessary for shapefiles. Can be specified relative
to the SHAPEPATH option from the Map Object.

If this is an SDE layer, the parameter should include the name of the layer as well as the geometry column, i.e.
“mylayer,shape,myversion”.

If this is a PostGIS layer, the parameter should be in the form of “<columnname> from <tablename>”, where
“columnname” is the name of the column containing the geometry objects and “tablename” is the name of the
table from which the geometry data will be read.

For Oracle, use “shape FROM table” or “shape FROM (SELECT statement)” or even more complex Oracle
compliant queries! Note that there are important performance impacts when using spatial subqueries however.
Try using MapServer’s FILTER whenever possible instead. You can also see the SQL submitted by forcing an
error, for instance by submitting a DATA parameter you know won’t work, using for example a bad column name.

In a standard use case, when PostGIS, SpatiaLite, or GeoPackage are used as data source the BBOX filter (bound-
ing boxes intersect, && with PostGIS) is used automatically. However in some rare use case, a subquery can
be very time consuming if data is really important as the final data will be filtered only in the query. In order to
filter data sooner, ie before the final query, one can filter data directly in the subquery using the !BOX! variable:
WHERE ST_Intersects(wkb_geometry,!BOX!).

See also:
Vector Data for specific connection information for various data sources.

DEBUG [off|on|0|1|2|3|4|5]
Enables debugging of a layer in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debugging
output. Here is a description of the possible DEBUG values:

• DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x
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• DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WFS servers, etc.)

• DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

• DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLs being called, database connection calls, etc. This is the recommended level for debugging
mapfiles.

• DEBUG 4 - DEBUG 3 plus even more details. . .

• DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for the entire map, by setting the DEBUG parameter in the MAP object.

For more details on this debugging mechanism, please see Debugging MapServer.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (–with-debug configure
option).

DUMP [true|false]
Deprecated since version 6.0: use LAYER METADATA instead.

Switch to allow MapServer to return data in GML format. Useful when used with WMS GetFeatureInfo opera-
tions. “false” by default.

See also:
WMS Server

ENCODING [string]
Added in version 7.0.

The encoding used for text in the layer data source. The value must be supported by ICONV (for example
“LATIN1”). When ENCODING is set (and not equal to “UTF-8”), the data source text attributes will be converted
to UTF-8.

Required for displaying international characters in MapServer. More information can be found in the Label
Encoding document.

EXTENT [minx] [miny] [maxx] [maxy]
The spatial extent of the data. In most cases you will not need to specify this, but it can be used to avoid the
speed cost of having MapServer compute the extents of the data. An application can also possibly use this value
to override the extents of the map.

FEATURE
Signals the start of a FEATURE object.

FILTER [string]

This parameter allows for data specific attribute filtering that is done at the same time spatial filtering is
done, but before any CLASS expressions are evaluated. The string is simply a MapServer expression:

FILTER ("[type]"='road' and [size]<2)
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Native filters are supported through the NATIVE_FILTER PROCESSING key:

PROCESSING 'NATIVE_FILTER=id=234'

Note: Until MapServer 6, native filters could be specified as:

FILTER 'where id=234'.

But this is no longer supported.

FILTERITEM [attribute]
Item to use with simple FILTER expressions. OGR and shapefiles only.

FOOTER [filename]
Template to use after a layer’s set of results have been sent. Multiresult query modes only.

GEOMTRANSFORM [<expression>|<Javascript file>]
Added in version 6.4.

Used to indicate that the current feature will be transformed.

• <expression>: Applies the given expression to the geometry.

Supported expressions:

– (buffer([shape],dist)): Buffer the geometry ([shape]) using dist ground units as buffer distance. For
polygons, a negative dist will produce a setback.

– (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-Peucker
algorithm.

– (simplifypt([shape], tolerance)): simplifies a geometry ([shape]), ensuring that the result is a valid
geometry having the same dimension and number of components as the input. tolerance must be
non-negative.

– (generalize([shape],tolerance)): simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

– (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geometry
([shape]) using the SIA algorithm

See also:
GEOMTRANSFORM - Geometry Transformations and shape_smoothing

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive
ground coordinates (meters, degress, etc) and STYLE-level will receive pixel coordinates. The argument
to methods such as simplify() must be in the same units as the coordinates of the shapes at that point of the
rendering workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM (simplify([shape], 10)) ## 10 ground units
CLASS

STYLE
GEOMTRANSFORM (buffer([shape], 5) ## 5 pixels
WIDTH 2

(continues on next page)
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(continued from previous page)

COLOR 255 0 0
END

END
END

The [map_cellsize] variable is available if you need to pass a pixel value at the LAYER-level.

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
UNITS meters
# 10 * [map_cellsize] == 10 pixels converted to ground units
GEOMTRANSFORM (simplify([shape], [map_cellsize]*10))

...

To get this variable working in the math expression parser, the [map_cellsize] has to be converted into the
layer ground unit. If you choose to use [map_cellsize] in your GEOMTRANSFORM expression, you must
explicitly set the UNITS option in the layer.

• <Javascript file>: A Javascript file that returns a new geometry. See Javascript transformation.

Added in version 7.0.

LAYER
...
GEOMTRANSFORM "javascript://transform.js" # relative path

END

or

LAYER
...
GEOMTRANSFORM "javascript:///home/user/transform.js" # absolute path

END

Note: Requires V8 MapScript Support.

See also:
GEOMTRANSFORM - Geometry Transformations

GRID
Signals the start of a GRID object.

GROUP [name]
Name of a group that this layer belongs to. The group name can then be reference as a regular layer name in the
template files, allowing to do things like turning on and off a group of layers at once.

If a group name is present in the LAYERS parameter of a CGI request, all the layers of the group are returned
(the STATUS of the LAYERs have no effect).

HEADER [filename]
Template to use before a layer’s set of results have been sent. Multiresult query modes only.
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JOIN
Signals the start of a JOIN object.

LABELANGLEITEM [attribute]
Removed in version 5.0: Please see the LABEL object’s ANGLE parameter instead.

For MapServer versions < 5.0, this is the item name in attribute table to use for class annotation angles. Values
should be in degrees.

LABELCACHE [on|off]
Specifies whether labels should be drawn as the features for this layer are drawn, or whether they should be
cached and drawn after all layers have been drawn. Default is on. Label overlap removal, auto placement etc. . .
are only available when the label cache is active.

LABELITEM [attribute]
Item name in attribute table to use for class annotation (i.e. labeling).

LABELMAXSCALEDENOM [double]
Minimum scale at which this LAYER is labeled. Scale is given as the denominator of the actual scale fraction,
for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
LABELMAXSCALE parameter.

See also:
Map Scale

LABELMINSCALEDENOM [double]
Maximum scale at which this LAYER is labeled. Scale is given as the denominator of the actual scale fraction,
for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
LABELMINSCALE parameter.

See also:
Map Scale

LABELREQUIRES [expression]
Sets context for labeling this layer, for example:

LABELREQUIRES "![orthoquads]"

means that this layer would NOT be labeled if a layer named “orthoquads” is on. The expression consists of
a boolean expression based on the status of other layers, each [layer name] substring is replaced by a 0 or a 1
depending on that layer’s STATUS and then evaluated as normal. Logical operators AND and OR can be used.

LABELSIZEITEM [attribute]
Removed in version 5.0: Please see the LABEL object’s SIZE parameter instead.

For MapServer versions < 5.0, this is the item name in attribute table to use for class annotation sizes. Values
should be in pixels.

MASK [layername]
The data from the current layer will only be rendered where it intersects features from the [layername] layer.
[layername] must reference the NAME of another LAYER defined in the current mapfile. can be any kind of
mapserver layer, i.e. vector or raster. If the current layer has labelling configured, then only labels who’s label-
point fall inside the unmasked area will be added to the labelcache (the actual glyphs for the label may be rendered
ontop of the masked-out area.

Note: Unless you want the features of [layername] to actually appear on the generated map, [layername] should
usually be set to STATUS OFF.

4.1. Mapfile 215



MapServer Documentation, Release 7.6.6

See also:
rfc79

MAXFEATURES [integer]
Specifies the number of features that should be drawn for this layer in the CURRENT window. Has some inter-
esting uses with annotation and with sorted data (i.e. lakes by area).

MAXGEOWIDTH [double]
Added in version 5.4.0.

Maximum width, in the map’s geographic units, at which this LAYER is drawn. If MAXSCALEDENOM is also
specified then MAXSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

MAXSCALEDENOM [double]
Added in version 5.0.0: Replaced MAXSCALE.

Minimum scale at which this LAYER is drawn. Scale is given as the denominator of the actual scale fraction,
for example for a map at a scale of 1:24,000 use 24000.

See also:
Map Scale

METADATA
This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS to define
things such as layer title. It can also allow more flexibility in creating templates, as anything you put in here will
be accessible via template tags.

Example:

METADATA
"title" "My layer title"
"author" "Me!"

END

MINGEOWIDTH [double]
Added in version 5.4.0.

Minimum width, in the map’s geographic units, at which this LAYER is drawn. If MINSCALEDENOM is also
specified then MINSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

MINSCALEDENOM [double]
Maximum scale at which this LAYER is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
MINSCALE parameter.

See also:
Map Scale

NAME [string]
Short name for this layer. This name is the link between the mapfile and web interfaces that refer to this name.
They must be identical. The name should be unique, unless one layer replaces another at different scales. Use the
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GROUP option to associate layers with each other. It is recommended that the name not contain spaces, special
characters, or begin with a number (which could cause problems through interfaces such as OGC services).

OFFSITE [r] [g] [b] | [hexadecimal string]
Sets the color index to treat as transparent for raster layers.

• r, g and b shall be integers [0..255]. To specify black pixels, the following is used:

OFFSITE 0 0 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OFFSITE "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OFFSITE "#FF00FFCC"

OPACITY [integer|alpha]

Deprecated since version 7.0: Use a COMPOSITE block instead.

PLUGIN [filename]
Additional library to load by MapServer, for this layer. This is commonly used to load specific support for SDE
and Microsoft SQL Server layers, such as:

CONNECTIONTYPE PLUGIN
CONNECTION "hostname,port:xxx,database,username,password"
PLUGIN "C:/ms4w/Apache/specialplugins/msplugin_sde_92.dll"
DATA "layername,geometrycolumn,SDE.DEFAULT"

POSTLABELCACHE [true|false]
Tells MapServer to render this layer after all labels in the cache have been drawn. Useful for adding neatlines
and similar elements. Default is false.

PROCESSING [string]
Passes a processing directive to be used with this layer. The supported processing directives vary by layer type,
and the underlying driver that processes them.

• ArcSDE Directives - All ArcSDE processing options are described in ArcSDE. Here are two examples.

PROCESSING "QUERYORDER=ATTRIBUTE"
PROCESSING "OBJECTID=OBJECTID"

• Attributes Directive - The ITEMS processing option allows to specify the name of attributes for inline
layers or specify the subset of the attributes to be used by the layer, such as:

PROCESSING "ITEMS=itemname1,itemname2,itemname3"

• Clustering - cluster object directives are described in CLUSTER

PROCESSING "CLUSTER_GET_ALL_SHAPES=ON"
PROCESSING "CLUSTER_KEEP_LOCATIONS=ON"
PROCESSING "CLUSTER_USE_MAP_UNITS=ON"
PROCESSING "ITEMS=attribute1,attribute2,attribute3"
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• Connection Pooling Directive - This is where you can enable connection pooling for certain layer layer
types. Connection pooling will allow MapServer to share the handle to an open database or layer connection
throughout a single map draw process. Additionally, if you have FastCGI enabled, the connection handle
will stay open indefinitely, or according to the options specified in the FastCGI configuration. Oracle
Spatial, ArcSDE, OGR Vector Layers Through MapServer and PostGIS/PostgreSQL currently support this
approach. “DEFER” enables connection pooling; “ALWAYS” will always close the connection after use,
and will also not try to reuse a shared connection from the pool that might come from another layer.

PROCESSING "CLOSE_CONNECTION=DEFER"

or

PROCESSING "CLOSE_CONNECTION=ALWAYS"

• Contour Directives - contour directives are described in Contour.

PROCESSING "BANDS=1"
PROCESSING "CONTOUR_INTERVAL=5"
PROCESSING "CONTOUR_LEVELS=100,500,1000"
PROCESSING "CONTOUR_ITEM=elevation"

• Kernel density radius
Added in version 7.0.

Radius in pixels of the gaussian filter to apply to the bitmap array once all features have been accumulated.
Higher values result in increased cpu time needed to compute the filtered data.

PROCESSING "KERNELDENSITY_RADIUS=10"

• Kernel density compute borders
Added in version 7.0.

A kernel of radius “r” cannot be applied to “r” pixels along the borders of the image. The default is to extend
the search rectangle of the input datasource to include features “r” pixels outside of the current map extent
so that the computed heatmap extends to the full extent of the resulting image. This can be deactivated
when tiling if the tiling software applies a metabuffer of “r” pixels to its requests, to avoid the performance
overhead of computing this extra information.

PROCESSING "KERNELDENSITY_COMPUTE_BORDERS=ON|OFF"

• Kernel density normalization
Added in version 7.0.

If set to “AUTO”, the created raster band will be scaled such that its intensities range from 0 to 255, in
order to fully span the configured color ramp. Such behavior may not be desirable (typically for tiling) as
the resulting intensity of a pixel at a given location will vary depending on the extent of the current map
request. If set to a numeric value, the samples will be multiplied by the given value. It is up to the user to
determine which scaling value to use to make the resulting pixels span the full 0-255 range; determining
that value is mostly a process of trial and error. Pixels that fall outside the 0-255 range will be clipped to 0
or 255.

PROCESSING "KERNELDENSITY_NORMALIZATION=AUTO|numeric"

• Raster colour ramping
Added in version 7.0.
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RANGE_COLORSPACE=RGB|HSL - The default RANGE support interpolates colors between stops in
RGB space, which usually results in washed out colors. The interpolation can be done in HSL space which
usually results in wanted output for heatmaps.

PROCESSING "RANGE_COLORSPACE=HSL"

• Label Directive - The LABEL_NO_CLIP processing option can be used to skip clipping of shapes when
determining associated label anchor points. This avoids changes in label position as extents change between
map draws. It also avoids duplicate labels where features appear in multiple adjacent tiles when creating
tiled maps.

PROCESSING "LABEL_NO_CLIP=True"

• Line Rendering Directive - The POLYLINE_NO_CLIP processing option can be used to skip clipping of
shapes when rendering styled lines (dashed or styled with symbols). This avoids changes in the line styling
as extents change between map draws. It also avoids edge effects where features appear in multiple adjacent
tiles when creating tiled maps.

PROCESSING "POLYLINE_NO_CLIP=True"

• Class Rendering Directive
Added in version 7.6.

The RENDERMODE processing option specifies how classes are selected for rendering a layer. Default
value, and historic behaviour, is FIRST_MATCHING_CLASS: only the first applicable class is selected to
render a feature (see CLASS description). The other available value is ALL_MATCHING_CLASSES: all
applicable classes are used to render a feature, each one being used on top of the previous ones. This is the
default behaviour with SLD styles.

PROCESSING "RENDERMODE=ALL_MATCHING_CLASSES"

• OGR Styles Directive - This directive can be used for obtaining label styles through MapScript. For more
information see the MapServer’s OGR document.

PROCESSING "GETSHAPE_STYLE_ITEMS=all"

• MSSQL specific options - MSSQL_READ_WKB=TRUE - Uses WKB (Well Known Binary) format in-
stead of native format when fetching geometries.

PROCESSING "MSSQL_READ_WKB=TRUE"

• Native filter Directive
Added in version 7.0.

This directive can be used to do driver specific filtering. For database connections the string is a SQL
WHERE clause that is valid with respect to the underlying database.

PROCESSING "NATIVE_FILTER=id=234"

• PostGIS specific options - FORCE2D=YES can be used to force 2D only geometries to be retrieved from
PostGIS.

PROCESSING "FORCE2D=YES"
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• Vector field specific rendering options - UV_SPACING: The spacing is the distance, in pixels, between
arrows to be displayed in the vector field. Default is 32. UV_SIZE_SCALE: Used to convert the vector
lengths (magnitude) of the raster to pixels for a better rendering. Default is 1.

PROCESSING "UV_SPACING=40"
PROCESSING "UV_SIZE_SCALE=0.2"

• AGG renderer tweaking - This directive can be used for setting the linear gamma to be used when render-
ing polygon features. The default value of 0.75 (that can be overridden at the OUTPUTFORMAT level) can
be set to a lower value to limit/remove the faint outlines that appear between adjacent polygons. A value of
0.5 is usually good enough.

PROCESSING "GAMMA=0.5"

• Raster Directives - All raster processing options are described in Raster Data. Here we see the SCALE
and BANDs directives used to autoscale raster data and alter the band mapping.

PROCESSING "SCALE=AUTO"
PROCESSING "BANDS=3,2,1"

• Union layer Directives - The following processing options can be used with the union layers:
UNION_STATUS_CHECK (TRUE or FALSE) - controls whether the status of the source layes should
be checked and the invisible layers (STATUS=OFF) should be skipped. Default value is FALSE.
UNION_SCALE_CHECK (TRUE or FALSE) - controls whether the scale range of the source layes should
be checked and the invisible layers (falling outside of the scale range and zoom range) should be skipped.
Default value is TRUE. UNION_SRCLAYER_CLOSE_CONNECTION - override the connection pool
setting of the source layers. By introducing this setting we alter the current behaviour which is equivalent
to: “UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS”

PROCESSING "UNION_STATUS_CHECK=FALSE"
PROCESSING "UNION_SCALE_CHECK=TRUE"
PROCESSING "UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS"

PROJECTION
Signals the start of a PROJECTION object.

REQUIRES [expression]
Sets context for displaying this layer (see LABELREQUIRES).

An example could be that you have a states_poly layer that you want turned off whenever a modis layer is turned
on; in this case you would set the REQUIRES parameter in the states_poly layer such as:

LAYER
NAME "states_poly"
TYPE POLYGON
REQUIRES "![modis]"
...

with REQUIRES:
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without REQUIRES

The REQUIRES setting should affect all modes (confirmed through testing is: mode=map, WMS GetMap, Map-
Script, and shp2img commandline).

SCALETOKEN
Added in version 6.4.

Signals the start of a SCALETOKEN object. Allows scale dependent string substitutions. See rfc86.

LAYER
...
SCALETOKEN
NAME "%pri%"
VALUES

"0" "1"
(continues on next page)
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(continued from previous page)

"1000" "2"
"10000" "3"

END # VALUES
END # SCALETOKEN
# data from a specific table:
DATA "geom from mytable_%pri%"
# data from a specific Shapefile format dataset:
DATA "/path/to/roads_%pri%.shp"
# data from a specific column in the table:
DATA "geom_%pri% from roads"
# filtering:
DATA "geom_%pri% from (select * from roads where pri > %pri%) as foo"
CLASS
...

END # CLASS
END # LAYER

In the previous example, %pri% would be replaced by:

• “1” for scale denominators smaller than 1,000, giving:

DATA "geom from mytable_1"
DATA "/path/to/roads_1.shp"
DATA "geom_1 from roads"
DATA "geom_1 from (select * from roads where pri > 1) as foo"

• “2” for scale denominators between 1,000 and 10,000:

DATA "geom from mytable_2"
DATA "/path/to/roads_2.shp"
DATA "geom_2 from roads"
DATA "geom_2 from (select * from roads where pri > 2) as foo"

• “3” for scale denominators larger than 10,000:

DATA "geom from mytable_3"
DATA "/path/to/roads_3.shp"
DATA "geom_3 from roads"
DATA "geom_3 from (select * from roads where pri > 3) as foo"

SIZEUNITS [feet|inches|kilometers|meters|miles|nauticalmiles|pixels]
Sets the unit of STYLE object SIZE values (default is pixels). Useful for simulating buffering. nauticalmiles was
added in MapServer 5.6.

STATUS [on|off|default]
Sets the current status of the layer. Often modified by MapServer itself. Default turns the layer on permanently.

Note: In CGI mode, layers with STATUS DEFAULT cannot be turned off using normal mechanisms. It is
recommended to set layers to STATUS DEFAULT while debugging a problem, but set them back to ON/OFF in
normal use.
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Note: For WMS, layers in the server mapfile with STATUS DEFAULT are always sent to the client.

Note: The STATUS of the individual layers of a GROUP has no effect when the group name is present in the
LAYERS parameter of a CGI request - all the layers of the group will be returned.

STYLEITEM [<attribute>|auto|<javascript file>]
Styling based on attributes or generated with Javascript

• <attribute>: Item to use for feature specific styling. The style information may be represented by a separate
attribute (style string) attached to the feature. MapServer supports the following style string representations:

– MapServer STYLE definition - The style string can be represented as a MapServer STYLE block
according to the following example:

STYLE BACKGROUNDCOLOR 128 0 0 COLOR 0 0 208 END

– MapServer CLASS definition - By specifying the entire CLASS instead of a single style allows to
use further options (like setting expressions, label attributes, multiple styles) on a per feature basis.

– OGR Style String - MapServer support rendering the OGR style string format according to the OGR -
Feature Style Specification documentation. Currently only a few data sources support storing the styles
along with the features (like MapInfo, AutoCAD DXF, Microstation DGN), however those styles can
easily be transferred to many other data sources as a separate attribute by using the ogr2ogr command
line tool as follows:

ogr2ogr -sql "select *, OGR_STYLE from srclayer" "dstlayer" "srclayer"

• AUTO: The value: AUTO can be used for automatic styling.

– Automatic styling can be provided by the driver. Currently, only the OGR driver supports automatic
styling.

– When used for a Union Layer, the styles from the source layers will be used.

• <Javascript file>:

Added in version 6.6.

A Javascript file that returns a new string containing either a STYLE definition or a CLASS definition with
one or multiple styles. See STYLEITEM Javascript.

LAYER
...
STYLEITEM "javascript://myscript.js" # relative path
CLASS
END

END

or

LAYER
...
STYLEITEM "javascript:///home/user/myscript.js" # absolute path
CLASS

(continues on next page)
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END
END

Note: Requires V8 MapScript Support.

SYMBOLSCALEDENOM [double]
The scale at which symbols and/or text appear full size. This allows for dynamic scaling of objects based on the
scale of the map. If not set then this layer will always appear at the same size. Scaling only takes place within
the limits of MINSIZE and MAXSIZE as described above. Scale is given as the denominator of the actual scale
fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the
deprecated SYMBOLSCALE parameter.

See also:
Map Scale

TEMPLATE [file|url]
Used as a global alternative to CLASS TEMPLATE. See Templating for more info.

TILEINDEX [filename|layername]
Name of the tileindex file or layer. A tileindex is similar to an ArcInfo library index. The tileindex contains
polygon features for each tile. The item that contains the location of the tiled data is given using the TILEITEM
parameter. When a file is used as the tileindex for shapefile or raster layers, the tileindex should be a shapefile.
For CONNECTIONTYPE OGR layers, any OGR supported datasource can be a tileindex. Normally the location
should contain the path to the tile file relative to the shapepath, not relative to the tileindex itself. If the DATA
parameter contains a value then it is added to the end of the location. When a tileindex layer is used, it works
similarly to directly referring to a file, but any supported feature source can be used (ie. postgres, oracle).

Note: All files in the tileindex should have the same coordinate system, and for vector files the same set of
attributes in the same order.

Note: Starting with MapServer 6.4 for raster layers and MapServer 7.2 for vector layers, tileindexes with tiles
of different projections can be used. For that, the TILESRS parameter must be specified.

TILEITEM [attribute]
Item that contains the location of an individual tile, default is “location”.

TILESRS [attribute]
Name of the attribute that contains the SRS of an individual tile. That SRS can be expressed in WKT format, as
an EPSG:XXXX code or as a PROJ string. If the tileindex contains rasters in different projections, this option
must be specified. If the tileindex has been generated with gdaltindex (GDAL >= 2.0) or ogrtindex (GDAL >=
2.2), the value of TILESRS is the value of the -src_srs_name option of gdaltindex/ogrtindex. See Tileindexes
with tiles in different projections

Note: This option is currently available only on raster layers.

TOLERANCE [double]
Sensitivity for point based queries (i.e. via mouse and/or map coordinates). Given in TOLERANCEUNITS. If
the layer is a POINT or a LINE, the default is 3. For all other layer types, the default is 0. To restrict polygon
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searches so that the point must occur in the polygon set the tolerance to zero. This setting does not apply to WFS
GetFeature operations.

TOLERANCEUNITS [pixels|feet|inches|kilometers|meters|miles|nauticalmiles|dd]
Units of the TOLERANCE value. Default is pixels. Nauticalmiles was added in MapServer 5.6.

TRANSPARENCY [integer|alpha] - deprecated

Deprecated since version 5.0: Use OPACITY instead.

Deprecated since version 7.0: Use COMPOSITE instead.

TRANSFORM [true|false] | [ul|uc|ur|cl|cc|cr|ll|lc|lr]
Tells MapServer whether or not a particular layer needs to be transformed from some coordinate system to image
coordinates. Default is true. This allows you to create shapefiles in image/graphics coordinates and therefore
have features that will always be displayed in the same location on every map. Ideal for placing logos or text in
maps. Remember that the graphics coordinate system has an origin in the upper left hand corner of the image,
contrary to most map coordinate systems.

Version 4.10 introduces the ability to define features with coordinates given in pixels (or percentages, see UNITS),
most often inline features, relative to something other than the UL corner of an image. That is what ‘TRANS-
FORM FALSE’ means. By setting an alternative origin it allows you to anchor something like a copyright
statement to another portion of the image in a way that is independent of image size.

TYPE [chart|circle|line|point|polygon|raster|query]
Specifies how the data should be drawn. Need not be the same as the shapefile type. For example, a polygon
shapefile may be drawn as a point layer, but a point shapefile may not be drawn as a polygon layer. Common
sense rules.

In order to differentiate between POLYGONs and POLYLINEs (which do not exist as a type), simply respectively
use or omit the COLOR keyword when classifying. If you use it, it’s a polygon with a fill color, otherwise it’s a
polyline with only an OUTLINECOLOR.

A circle must be defined by a a minimum bounding rectangle. That is, two points that define the smallest square
that can contain it. These two points are the two opposite corners of said box. The following is an example using
inline points to draw a circle:

LAYER
NAME 'inline_circles'
TYPE CIRCLE
STATUS ON
FEATURE
POINTS

74.01 -53.8
110.7 -22.16

END
END
CLASS
STYLE
COLOR 0 0 255

END
END

END

TYPE query means the layer can be queried but not drawn.

Note: TYPE annotation has been deprecated since version 6.2. Identical functionality can be obtained by adding
LABEL level STYLE blocks, and do not require loading the datasets twice in two different layers as was the case
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with layers of TYPE annotation.

See also:
The Dynamic Charting HowTo for TYPE chart.

UNITS [dd|feet|inches|kilometers|meters|miles|nauticalmiles|percentages|pixels]
Units of the layer. percentages (in this case a value between 0 and 1) was added in MapServer 4.10 and is mostly
geared for inline features. nauticalmiles was added in MapServer 5.6.

UTFDATA [string]
Added in version 7.0.

A UTFGrid JSON template. MapServer expression syntax (expressionObj). If no UTFDATA is provided, no
data beyond the UTFITEM values will be exposed. If UTFITEM is set, the UTFDATA expose those so that keys
and data can be connected. See rfc93 and UTFGrid Output.

UTFDATA "{\"id\":\"[fid]\", \"name\":\"[name]\", \"area\":\"[area]\"}"

UTFITEM [string]
Added in version 7.0.

The attribute to use as the ID for the UTFGrid. If a UTFITEM is not set, the sequential id (based on rendering
order) is being used. If UTFITEM is set, the UTFDATA expose those so that keys and data can be connected.
See rfc93 and UTFGrid Output.

UTFITEM "fid"

VALIDATION
Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1.15 LEADER

Table of Contents

• LEADER

– Description

– Supported Layer Types

– Mapfile Parameters

– Mapfile Snippet

– Example: World Countries Labels
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Description

Since version 6.2, MapServer has the ability to draw label lines to features where space is an issue for the label (often
when the label text is larger than the polygon being labelled). This feature was added through rfc81.

Supported Layer Types

POINT, LINE, POLYGON

Mapfile Parameters

GRIDSTEP [integer]
Specifies the number of pixels between positions that are tested for a label line. You might start with a value of
5, and increase depending on performance (see example below).

MAXDISTANCE [integer]
Specifies the maximum distance in pixels from the normal label location that a leader line can be drawn. You
might start with a value of 30, and increase depending on the resulting placement (see example below).

STYLE
Signals the start of a STYLE object. Use this to style the leader line.

Mapfile Snippet

LAYER
NAME "my-labels"
TYPE POLYGON
...
CLASS
...
LABEL
...
END
LEADER
GRIDSTEP 5 # number of pixels between positions that are tested
MAXDISTANCE 30 # distance in pixels that leader text can be drawn
STYLE # normal line styles are supported
COLOR 255 0 0
WIDTH 1

END
END

END
END
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Example: World Countries Labels

The following example uses a polygon layer to display country labels.

Note: The data and mapfile for this example are available for download at: https://download.osgeo.org/mapserver/
tickets/label-leader.zip (11MB).

Mapfile Example #1

MAP

NAME "leader-test"
STATUS ON
SIZE 800 600
SYMBOLSET "../etc/symbols.txt"
EXTENT -43 10 83 83
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END

#
# Start of layer definitions
#

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
DATA "world_countries-dissolve.shp"
LABELITEM "NA2DESC"
CLASS
NAME "World Countries"
STYLE
COLOR 200 200 200
OUTLINECOLOR 120 120 120

END
LABEL
COLOR 0 0 0
FONT sans
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE

(continues on next page)
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(continued from previous page)

OUTLINECOLOR 255 255 255
MINFEATURESIZE 2
MINDISTANCE 1000
BUFFER 5
END
################################
# Leader Object
################################
LEADER
GRIDSTEP 40
MAXDISTANCE 1000
STYLE
COLOR 200 100 100
WIDTH 2

END
END

END
END

END # Map File
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Map Image

Mapfile Example #2

This time use a shorter maximum leader line (MAXDISTANCE) and increase the number of tests (GRIDSTEP).

MAP

LAYER
...
CLASS
...
LABEL
...
END
################################
# Leader Object
################################
LEADER
GRIDSTEP 10
MAXDISTANCE 100

(continues on next page)

4.1. Mapfile 230



MapServer Documentation, Release 7.6.6

(continued from previous page)

STYLE
COLOR 200 100 100
WIDTH 2

END
END

END
END

END # Map File

Map Image
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4.1.16 LEGEND

The size of the legend image is NOT known prior to creation so be careful not to hard-code width and height in the
<IMG> tag in the template file.

IMAGECOLOR [r] [g] [b] | [hexadecimal string]
Color to initialize the legend with (i.e. the background).

• r, g and b shall be integers [0..255]. To specify green, the following is used:

IMAGECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

IMAGECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

IMAGECOLOR "#FF00FFCC"

INTERLACE [on|off]
Deprecated since version 4.6.

Default is [on]. This keyword is now deprecated in favor of using the FORMATOPTION “INTERLACE=ON”
line in the OUTPUTFORMAT declaration.

KEYSIZE [x][y]
Size of symbol key boxes in pixels. Default is 20 by 10.

KEYSPACING [x][y]
Spacing between symbol key boxes ([y]) and labels ([x]) in pixels. Default is 5 by 5.

LABEL
Signals the start of a LABEL object

OUTLINECOLOR [r] [g] [b] | [hexadecimal string]
Color to use for outlining symbol key boxes.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OUTLINECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OUTLINECOLOR "#FF00FFCC"

POSITION [ul|uc|ur|ll|lc|lr]
Where to place an embedded legend in the map. Default is lr.
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POSTLABELCACHE [true|false]
Tells MapServer to render this legend after all labels in the cache have been drawn. Useful for adding neatlines
and similar elements. Default is false.

STATUS [on|off|embed]
Is the legend image to be created.

TEMPLATE [filename]
HTML legend template file.

See also:
HTML Legends with MapServer

TRANSPARENT [on|off]
Deprecated since version 4.6.

Should the background color for the legend be transparent. This flag is now deprecated in favor of declaring
transparency within OUTPUTFORMAT declarations. Default is off.

4.1.17 MAP

Note: The map object is started with the word MAP, and ended with the word END.

ANGLE [double]
Angle, given in degrees, to rotate the map. Default is 0. The rendered map will rotate in a clockwise direction.
The following are important notes:

• Requires a PROJECTION object specified at the MAP level and for each LAYER object (even if all layers
are in the same projection).

• Requires MapScript (SWIG, PHP MapScript). Does not work with CGI mode.

• If using the LABEL object’s ANGLE or the LAYER object’s LABELANGLEITEM parameters as well, these
parameters are relative to the map’s orientation (i.e. they are computed after the MAP object’s ANGLE).
For example, if you have specified an ANGLE for the map of 45, and then have a layer LABELANGLEITEM
value of 45, the resulting label will not appear rotated (because the resulting map is rotated clockwise 45
degrees and the label is rotated counter-clockwise 45 degrees). Note that a missing ANGLE or a value set
to 0 means that map rotation is ignored. (so if wanting to have a zero relative angle relative to the map
rotation, use an almost zero value like 0.0001)

• Starting with MapServer 7.2, if using the STYLE . ANGLE parameter of a ponctual symbol, that parameter
is relative to the map’s orientation (i.e. it is computed after the MAP object’s ANGLE). For example, if you
have specified an ANGLE for the map of 45, and then have a symbol ANGLE value of 45, the resulting label
will not appear rotated (because the resulting map is rotated clockwise 45 degrees and the label is rotated
counter-clockwise 45 degrees). Note that a missing ANGLE or a value set to 0 means that map rotation is
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ignored. (so if wanting to have a zero relative angle relative to the map rotation, use an almost zero value
like 0.0001)

• More information can be found on the MapRotation Wiki Page.

CONFIG [key] [value]
This can be used to specify several values at run-time, for both MapServer and GDAL/OGR libraries. Developers:
values will be passed on to CPLSetConfigOption(). Details on GDAL/OGR options are found in their associated
driver documentation pages (GDAL/OGR). The following options are available specifically for MapServer:

CGI_CONTEXT_URL [value]
This CONFIG parameter can be used to enable loading a map context from a URL. See the Map Context
HowTo for more info.

MS_ENCRYPTION_KEY [filename]
This CONFIG parameter can be used to specify an encryption key that is used with MapServer’s msencypt
utility.

MS_ERRORFILE [filename]
This CONFIG parameter can be used to write MapServer errors to a file (as of MapServer 5.0). With
MapServer 5.x, a full path (absolute reference) is required, including the filename. Starting with MapServer
6.0, a filename with relative path can be passed via this CONFIG directive, in which case the filename is
relative to the mapfile location. Note that setting MS_ERRORFILE via an environment variable always
requires an absolute path since there would be no mapfile to make the path relative to. For more on this see
the DEBUG parameter below.

MS_NONSQUARE [yes|no]
This CONFIG parameter can be used to allow non-square pixels (meaning that the pixels represent non-
square regions). For “MS_NONSQUARE” “yes” to work, the MAP, and each LAYER will have to have a
PROJECTION object.

Note: Has no effect for WMS.

ON_MISSING_DATA [FAIL|LOG|IGNORE]
This CONFIG parameter can be used to tell MapServer how to handle missing data in tile indexes
(as of MapServer 5.3-dev, r8015). Previous MapServer versions required a compile-time switch (“IG-
NORE_MISSING_DATA”), but this is no longer required.

FAIL
This will cause MapServer to throw an error and exit (to crash, in other words) on a missing file in a
tile index. This is the default.

CONFIG "ON_MISSING_DATA" "FAIL"

LOG
This will cause MapServer to log the error message for a missing file in a tile index, and continue
with the map creation. Note: DEBUG parameter and CONFIG “MS_ERRORFILE” need to be set for
logging to occur, so please see the DEBUG parameter below for more information.

CONFIG "ON_MISSING_DATA" "LOG"

IGNORE
This will cause MapServer to not report or log any errors for missing files, and map creation will occur
normally.

CONFIG "ON_MISSING_DATA" "IGNORE"
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PROJ_LIB [path]
This CONFIG parameter can be used to define the location of your EPSG files for the PROJ library. Setting
the [key] to PROJ_LIB and the [value] to the location of your EPSG files will force PROJ to use this value.
Using CONFIG allows you to avoid setting environment variables to point to your PROJ_LIB directory.
Here are some examples:

1. Unix

CONFIG "PROJ_LIB" "/usr/local/share/proj/"

2. Windows

CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"

PROJ_DEBUG [ON|OFF]
Turn on PROJ debugging. See Debugging MapServer for more details.

DATAPATTERN [regular expression]

Deprecated since version 5.4: See VALIDATION instead

This defines a regular expression to be applied to requests to change DATA parameters via URL requests
(i.e. map.layer[layername]=DATA+. . . ). If a pattern doesn’t exist then web users can’t monkey with sup-
port files via URLs. This allows you to isolate one application from another if you desire, with the default
operation being very conservative. See also TEMPLATEPATTERN .

DEBUG [off|on|0|1|2|3|4|5]
Enables debugging of all of the layers in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debugging
output. Here is a description of the possible DEBUG values:

• DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x.

• DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WFS servers, etc.).

• DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications.

• DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLs being called, database connection calls, etc. This is the recommended level for debugging
mapfiles.

• DEBUG 4 - DEBUG 3 plus even more details. . .
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• DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for a layer, by setting the DEBUG parameter in the LAYER object.

For more details on this debugging mechanism, please see the Debugging MapServer document.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (–with-debug configure
option).

DEFRESOLUTION [double]
Added in version 5.6.

Sets the reference resolution (pixels per inch) used for symbology. Default is 72.

Used to automatically scale the symbology when RESOLUTION is changed, so the map maintains the same look
at each resolution. The scale factor is RESOLUTION / DEFRESOLUTION.

EXTENT [minx] [miny] [maxx] [maxy]
The spatial extent of the map to be created. In most cases you will need to specify this, although MapServer can
sometimes (expensively) calculate one if it is not specified.

FONTSET [filename]
Filename of fontset file to use. Can be a path relative to the mapfile, or a full path.

IMAGECOLOR [r] [g] [b] | [hexadecimal string]
Color to initialize the map with (i.e. background color). When transparency is enabled (TRANSPARENT ON
in OUTPUTFORMAT ) for the typical case of 8-bit pseudocolored map generation, this color will be marked as
transparent in the output file palette. Any other map components drawn in this color will also be transparent, so
for map generation with transparency it is best to use an otherwise unused color as the background color.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

IMAGECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

IMAGECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

IMAGECOLOR "#FF00FFCC"

IMAGEQUALITY [int]
Deprecated since version 4.6.

Deprecated Use FORMATOPTION “QUALITY=n” in the OUTPUTFORMAT declaration to specify com-
pression quality for JPEG output.

IMAGETYPE [jpeg|pdf|png|svg|. . . |userdefined]
Output format (raster or vector) to generate. The name used here must match the ‘NAME’ of a user defined or
internally available OUTPUTFORMAT . For a complete list of available IMAGEFORMATs, see the OUTPUT-
FORMAT section.
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INTERLACE [on|off]
Deprecated since version 4.6.

Deprecated Use FORMATOPTION “INTERLACE=ON” in the OUTPUTFORMAT declaration to specify if
the output images should be interlaced.

LAYER
Signals the start of a LAYER object.

LEGEND
Signals the start of a LEGEND object.

MAXSIZE [integer]
Sets the maximum size of the map image. This will override the default value. For example, setting this to 4096
means that you can have up to 4096 pixels in both dimensions (i.e. max of 4096x4096). Default is 4096 for
MapServer version >= 7.0.3 (for earlier versions the default was 2048).

NAME [name]
Prefix attached to map, scalebar and legend GIF filenames created using this mapfile. It should be kept short.

OUTPUTFORMAT
Signals the start of a OUTPUTFORMAT object.

PROJECTION
Signals the start of a PROJECTION object.

QUERYMAP
Signals the start of a QUERYMAP object.

REFERENCE
Signals the start of a REFERENCE MAP object.

RESOLUTION [double] Sets the pixels per inch for output, only affects
scale computations. Default is 72.

SCALEDENOM [double]
Computed scale of the map. Set most often by the application. Scale is given as the denominator of the actual
scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace
the deprecated SCALE parameter.

See also:
Map Scale

SCALEBAR
Signals the start of a SCALEBAR object.

SHAPEPATH [foldername]
Relative or absolute path to the directory holding the data files, for vector and raster formats (such as GeoPack-
ages, GEOJSON, SpatiaLite, Shapefiles, raster images, tiles, etc.). This path will be used to find the file specified
through the DATA or CONNECTION parameters. For relative paths, SHAPEPATH is relative to the mapfile lo-
cation. There can be further subdirectories under SHAPEPATH.

Here is an example using relative paths (where the DATA folder lives at the same level as the mapfile and the
DATA folder contains a SpatiaLite db) :

MAP
...
SHAPEPATH "./data"
...
LAYER

(continues on next page)
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(continued from previous page)

...
CONNECTIONTYPE OGR
CONNECTION "world.db"
DATA "lakes"
...

END #layer
END #mapfile

SIZE [x][y]
Size in pixels of the output image (i.e. the map).

STATUS [on|off]
Is the map active? Sometimes you may wish to turn this off to use only the reference map or scale bar.

SYMBOLSET [filename]
Filename of the symbolset to use. Can be a path relative to the mapfile, or a full path.

Note: The SYMBOLSET file must start with the word SYMBOLSET and end with the word END.

SYMBOL
Signals the start of a SYMBOL object.

TEMPLATEPATTERN [regular expression]

Deprecated since version 5.4: See VALIDATION instead

This defines a regular expression to be applied to requests to change the TEMPLATE parameters via URL
requests (i.e. map.layer[layername].template=. . . ). If a pattern doesn’t exist then web users can’t monkey
with support files via URLs. This allows you to isolate one application from another if you desire, with
the default operation being very conservative. See also DATAPATTERN .

TRANSPARENT [on|off]

Deprecated since version 4.6.

Use TRANSPARENT ON in the OUTPUTFORMAT declaration to specify if the output images should be
transparent.

UNITS [dd|feet|inches|kilometers|meters|miles|nauticalmiles]
Units of the map coordinates. Used for scalebar and scale computations. Nauticalmiles was added in MapServer
5.6.

WEB
Signals the start of a WEB object.

4.1.18 OUTPUTFORMAT

A map file may have zero, one or more OUTPUTFORMAT object declarations, defining available output formats
supported including formats like PNG, GIF, JPEG, GeoTIFF, SVG, PDF and KML.

If OUTPUTFORMAT sections declarations are not found in the map file, the following implicit declarations will be
made. Only those for which support is compiled in will actually be available. The GeoTIFF depends on building with
GDAL support, and the PDF and SVG depend on building with cairo support.
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OUTPUTFORMAT
NAME "png"
DRIVER AGG/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "png8"
DRIVER AGG/PNG8
MIMETYPE "image/png; mode=8bit"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "QUANTIZE_FORCE=on"
FORMATOPTION "QUANTIZE_COLORS=256"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "jpeg"
DRIVER AGG/JPEG
MIMETYPE "image/jpeg"
IMAGEMODE RGB
EXTENSION "jpg"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "jpeg_png"
MIMETYPE "image/vnd.jpeg-png"
DRIVER AGG/MIXED
IMAGEMODE RGBA
FORMATOPTION "TRANSPARENT_FORMAT=png"
FORMATOPTION "OPAQUE_FORMAT=jpeg"

END
OUTPUTFORMAT
NAME "jpeg_png8"
MIMETYPE "image/vnd.jpeg-png8"
DRIVER AGG/MIXED
IMAGEMODE RGBA
FORMATOPTION "TRANSPARENT_FORMAT=png8"
FORMATOPTION "OPAQUE_FORMAT=jpeg"

END
OUTPUTFORMAT
NAME "svg"
DRIVER CAIRO/SVG
MIMETYPE "image/svg+xml"
IMAGEMODE RGB
EXTENSION "svg"

END
OUTPUTFORMAT
NAME "pdf"
DRIVER CAIRO/PDF
MIMETYPE "application/x-pdf"

(continues on next page)
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IMAGEMODE RGB
EXTENSION "pdf"

END
OUTPUTFORMAT
NAME "GTiff"
DRIVER GDAL/GTiff
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END
OUTPUTFORMAT
NAME "kml"
DRIVER KML
MIMETYPE "application/vnd.google-earth.kml.xml"
IMAGEMODE RGB
EXTENSION "kml"

END
OUTPUTFORMAT
NAME "kmz"
DRIVER KMZ
MIMETYPE "application/vnd.google-earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"

END
OUTPUTFORMAT
NAME "cairopng"
DRIVER CAIRO/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END
OUTPUTFORMAT
NAME "myUTFGrid"
DRIVER UTFGRID
FORMATOPTION "LABELS=true"
FORMATOPTION "UTFRESOLUTION=4"
FORMATOPTION "DUPLICATES=false"

END

DRIVER [name]
The name of the driver to use to generate this output format. Some driver names include the definition of
the format if the driver supports multiple formats. For AGG, the possible driver names are “AGG/PNG” and
“AGG/JPEG”. For output through OGR the OGR driver name is appended, such as “OGR/Mapinfo File”. For
output through GDAL the GDAL shortname for the format is appended, such as “GDAL/GTiff”. Note that PNG
and JPEG output can be generated with either GDAL or AGG (AGG is generally more efficient). TEMPLATE
should be used for template based output. (mandatory). Other drivers: KML, KMZ and UTFGRID.

EXTENSION [type]
Provide the extension to use when creating files of this type. (optional)

FORMATOPTION [option]
Provides a driver or format specific option. Zero or more FORMATOPTION statement may be present within a
OUTPUTFORMAT declaration. (optional)

4.1. Mapfile 240



MapServer Documentation, Release 7.6.6

• AGG/*: “GAMMA=n” is used to specify the gamma correction to apply to polygon rendering. Allowed
values are [0.0,1.0] , default is 0.75. This value is used to prevent artifacts from appearing on the border of
contiguous polygons. Set to 1.0 to disable gamma correction.

• AGG/JPEG: The “QUALITY=n” option may be used to set the quality of jpeg produced (value from 0-100).

• AGG/PNG: “COMPRESSION=n” is used to determine the ZLIB compression applied to the png creation.
n is expected to be an integer value from 0 to 9, with 0 meaning no compression (not recommended), 1
meaning fastest compression, and 9 meaning best compression. The compression levels come at a cost (be
it in terms of cpu processing or file size, chose the setting that suits you most). The default is COMPRES-
SION=6.

• AGG/PNG supports quantizing from 24/32 bits to 8bits, in order to reduce the final image size (and therefore
save bandwidth) (see also MapServer issue #2436 for strategies when applying these options):

– “QUANTIZE_FORCE=on” used to reduce an RGB or RGBA image into an 8bit (or less) paletted
images. The colors used in the palette are selected to best fit the actual colors in the RGB or RGBA
image.

– “QUANTIZE_COLORS=256” used to specify the number of colors to be used when applying quanti-
zation. Maximum value is 256. Specifying anything between 17 and 255 is probably a waste of quality
as each pixel is still encoded with a full byte. Specifying a value under 16 will produce tiny images,
but severely degraded.

– “PALETTE=/path/to/palette.txt” is used to define the absolute path where palette colors can be found.
This file must contain 256 entries of r,g,b triplets for RGB imagemodes, or r,g,b,a quadruplets for
RGBA imagemodes. The expected format is one triplet (or quadruplet) per line, each value separated
by commas, and each triplet/quadruplet on a single line. If you want to use transparency with a palette,
it is important to have these two colors in the palette file: 0,0,0,0 and 255,255,255,255.

Note: 0,0,0,0 is important if you have fully transparent areas. 255,255,255,255 is opaque white. The
important colors to have in your palette really depend on your actual map, although 0,0,0,0 , 0,0,0,255
, and 255,255,255,255 are very likely to show up most of the time.

– “PALETTE_FORCE=on” is used to reduce image depth with a predefined palette. This option is
incompatible with the previous quantization options. To allow additional colours for anti-aliasing
other than those in the predefined palette, use with “QUANTIZE_COLORS”.

• AGG/MIXED

Added in version 7.2.

AGG/MIXED is a meta driver that automatically selects the appropriate format depending if the result image
has transparency or not. It requires the TRANSPARENT_FORMAT and OPAQUE_FORMAT options
to be defined and set to another valid format. The valid formats for TRANSPARENT_FORMAT and
OPAQUE_FORMAT are those handled by the AGG/PNG, AGG/JPEG or GDAL/xxxx drivers. By default,
the “jpeg_png” format (with “image/vnd.jpeg-png” mime type) is pre-configured to use PNG images when
they are non-opaque pixels and JPEG when they are only opaque pixels. Similarly a “jpeg_png8” format
(with “image/vnd.jpeg-png8” mime type) is pre-configured to use PNG 8bits images when they are non-
opaque pixels and JPEG when they are only opaque pixels.

– “TRANSPARENT_FORMAT=name”: which output format to be used when the image contains non-
opaque/transparent pixels.

– “OPAQUE_FORMAT=name”: which output format to be used when the image contains only opaque
pixels.

Example:
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OUTPUTFORMAT
NAME "jpeg_low"
MIMETYPE "image/jpeg; quality=50"
DRIVER AGG/JPEG
IMAGEMODE RGB
FORMATOPTION "QUALITY=50"

END

OUTPUTFORMAT
NAME "jpeg_low_png"
MIMETYPE "image/vnd.jpeg-png; quality=50"
DRIVER AGG/MIXED
IMAGEMODE RGBA
FORMATOPTION "TRANSPARENT_FORMAT=png"
FORMATOPTION "OPAQUE_FORMAT=jpeg_low"

END

• CAIRO/PDF:

– “GEO_ENCODING=ISO32000” or “GEO_ENCODING=OGC_BP”:

Added in version 6.2.

Geospatial PDF will be generated. Requires GDAL 1.10 with PDF driver. See the GDAL Geospatial
PDF documentation for requirements.

– “METADATA_ITEM:option=value”:

Added in version 6.2.

Additional PDF options can be provided using the METADATA_ITEM prefix. The following options
are available: AUTHOR, CREATOR, CREATION_DATE, KEYWORDS, PRODUCER, SUBJECT, TI-
TLE.

Example:

OUTPUTFORMAT
NAME pdf
DRIVER "CAIRO/PDF"
MIMETYPE "application/x-pdf"
IMAGEMODE RGB
EXTENSION "pdf"
FORMATOPTION "GEO_ENCODING=ISO32000"
FORMATOPTION "METADATA_ITEM:CREATOR=MapServer, with GDAL trunk"
FORMATOPTION "METADATA_ITEM:PRODUCER=MapServer, with GDAL trunk"

END

• GD/PNG: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

Warning: GD support was removed in MapServer 7.0.

• GD/GIF: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.
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Warning: GD support was removed in MapServer 7.0.

• GDAL/GTiff: Supports the “TILED=YES”, “BLOCKXSIZE=n”, “BLOCKYSIZE=n”, “INTER-
LEAVE=[PIXEL/BAND]” and “COMPRESS=[NONE,PACKBITS,JPEG,LZW,DEFLATE]” format spe-
cific options.

• GDAL/*: All FORMATOPTIONs are passed onto the GDAL create function. Options supported by GDAL
are described in the detailed documentation for each GDAL format.

• GDAL/*: “NULLVALUE=n” is used in raw image modes (IMAGEMODE BYTE/INT16/FLOAT) to pre-
initialize the raster and an attempt is made to record this in the resulting file as the nodata value. This is
automatically set in WCS mode if rangeset_nullvalue is set.

• OGR/*: See the OGR Output document for details of OGR format options.

• UTFGRID: See rfc93.

– “LABELS=true”. Labels can be rendered using their parent feature id (derived via UTFITEM) where
the labels bounding box is drawn to the map.

– “UTFRESOLUTION=4”. The resolution of the grid. A larger resolution will make the grid smaller
and therefore reduce its weight but also its precision.

– “DUPLICATES=false”. It may be desirable NOT to remove duplicate feature id/key pairs since that
process could be expensive depending on the number of features in the map. This option can be used
to skip this step. The resulting JSON file will be a bit larger.

IMAGEMODE [PC256|RGB|RGBA|INT16|FLOAT32|FEATURE]
Selects the imaging mode in which the output is generated. Does matter for non-raster formats like Flash. Not
all formats support all combinations. (optional)

• PC256: Produced a pseudocolored result with up to 256 colors in the palette (legacy MapServer mode).
Only supported for GD/GIF and GD/PNG.

Warning: GD support was removed in MapServer 7.0.

• RGB: Render in 24bit Red/Green/Blue mode. Supports all colors but does not support transparency.

• RGBA: Render in 32bit Red/Green/Blue/Alpha mode. Supports all colors, and alpha based transparency.
All features are rendered against an initially transparent background.

• BYTE: Render raw 8bit pixel values (no presentation). Only works for RASTER layers (through GDAL)
and WMS layers currently.

• INT16: Render raw 16bit signed pixel values (no presentation). Only works for RASTER layers (through
GDAL) and WMS layers currently.

• FLOAT32: Render raw 32bit floating point pixel values (no presentation). Only works for RASTER layers
(through GDAL) and WMS layers currently.

• FEATURE: Output is a non-image result, such as features written via templates or OGR.

MIMETYPE [type]
Provide the mime type to be used when returning results over the web. (optional)

NAME [name]
The name to use in the IMAGETYPE keyword of the map file to select this output format. This name is also
used in metadata describing wxs formats allowed, and can be used (sometimes along with mimetype) to select
the output format via keywords in OGC requests. (optional)
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TRANSPARENT [on|off]
Indicates whether transparency should be enabled for this format. Note that transparency does not work for
IMAGEMODE RGB output. Not all formats support transparency (optional). When transparency is enabled for
the typical case of 8-bit pseudocolored map generation, the IMAGECOLOR color will be marked as transparent
in the output file palette. Any other map components drawn in this color will also be transparent, so for map
generation with transparency it is best to use an otherwise unused color as the background color.

4.1.19 PROJECTION

Background

There are thousands of geographical reference systems. In order to combine datasets with different geographical ref-
erence systems into a map, the datasets will have to be transformed (projected) to the chosen geographical reference
system of the map. If you want to know more about geographical reference systems and map projections in general,
please see the More Information links below, or look into Geomatics courses (Geographical Information Systems,
Cartography, Geodesy), as projections are an advanced topic for beginners.

Projections with MapServer

To set up projections you must define one projection object for the output image (in the MAP object) and one projection
object for each layer (in the LAYER objects) to be projected. MapServer relies on the PROJ library for projections.
Projection objects therefore consist of a series of PROJ keywords, which are either specified within the object directly
or referred to in an EPSG file. An EPSG file is a lookup file containing projection parameters, and is part of the PROJ
library.

Starting with MapServer 8 and when the PROJ 6 library or above is used, the use of EPSG codes when available, rather
than the inline projection parameters, is recommended to benefit from higher accuracy coordinate reprojection.

The following two examples both define the same projection (UTM zone 15, NAD83), but use 2 different methods:

Example 1: Inline Projection Parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Note: For a list of all of the possible PROJ projection parameters, the official PROJ site is best (https://proj.org),
however the old wiki has a thorough list of PROJ parameters.

Example 2: EPSG Projection Use

PROJECTION
"init=epsg:26915"

END
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Note: This refers to an EPSG lookup file that contains a ‘26915’ code with the full projection parameters. “epsg” in
this instance is case-sensitive because it is referring to a file name. If your file system is case-sensitive, this must be
lower case, or MapServer (PROJ actually) will complain about not being able to find this file.

Note: See https://epsg.io/26915 for more information on this coordinate system.

The next two examples both display how to possibly define unprojected lat/long (“geographic”):

Example 3: Inline Projection Parameters

PROJECTION
"proj=latlong"
"ellps=WGS84"
"datum=WGS84"

END

Example 4: epsg Projection Use

PROJECTION
"init=epsg:4326"

END

“Web Mercator” or “Google Mercator”

The EPSG code for the commonly used “Web” or “Google” mercator projection is ‘3857’. See https://epsg.io/3857
for more information on this coordinate system. This code was also unofficially referred to as EPSG:900913; you are
recommended to use the official EPSG:3857 code instead, such as:

PROJECTION
"init=epsg:3857"

END

PROJECTION AUTO

The following syntax may be used in LAYERs that are OGR connections, shapefile layers or raster layers :

PROJECTION
AUTO

END

• In case of a OGR connection, the projection will be retrieved from the OGR layer.

• In case of a shapefile layer, the projection will be retrieved from the associated .prj file.

• In case of raster layers containing a single raster (DATA keyword), the projection will be retrieved from the
GDAL datasource.

• If the raster layer refers to a tile index (OGR layer or shapefile tileindex), the projection will be retrieved according
to the above describe rules.
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• If the raster layer refers to a tile index with rasters in a variety of projections, the TILESRS keyword should be
specified to choose the appropriate projection for the corresponding raster. See Tileindexes with tiles in different
projections for more details.

Note: For other layer types, this syntax is invalid.

Specifying which EPSG files to use

MAP CONFIG can be used to specify the location of EPSG files:

MAP
CONFIG "PROJ_LIB" "/usr/share/proj/"
PROJECTION
"init=epsg:3857"

END # PROJECTION
...

It is important that CONFIG “PROJ_LIB” line comes before the PROJECTION block.

Important Notes

• If all of your data in the mapfile is in the same projection, you DO NOT have to specify any projection objects.
MapServer will assume that all of the data is in the same projection.

• Think of the MAP-level projection object as your output projection. The EXTENT and UNITS values at the MAP-
level must be in the output projection units. Also, if you have layers in other projections (other than the MAP-level
projection) then you must define PROJECTION objects for those layers, to tell MapServer what projections they
are in.

• If you specify a MAP-level projection, and then only one other LAYER projection object, MapServer will assume
that all of the other layers are in the specified MAP-level projection.

• Always refer to the EPSG file in lowercase, because it is a lowercase filename and on Linux/Unix systems this
parameter is case sensitive.

Note: If you receive an error such as “msProjectRect(): Projection library error. All points failed to reproject”
definitely verify that you have set the (MAP-level) output projection and extent properly, as well as the projection block
for each of your layers (their source projection).

For More Information

• If you get projection errors, refer to the Errors to check if your exact error has been discussed.

• Search the MapServer-users email list archives, odds are that someone has faced your exact issue before.

• See the PROJ user guides for complete descriptions of supported projections and coordinate systems.

• Read more about the history of the Web Mercator projection.

• A respected author on map projections is John P. Snyder, if you are wishing for printed material to review.

• To lookup specific EPSG projection codes, the old website https://spatialreference.org/ is unmaintained, so https:
//epsg.io/ is recommended instead.
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4.1.20 QUERYMAP

COLOR [r] [g] [b] | [hexadecimal string]
Color in which features are highlighted. Default is yellow.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

COLOR "#FF00FFCC"

SIZE [x][y]
Size of the map in pixels. Defaults to the size defined in the map object.

STATUS [on|off]
Is the query map to be drawn?

STYLE [normal|hilite|selected]
Sets how selected features are to be handled. Layers not queried are drawn as usual.

• Normal: Draws all features according to the settings for that layer.

• Hilite: Draws selected features using COLOR. Non-selected features are drawn normally.

• Selected: draws only the selected features normally.

4.1.21 REFERENCE

Three types of reference maps are supported. The most common would be one showing the extent of a map in an
interactive interface. It is also possible to request reference maps as part of a query. Point queries will generate an
image with a marker (see below) placed at the query point. Region based queries will depict the extent of the area of
interest. Finally, feature based queries will display the selection feature(s) used.

COLOR [r] [g] [b] | [hexadecimal string]
Color in which the reference box is drawn. Set any component to -1 for no fill. Default is red.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:
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COLOR "#FF00FFCC"

EXTENT [minx][miny][maxx][maxy]
The spatial extent of the base reference image.

IMAGE [filename]
Full filename of the base reference image. Must be a GIF image.

MARKER [integer|string]
Defines a symbol (from the symbol file) to use when the box becomes too small (see MINBOXSIZE and
MAXBOXSIZE below). Uses a crosshair by default.

MARKERSIZE [integer]
Defines the size of the symbol to use instead of a box (see MARKER above).

MINBOXSIZE [integer]
If box is smaller than MINBOXSIZE (use box width or height) then use the symbol defined by MARKER and
MARKERSIZE.

MAXBOXSIZE [integer]
If box is greater than MAXBOXSIZE (use box width or height) then draw nothing (Often the whole map gets
covered when zoomed way out and it’s perfectly obvious where you are).

OUTLINECOLOR [r] [g] [b] | [hexadecimal string]
Color to use for outlining the reference box. Set any component to -1 for no outline.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OUTLINECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OUTLINECOLOR "#FF00FFCC"

SIZE [x][y]
Size, in pixels, of the base reference image.

STATUS [on|off]
Is the reference map to be created? Default it off.

4.1.22 SCALEBAR

Scalebars currently do not make use of TrueType fonts. The size of the scalebar image is NOT known prior to rendering,
so be careful not to hard-code width and height in the <IMG> tag in the template file. Future versions will make the
image size available.

ALIGN [left|center|right]
Added in version 5.2.

Defines how the scalebar is aligned within the scalebar image. Default is center. Available in versions 5.2 and
higher.
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BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string]
Color to use for scalebar background, not the image background.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

BACKGROUNDCOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

BACKGROUNDCOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

BACKGROUNDCOLOR "#FF00FFCC"

COLOR [r] [g] [b] | [hexadecimal string]
Color to use for drawing all features if attribute tables are not used.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

COLOR "#FF00FFCC"

IMAGECOLOR [r] [g] [b] | [hexadecimal string]
Color to initialize the scalebar with (i.e. background).

• r, g and b shall be integers [0..255]. To specify green, the following is used:

IMAGECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

IMAGECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

IMAGECOLOR "#FF00FFCC"

INTERLACE [true|false]
Deprecated since version 4.6.

Should output images be interlaced? Default is [on]. This keyword is now deprecated in favour of using the
FORMATOPTION “INTERLACE=ON” line in the OUTPUTFORMAT declaration.
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INTERVALS [integer]
Number of intervals to break the scalebar into. Default is 4.

LABEL
Signals the start of a LABEL object.

OFFSET [x] [y]
Added in version 7.2.

‘OFFSET’ moves the scalebar closer to the center of the map. Examples:

• If POSITION is “LL” then “OFFSET 5 2” will shift the scalebar 2 pixels up and 5 pixels to the right.

• If POSITION is “UR” then “OFFSET 5 2” will shift the scalebar 2 pixels down and 5 pixels to the left.

OUTLINECOLOR [r] [g] [b] | [hexadecimal string]
Color to use for outlining individual intervals. Set any component to -1 for no outline which is the default.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OUTLINECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OUTLINECOLOR "#FF00FFCC"

POSITION [ul|uc|ur|ll|lc|lr]
Where to place an embedded scalebar in the image. Default is lr.

POSTLABELCACHE [true|false]
For use with embedded scalebars only. Tells the MapServer to embed the scalebar after all labels in the cache
have been drawn. Default is false.

SIZE [x][y]
Size in pixels of the scalebar. Labeling is not taken into account.

STATUS [on|off|embed]
Is the scalebar image to be created, and if so should it be embedded into the image? Default is off. (Please note
that embedding scalebars require that you define a markerset. In essence the scalebar becomes a custom marker
that is handled just like any other annotation.)

STYLE [integer]
Chooses the scalebar style. Valid styles are 0 and 1.

TRANSPARENT [on|off]
Deprecated since version 4.6.

Should the background color for the scalebar be transparent. This flag is now deprecated in favor of declaring
transparency within OUTPUTFORMAT declarations. Default is off.

UNITS [feet|inches|kilometers|meters|miles|nauticalmiles]
Output scalebar units, default is miles. Used in conjunction with the map’s units to develop the actual graphic.
Note that decimal degrees are not valid scalebar units. Nauticalmiles was added in MapServer 5.6.
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4.1.23 STYLE

Style holds parameters for symbolization and styling. Multiple styles may be applied within a CLASS or LABEL.

This object appeared in 4.0 and the intention is to separate logic from looks. The final intent is to have named styles
(Not yet supported) that will be re-usable through the mapfile. This is the way of defining the appearance of an object
(a CLASS or a LABEL).

ANGLE [double|attribute|AUTO]
Angle, given in degrees, to rotate the symbol (counter clockwise). Default is 0 (no rotation). If you have an
attribute that specifies angles in a clockwise direction (compass direction), you have to adjust the angle attribute
values before they reach MapServer (360-ANGLE), as it is not possible to use a mathematical expression for
ANGLE.

• For points, it specifies the rotation of the symbol around its center.

• For decorated lines, the behaviour depends on the value of the GAP element.

– For negative GAP values it specifies the rotation of the decoration symbol relative to the direction of
the line. An angle of 0 means that the symbol’s x-axis is oriented along the direction of the line.

– For non-negative (or absent) GAP values it specifies the rotation of the decoration symbol around its
center. An angle of 0 means that the symbol is not rotated.

• For polygons, it specifies the angle of the lines in a HATCH symbol (0 - horizontal lines), or it specifies the
rotation of the symbol used to generate the pattern in a polygon fill (it does not specify the rotation of the
fill as a whole). For its use with hatched lines, see Example #7 in the symbology examples.

• [attribute] was introduced in version 5.0, to specify the attribute to use for angle values. The hard brackets
[] are required. For example, if your data source has an attribute named “MYROTATE” that holds angle
values for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE [MYROTATE]
SIZE 4.0
WIDTH 3.0

END

The associated RFC document for this feature is RFC19.

• The AUTO keyword was added in version 5.4, and currently only applies when coupled with the GEOM-
TRANSFORM keyword.

ANGLEITEM [string]
Deprecated since version 5.0.

ANGLE[attribute] must now be used instead.

ANTIALIAS [true|false]
Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false. Has no effect for the
other renderers (where anti-aliasing can not be turned off).

Warning: GD support was removed in MapServer 7.0.

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string]
Deprecated since version 6.2.

4.1. Mapfile 251



MapServer Documentation, Release 7.6.6

Color to use for non-transparent symbols.

Note: Multiple STYLEs can be used instead:

STYLE
BACKGROUNDCOLOR 0 0 0
SYMBOL "foo"
COLOR 255 0 0

END

can be replaced with:

STYLE
COLOR 0 0 0

END
STYLE
SYMBOL "foo"
COLOR 255 0 0

END

COLOR [r] [g] [b] | [hexadecimal string] | [attribute]
Color to use for drawing features.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

COLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

COLOR "#FF00FFCC"

• [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

COLOR [MYPAINT]

If COLOR is not specified, and it is not a SYMBOL of TYPE pixmap, then the symbol will not be rendered.

The associated RFC document for this feature is RFC19.

COLORRANGE [r] [g] [b] [r] [g] [b] | [hexadecimal string] [hexadecimal string]
Defines two colors to correspond to the low and high ends of the DATARANGE values. Colors are mapped to a
continuous linear gradient between the two values.

See Kernel Density Estimation (Dynamic Heatmap) for further details on applying these to raster layers, and
RFC6 for working with vector layers.

DATARANGE [integer|double] [integer|double]
Defines two values, a low value and a high value, that MapServer will map to the color range defined by the
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COLORRANGE entry. Values must be integers or doubles. Colors are mapped to a continuous linear gradient
between the two values.

See Kernel Density Estimation (Dynamic Heatmap) for further details on applying these to raster layers, and
RFC6 for working with vector layers.

GAP [double]
Added in version 6.0: moved from SYMBOL

GAP specifies the distance between SYMBOLs (center to center) for decorated lines and polygon fills in layer
SIZEUNITS. For polygon fills, GAP specifies the distance between SYMBOLs in both the X and the Y direction.
For lines, the centers of the SYMBOLs are placed on the line. As of MapServer 5.0 this also applies to PixMap
symbols.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), GAP specifies the
distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

• For lines, if INITIALGAP is not specified, the first symbol will be placed GAP/2 from the start of the line.

• For lines, a negative GAP value will cause the symbols’ X axis to be aligned relative to the tangent of the
line.

• For lines, a positive GAP value aligns the symbols’ X axis relative to the X axis of the output device.

• For lines, a GAP of 0 (the default value) will cause the symbols to be rendered edge to edge

• For polygons, a missing GAP or a GAP of less than or equal to the size of the symbol will cause the symbols
to be rendered edge to edge.

Symbols can be rotated using ANGLE.

Note: The behaviour of GAP has not been stable over time. It has specified the amount of space between
the symbols, and also something in between the amount of space between the symbols and the center to center
distance. Since 6.2 GAP specifies the center to center distance between the symbols.

GEOMTRANSFORM [bbox|centroid|end|labelcenter|labelpnt|labelpoly|start|vertices|<expression>]
Used to indicate that the current feature will be transformed before the actual style is applied. Introduced in
version 5.4.

• bbox: produces the bounding box of the current feature geometry.

• centroid: produces the centroid of the current feature geometry.

• end: produces the last point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrowheads on line segments.

• labelcenter: used for LABEL styles. Places the text in the center of the feature.

• labelpnt: used for LABEL styles. Draws a marker on the geographic position the label is attached to. This
corresponds to the center of the label text only if the label is in position CC.

• labelpoly: used for LABEL styles. Produces a polygon that covers the label plus a 1 pixel padding.

• start: produces the first point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrow tails on line segments.

• vertices: produces all the intermediate vertices (points) of the current feature geometry (the start and end
are excluded). When used with ANGLE AUTO, the marker is oriented by the half angle formed by the two
adjacent line segments.

• <expression>: Applies the given expression to the geometry. Supported expressions:
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– (buffer([shape],dist)): Buffer the geometry ([shape]) using dist pixels as buffer distance. For polygons,
a negative dist will produce a setback.

– (generalize([shape],tolerance)): simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

Note: Depends on GEOS.

– (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-Peucker
algorithm.

– (simplifypt([shape],tolerance)): simplifies a geometry ([shape]), ensuring that the result is a valid
geometry having the same dimension and number of components as the input. tolerance must be
non-negative.

– (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geometry
([shape]) using the SIA algorithm

Example (polygon data set) - draw a two pixel wide line 5 pixels inside the boundary of the polygon:

STYLE
OUTLINECOLOR 255 0 0
WIDTH 2
GEOMTRANSFORM (buffer([shape],-5))

END

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive ground
coordinates (meters, degrees, etc) and STYLE-level will receive pixel coordinates. The argument to methods
such as simplify() must be in the same units as the coordinates of the shapes at that point of the rendering
workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM (simplify([shape], 10)) ## 10 ground units
CLASS

STYLE
GEOMTRANSFORM (buffer([shape], 5) ## 5 pixels
WIDTH 2
COLOR 255 0 0

END
END

END

See also:
GEOMTRANSFORM - Geometry Transformations

INITIALGAP [double]
Added in version 6.2.

INITIALGAP is useful for styling dashed lines.

If used with GAP, INITIALGAP specifies the distance to the first symbol on a styled line.

If used with PATTERN, INITIALGAP specifies the distance to the first dash on a dashed line.
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Example 1 - dashed line styled with circles:

STYLE
COLOR 0 0 0
WIDTH 4
PATTERN 40 10 END

END
STYLE
SYMBOL "circlef"
COLOR 0 0 0
SIZE 8
INITIALGAP 20
GAP 50

END

Example 1 - dashed line styled with dashed line overlay:

STYLE
COLOR 0 0 0
WIDTH 6
PATTERN 40 10 END

END
STYLE
COLOR 255 255 255
WIDTH 4
INITIALGAP 2
PATTERN 36 14 END

END

LINECAP [butt|round|square]
Added in version 6.0: moved from SYMBOL

Sets the line cap type for lines. Default is round. See Cartographical Symbol Construction with MapServer for
explanation and examples.

LINEJOIN [round|miter|bevel|none]
Added in version 6.0: moved from SYMBOL

Sets the line join type for lines. Default is round. See Cartographical Symbol Construction with MapServer for
explanation and examples.

LINEJOINMAXSIZE [int]
Added in version 6.0: moved from SYMBOL

Sets the max length of the miter LINEJOIN type. The value represents a coefficient which multiplies a cur-
rent symbol size. Default is 3. See Cartographical Symbol Construction with MapServer for explanation and
examples.

MAXSCALEDENOM [double]
Added in version 5.4.

Minimum scale at which this STYLE is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000.

See also:
Map Scale
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MAXSIZE [double]
Maximum size in pixels to draw a symbol. Default is 500. Starting from version 5.4, the value can also be a
decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MAXWIDTH [double]
Maximum width in pixels to draw the line work. Default is 32. Starting from version 5.4, the value can also be
a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINSCALEDENOM [double]
Added in version 5.4.

Maximum scale at which this STYLE is drawn. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000.

See also:
Map Scale

MINSIZE [double]
Minimum size in pixels to draw a symbol. Default is 0. Starting from version 5.4, the value can also be a decimal
value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINWIDTH [double]
Minimum width in pixels to draw the line work. Default is 0. Starting from version 5.4, the value can also be a
decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [double|attribute] [double|attribute]
Geometry offset values in layer SIZEUNITS. In the general case, SIZEUNITS will be pixels. The first parameter
corresponds to a shift on the horizontal - x, and the second parameter to and a shift on the vertical - y.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), OFFSET gives
offset values in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

An OFFSET of 20 40 will shift the geometry 20 SIZEUNITS to the left and 40 SIZEUNITS down before render-
ing.

For lines, an OFFSET of y = -99 will produce a line geometry that is shifted x SIZEUNITS perpendicular to
the original line geometry. A positive x shifts the line to the right when seen along the direction of the line. A
negative x shifts the line to the left when seen along the direction of the line.

For lines, an OFFSET of y = -999 (added in version 6.4) will produce a multiline geometry corresponding to the
borders of a line that is x SIZEUNITS wide. This can be used to render only the outlines of a thick line.

OPACITY [integer|attribute]
Opacity to draw the current style (applies to 5.2+, AGG Rendering Specifics only, does not apply to pixmap
symbols)

• [attribute] was introduced in version 5.6, to specify the attribute to use for opacity values.

OUTLINECOLOR [r] [g] [b] | [hexadecimal string] | [attribute]
Color to use for outlining polygons and certain marker symbols (ellipse, vector polygons and truetype). Has no
effect for lines. The width of the outline can be specified using WIDTH. If no WIDTH is specified, an outline of
one pixel will be drawn.

If there is a SYMBOL defined for the STYLE, the OUTLINECOLOR will be used to create an outline for that
SYMBOL (only ellipse, truetype and polygon vector symbols will get an outline). If there is no SYMBOL defined
for the STYLE, the polygon will get an outline.

• r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0 255 0
WIDTH 3.0
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• hexadecimal string can be

– RGB value: “#rrggbb”. To specify magenta, the following is used:

OUTLINECOLOR "#FF00FF"

– RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

OUTLINECOLOR "#FF00FFCC"

• [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

OUTLINECOLOR [MYPAINT]

The associated RFC document for this feature is RFC19.

OUTLINEWIDTH [double|attribute]
Added in version 5.4.

Width in pixels for the outline. Default is 0.0. The thickness of the outline will not depend on the scale.

PATTERN [double on] [double off] [double on] [double off] . . . END
Added in version 6.0: moved from SYMBOL

Used to define a dash pattern for line work (lines, polygon outlines, hatch lines, . . . ). The numbers (doubles)
specify the lengths of the dashes and gaps of the dash pattern in layer SIZEUNITS. When scaling of symbols is
in effect (SYMBOLSCALEDENOM is specified for the LAYER), the numbers specify the lengths of the dashes
and gaps in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

LINECAP, LINEJOIN and LINEJOINMAXSIZE can be used to control the appearance of the dashed lines.

To specify a dashed line that is 5 units wide, with dash lengths of 5 units and gaps of 5 units, the following style
can be used:

STYLE
COLOR 0 0 0
WIDTH 5.0
LINECAP BUTT
PATTERN 5.0 5.0 END

END

Since version 6.2, PATTERN can be used to create dashed lines for SYMBOLs of TYPE hatch. Patterns for hatches
are always drawn with LINECAP butt. The patterns are generated relative to the edges of the bounding box of
the polygon (an illustrated example can be found in the hatch fill section of the symbol construction document).

POLAROFFSET [double|attribute] [double|attribute]
Added in version 6.2: (added through RFC 78)

Offset given in polar coordinates.

The first parameter is a double value in layer SIZEUNITS (or the name of a layer attribute) that specifies the
radius/distance.

The second parameter is a double value (or the name of a layer attribute) that specifies the angle (counter clock-
wise).

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), POLAROFFSET
gives the distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.
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A POLAROFFSET of 20 40 will shift the geometry to a position that is 20 SIZEUNITS away along a line that is
at an angle of 40 degrees with a line that goes horizontally to the right.

When POLAROFFSET is used with layers that have CONNECTIONTYPE uvraster (vector field), the special
attributes uv_length, uv_length_2, uv_angle and uv_minus_angle are available, making it convenient to specify
arrow heads and tails. Example:

LAYER
...
TYPE POINT
CONNECTIONTYPE uvraster
...
CLASS
STYLE
SYMBOL "arrowbody"
ANGLE [uv_angle]
SIZE [uv_length]
WIDTH 3
COLOR 100 255 0

END
STYLE
SYMBOL "arrowhead"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_angle]

END
STYLE
SYMBOL "arrowtail"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_minus_angle]

END
END #class

END #layer

RANGEITEM [attribute]

Specifies the attribute that will be used to map colors between the high and low ends of the COLORRANGE
entry. Colors are mapped to a continuous linear gradient between the two values.

Here is an example mapping the values 0.0-1.0 to RED-GREEN:

STYLE
RANGEITEM "myAttr"
COLORRANGE 255 0 0 0 255 0
DATARANGE 0.0 1.0

END

See the associated RFC document RFC6.

SIZE [double|attribute]
Height, in layer SIZEUNITS, of the symbol/pattern to be used. Default value depends on the SYMBOL TYPE.
For pixmap: the height (in pixels) of the pixmap; for ellipse and vector: the maximum y value of the SYMBOL
POINTS parameter, for hatch: 1.0, for truetype: 1.0.
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When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the
height, in layer SIZEUNITS, of the symbol/pattern to be used at the map scale 1:SYMBOLSCALEDENOM.

• For symbols of TYPE hatch, the SIZE is the center to center distance between the lines. For its use with
hatched lines, see Example#8 in the symbology examples.

• [attribute] was introduced in version 5.0, to specify the attribute to use for size values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYHEIGHT” that holds size values
for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE 45
SIZE [MYHEIGHT]
WIDTH 3.0

END

The associated RFC document for this feature is RFC19.

• Starting from version 5.4, the value can also be a decimal value (and not only integer).

SYMBOL [integer|string|filename|url|attribute]
The symbol to use for rendering the features.

• Integer is the index of the symbol in the symbol set, starting at 1 (the 5th symbol is symbol number 5).

• String is the name of the symbol (as defined using the SYMBOL NAME parameter).

• Filename specifies the path to a file containing a symbol. For example a PNG file. Specify the path relative
to the directory containing the mapfile.

• URL

Added in version 6.0.

URL specifies the address of a file containing a pixmap symbol. For example a PNG file. A URL must
start with “http”:

SYMBOL "http://myserver.org/path/to/file.png"

• [attribute]

Added in version 5.6.

Allows individual rendering of features by using an attribute in the dataset that specifies the symbol name
(as defined in the SYMBOL NAME parameter). The hard brackets [] are required.

If SYMBOL is not specified, the behaviour depends on the type of feature.

• For points, nothing will be rendered.

• For lines, SYMBOL is only relevant if you want to style the lines using symbols, so the absence of SYMBOL
means that you will get lines as specified using the relevant line rendering parameters (COLOR, WIDTH,
PATTERN, LINECAP, . . . ).

• For polygons, the interior of the polygons will be rendered using a solid fill of the color specified in the
COLOR parameter.

See also:
SYMBOL
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WIDTH [double|attribute]
WIDTH refers to the thickness of line work drawn, in layer SIZEUNITS. Default is 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), WIDTH refers to
the thickness of the line work in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

• If used with SYMBOL and OUTLINECOLOR, WIDTH specifies the width of the symbol outlines. This
applies to SYMBOL TYPE vector (polygons), ellipse and truetype.

• For lines, WIDTH specifies the width of the line.

• For polygons, if used with OUTLINECOLOR, WIDTH specifies the thickness of the polygon outline.

• For a symbol of SYMBOL TYPE hatch, WIDTH specifies the thickness of the hatched lines. For its use
with hatched lines, see Example #7 in the symbology examples.

• [attribute] was added in version 5.4 to specify the attribute to use for the width value. The hard brackets []
are required.

• Starting from version 5.4, the value can also be a decimal value (and not only integer).

4.1.24 STYLEITEM Javascript

Author
Charles-Éric Bourget

Contact
cbourget at mapgears.com

Author
Alan Boudreault

Contact
aboudreault at mapgears.com

Last Updated
2015-05-21

Table of Contents

• STYLEITEM Javascript

– Introduction

– Usage

– Example 1. Single STYLE definition

– Example 2. CLASS with multiple STYLE definitions

– Example 3. Printing logs in MapServer logs
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Introduction

Using STYLEITEM this way makes it possible to style features programmatically rather than with the standard
MapServer expressions.

Usage

Simply declare the javascript plugin this way:

MAP
...
LAYER
...
STYLEITEM "javascript://myscript.js" # relative path
CLASS
END

END
END

The path can also be absolute.

MAP
...
LAYER
...
STYLEITEM "javascript:///home/user/myscript.js" # absolute path
CLASS
END

END
END

The javascript plugin has to implement a function named styleitem that will be automatically called. This function has
to return one of these two options:

• a STYLE definition (Plain String)

• a CLASS definition with one or multiple styles (Plain String)

Note: Features are parsed one at a time and each one makes a call to the javascript plugin. That means the STYLE or
CLASS returned is applied to that specific feature only. Therefore, a CLASS block should not contain an EXPRESSION
definition and the corresponding LAYER should not contain a CLASSITEM definition.

Note: Declaring an empty CLASS is mandatory

Access to the feature attributes is made through the shape.attributes javascript object.

The following javascript functions are available:

• alert(str1, str2, . . . , str)
print some text in MapServer logs

• print(str1, str2, . . . , str)
print some text in MapServer logs
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• require(path_to_lib1, path_to_lib2, . . . , path_to_lib)
include one or more javascript lib

Example 1. Single STYLE definition

This example returns a single STYLE definition . . .

function styleitem() {
//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;

var style = "STYLE SIZE " + size + " SYMBOL 'circle'";

var red = Math.random()*255;
var green = Math.random()*255;
var blue = Math.random()*255;
style += "COLOR " + red + " " + green + " " + blue + " END";

//Return style to MapServer
return style;

}

Example 2. CLASS with multiple STYLE definitions

This example returns a single CLASS with multiple STYLE definitions . . .

function styleitem() {
var cls = "CLASS";

//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;

var style1 = "STYLE SIZE " + size + " SYMBOL 'circle'";
var style2 = "STYLE SIZE " + size + " SYMBOL 'cross'";

var red = Math.random()*255;
var green = Math.random()*255;
var blue = Math.random()*255;
style1 += "COLOR " + red + " " + green + " " + blue + " END";
style2 += "COLOR " + red + " " + green + " " + blue + " END";

cls += " " + style1 + " " + style2 + " END";

//Return class to MapServer
return cls;

}
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Example 3. Printing logs in MapServer logs

This example prints some javascript logs in MapServer logs.

MAP
...
CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"
DEBUG 1
LAYER
...
STYLEITEM "javascript://myscript.js"
CLASS
END

END
END

function styleitem() {
//Print some logs in MapServer logs
alert("Processing feature " + shape.attributes.NAME)

//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;

var style = "STYLE SIZE " + size + " SYMBOL 'circle'";

var red = Math.random()*255;
var green = Math.random()*255;
var blue = Math.random()*255;
style += "COLOR " + red + " " + green + " " + blue + " END";

//Return style to MapServer
return style;

}

4.1.25 SYMBOL

• Symbol definitions can be included within the main map file or, more commonly, in a separate file. Symbol
definitions in a separate file are designated using the SYMBOLSET keyword, as part of the MAP object. This
recommended setup is ideal for re-using symbol definitions across multiple MapServer applications.

• There are 3 main types of symbols in MapServer: Markers, Lines and Shadesets.

• Symbol 0 is always the degenerate case for a particular class of symbol. For points, symbol 0 is a single pixel,
for shading (i.e. filled polygons) symbol 0 is a solid fill, and for lines, symbol 0 is a single pixel wide line.

• Symbol definitions contain no color information, colors are set within STYLE objects.

• Line styling was moved to CLASS STYLE in MapServer version 5. The mechanisms are no longer available in
SYMBOL.

• For MapServer versions < 5 there is a maximum of 64 symbols per file. This can be changed by editing map-
symbol.h and changing the value of MS_MAXSYMBOLS at the top of the file. As of MapServer 5.0 there is no
symbol limit.

• More information can be found in the Construction of Cartographic Symbols document.
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ANCHORPOINT [x] [y]
Added in version 6.2.

Used to specify the location (within the symbol) that is to be used as an anchorpoint when rotating the symbol
and placing the symbol on a map. Default is 0.5 0.5 (corresponding to the center of the symbol).

x: A double in the range [0,1] that specifies the location within the symbol along the x axis. 0 specifies
the left edge of the symbol, 1 specifies the right edge of the symbol. 0.5 specifies the center of the
symbol (in the x direction).

y: A double in the range [0,1] that specifies the location within the symbol along the y axis. 0 specifies
the top edge of the symbol, 1 specifies the lower edge of the symbol. 0.5 specifies the center of the
symbol (in the y direction).

ANCHORPOINT can be used with SYMBOLs of TYPE ellipse, pixmap, svg, truetype and vector. To ensure
proper behaviour for vector symbols, the left and top edges of the bounding box of the symbol should be at 0.

Note: SVG symbols might require to have their width/height set inside the SVG file, for ANCHORPOINT to
work correctly. See report.

ANTIALIAS [true|false]
Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false. Has no effect for the
other renderers (where anti-aliasing can not be turned off).

Warning: GD support was removed in MapServer 7.0.

CHARACTER [char|entity number]
Character used to reference a particular TrueType font character. You’ll need to figure out the mapping from the
keyboard character to font character.

HTML entity numbers can also be used, for example:

SYMBOL
NAME "right-arrow"
COLOR 255 255 255
TYPE TRUETYPE
FONT "dejavu"
CHARACTER "&#10140;"

END

FILLED [true|false]
If true, the symbol will be filled with a user defined color (using STYLE COLOR). Default is false.

If true, symbols of TYPE ellipse and vector will be treated as polygons (fill color specified using STYLE COLOR
and outline specified using STYLE OUTLINECOLOR and WIDTH).

If false, symbols of TYPE ellipse and vector will be treated as lines (the lines can be given a color using STYLE
COLOR and a width using STYLE WIDTH).

FONT [string]
Name of TrueType font to use as defined in the FONTSET .

IMAGE [string]
Filename of image to use as a marker. For type pixmap, use GIF or PNG files; for type svg, use SVG.

NAME [string]
Alias for the symbol. To be used in CLASS STYLE objects.

4.1. Mapfile 264

https://lists.osgeo.org/pipermail/mapserver-users/2021-February/082025.html


MapServer Documentation, Release 7.6.6

POINTS [x y] [x y] . . . END

Signifies the start of a sequence of points that make up a symbol of TYPE vector or that define the x and y
radius of a symbol of TYPE ellipse. The end of this section is signified with the keyword END. The x and
y values can be given using decimal numbers. The maximum x and y values define the bounding box of
the symbol. The size (actually height) of a symbol is defined in the STYLE. You can create non-contiguous
paths by inserting “-99 -99” at the appropriate places.

x values increase to the right, y values increase downwards.

For symbols of TYPE ellipse, a single point is specified that defines the x and y radius of the ellipse. Circles
are created when x and y are equal.

Note: If a STYLE using this symbol doesn’t contain an explicit size, then the default symbol size will
be based on the range of “y” values in the point coordinates. e.g. if the y coordinates of the points in the
symbol range from 0 to 5, then the default size for this symbol will be assumed to be 5.

TRANSPARENT [color index]
Sets a transparent color for the input image for pixmap symbols, or determines whether all shade symbols should
have a transparent background. For shade symbols it may be desirable to have background features “show
through” a transparent hatching pattern, creating a more complex map. By default a symbol’s background is
the same as the parent image (i.e. color 0). This is user configurable.

Note: The default (AGG) renderer does not support the TRANSPARENT parameter. It is supported by the GD
renderer (GIF).

Warning: GD support was removed in MapServer 7.0.

TYPE [ellipse|hatch|pixmap|svg|truetype|vector]
• ellipse: radius values in the x and y directions define an ellipse.

• hatch: produces hatched lines throughout the (polygon) shape.

• pixmap: a user supplied image will be used as the symbol.

• svg: scalable vector graphics (SVG) symbol. Requires the libsvg/libsvg-cairo libraries (or alternatively the
librsvg library).

• truetype: TrueType font to use as defined in the MAP FONTSET .

• vector: a vector drawing is used to define the shape of the symbol.

Note: TYPE cartoline is no longer used. Dashed lines are specified using PATTERN, LINECAP, LINEJOIN
and LINEJOINMAXSIZE in STYLE. Examples in Construction of Cartographic Symbols.
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4.1.26 Symbology Examples

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Author
Håvard Tveite

Contact
havard.tveite at nmbu.no

Last Updated
2011/05/11

Table of Contents

• Symbology Examples

– Example 1. Dashed Line

– Example 2. TrueType font marker symbol

– Example 3. Vector triangle marker symbol

– Example 4. Non-contiguous vector marker symbol (Cross)

– Example 5. Circle vector symbol

– Example 6. Downward diagonal fill

– Example 7. Using the Symbol Type HATCH (new in 4.6)

– Example 8. Styled lines using GAP

Example 1. Dashed Line

This example creates a dashed line that is 5 SIZEUNITS wide, with 10 SIZEUNITS on, 5 off, 5 on, 10 off . . .

LAYER
...
CLASS
...
STYLE
COLOR 0 0 0
WIDTH 5
LINECAP butt
PATTERN 10 5 5 10 END

END
END

END
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Example 2. TrueType font marker symbol

This example symbol is a star, used to represent the national capital, hence the name. The font name in defined in the
FONTSET file. The code number “114” varies, you can use MS Windows’ character map to figure it out, or guestimate.

SYMBOL
NAME "natcap"
TYPE TRUETYPE
FONT "geo"
FILLED true
ANTIALIAS true # only necessary for GD rendering
CHARACTER "&#114;"

END

Example 3. Vector triangle marker symbol

This example is fairly straight forward. Note that to have 3 sides you need 4 points, hence the first and last points are
identical. The triangle is not filled.

SYMBOL
NAME "triangle"
TYPE vector
POINTS
0 4
2 0
4 4
0 4

END
END

Example 4. Non-contiguous vector marker symbol (Cross)

This example draws a cross, that is 2 lines (vectors) that are not connected end-to-end (Like the triangle in the previous
example). The negative values separate the two.

SYMBOL
NAME "cross"
TYPE vector
POINTS
2.0 0.0
2.0 4.0
-99 -99
0.0 2.0
4.0 2.0

END
END
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Example 5. Circle vector symbol

This example creates a simple filled circle. Using non-equal values for the point will give you an actual ellipse.

SYMBOL
NAME "circle"
TYPE ellipse
FILLED true
POINTS
1 1

END
END

Example 6. Downward diagonal fill

This example creates a symbol that can be used to create a downward diagonal fill for polygons.

SYMBOL
NAME "downwarddiagonalfill"
TYPE vector
TRANSPARENT 0
POINTS
0 1
1 0

END
END

Example 7. Using the Symbol Type HATCH (new in 4.6)

As of MapServer 4.6, you can use the symbol type HATCH to produce hatched lines. The following will display
hatched lines at a 45 degree angle, 10 SIZEUNITS apart (center to center), and 3 SIZEUNITS wide.

Symbol definition:

SYMBOL
NAME 'hatch-test'
TYPE HATCH

END

Layer definition:

LAYER
...
CLASS
...
STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE 45
SIZE 10
WIDTH 3

END
(continues on next page)
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END
END

Other parameters available for HATCH are: MINSIZE, MAXSIZE, MINWIDTH, and MAXWIDTH.

Example 8. Styled lines using GAP

This example shows how to style lines with symbols.

A 5 SIZEUNITS wide black line is decorated with ellipses that are 15 SIZEUNITS long (and 7.5 SIZEUNITS`wide).
The ellipses are placed 30 `SIZEUNITS apart, and the negative GAP value ensures that the ellipses are oriented relative
to the direction of the line. The ellipses are rotated 30 degrees counter clock-wise from their position along the line.

Symbol definition:

SYMBOL
NAME "ellipse2"
TYPE ellipse
FILLED true
POINTS
1 2

END
END

Layer definition:

LAYER
...
CLASS
...
STYLE
WIDTH 5
COLOR 0 0 0

END
STYLE
SYMBOL 'ellipse2'
COLOR 0 0 0
ANGLE 30
SIZE 15
GAP -30

END
END

END
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Introduction

Templates are used:

• to define the look of a MapServer CGI application interface

• to present the results of a query.

• to create customised output (see Template-Driven Output)

They guide the presentation of results, either a query or a map, to the user. Templates are almost always HTML files
although they can also be a URL (e.g.. http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html). URL templates
can only be used with simple QUERY or ITEMQUERY results so many substitutions defined below are not available for
them. Simple pan/zoom interfaces use a single template file while complicated queries often require many templates.
Templates often use JavaScript to enhance the basic interface.

Notes

• Templates must contain the magic string ‘mapserver template’ in the first line of the template. Often this takes
the form of an HTML, javascript or XML comment. This line is not written to the client. The magic string is
not case sensitive.

• MapServer will only accept certain file extensions for templates; valid file extensions are:

.gml

.html

.htm

.js

.kml
(continues on next page)

4.1. Mapfile 270

http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html


MapServer Documentation, Release 7.6.6

(continued from previous page)

.svg

.tmpl

.wml

.xml

• All CGI parameters can be referenced in template substitutions, MapServer specific parameters as well as user
defined ones. In principle parameters are handed through by the MapServer 1:1. This feature is essential for
implementing MapServer applications.

The reference below only lists special template substitution strings which are needed to obtain information mod-
ified by the MapServer, e.g. a new scale, query results, etc.

• Template substitution strings are case sensitive.

• Attribute item substitutions must be the same case as the item names in the dbase file.

• ArcView and ArcInfo generally produce dbase files with item names that are all uppercase. Appropriate URL
encoding (i.e. ‘ ‘ to ‘+’) is applied when templates are URLs.

• Some substitutions are also available in escaped form (i.e. URL encoded).

As an example this is needed when generating links within a template. This might pass the current mapextent to a new
MapServer call. [mapext] is substituted by a space delimited set of lower left and upper right coordinates. This would
break the URL. [mapext_esc] is substituted by a proper encoded set.

Format

Templates are simply HTML files or URL strings that contains special characters that are replaced by mapserv each
time the template is processed. The simple substitution allows information such as active layers or the spatial extent
to be passed from the user to mapserv and back again. Most often the new values are dumped into form variables that
will be passed on again. The list of special characters and form variables is given below. HTML templates can include
just about anything including JavaScript and Java calls.

In HTML files, the attribute values can be inside quotes(“”). Writing attribute values inside quotes allows you to set
special characters in value that you couldn’t use normally (ie: ],=,” and space). To write a single quote in a attribute
value, just use two quotes (“”).

General

[date]
Outputs the date (as per the web server’s clock). The default format is the same as is used by Apache’s Common
Log format, which looks like:

01/Dec/2010:17:34:58 -0800

Available arguments:

• format=
A format string as supported by the standard C strftime() function. As an example, the default format
is defined as:

[date format="%d/%b/%Y:%H:%M:%S %z"]

• tz=
timezone to use for the date returned. Default is “local”. Valid values are:
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– “gmt”
Output date will be Greenwich time

– “local”
Output the time in the web server’s local time zone.

Additionally or alternatively, the %z and %Z strftime format strings allow the timezone offset or name
to be output.

[version]
The MapServer version number.

[id]
Unique session id. The id can be passed in via a form but is more commonly generated by the software. In that
case the id is a concatenation of UNIX time (or NT equivalent) and the process id. Unless you’re getting more
requests in a second than the system has process ids the id can be considered unique. ;->

[host]
Hostname of the web server.

[port]
Port the web server is listening to.

[post or get variable name], [post or get variable name_esc]
The contents of any variables passed to the MapServer, whether they were used or not, can be echoed this way.
One use might be to have the user set a map title or north arrow style in an interactive map composer. The system
doesn’t care about the values, but they might be real important in creating the final output, e.g. if you specified
a CGI parameter like myvalue=. . . . you can access this in the template file with [myvalue].

Also available as escaped version.

[web_meta data key],[web_meta data key_esc]
Web object meta data access (e.g [web_projection]

Also available as escaped version.

[errmsg], [errmsg_esc]
Current error stack output. Various error messages are delimited by semi-colons.

Also available as escaped version.

File Reference

[img]
Path (relative to document root) of the new image, just the image name if IMAGE_URL is not set in the mapfile.

In a map interface template, [img] is substituted with the path to the map image. In a query results template, it
is substituted with the path to the querymap image (if a QUERYMAP object is defined in the Mapfile).

[ref]
Path (relative to document root) of the new reference image.

[legend]
Path (relative to document root) of new legend image rendered by the MapServer.

Since version 3.5.1 a new HTML Legend template is provided by MapServer. If a template is defined in the
Mapfile the [legend] string is replaced by the processed legend as. See the HTML Legends with MapServer for
details.

[scalebar]
Path (relative to document root) of new scalebar image.
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[queryfile]
Path to the query file (if savequery was set as a CGI Parameter).

[map]
Path to the map file (if savemap was set as a CGI Parameter).

Image Geometry

[center]
Computed image center in pixels. Useful for setting imgxy form variable when map sizes change.

[center_x], [center_y]
Computed image center X or Y coordinate in pixels.

[mapsize], [mapsize_esc]
Current image size in cols and rows (separated by spaces).

Also available as escaped version.

[mapwidth], [mapheight]
Current image width or height.

[scaledenom]
Current image scale. The exact value is not appropriate for user information but essential for some applications.
The value can be rounded e.g. using JavaScript or server side post processing.

[scale] - deprecated
Since MapServer 5.0 the proper parameter to use is [scaledenom] instead. The deprecated [scale] is the current
image scale. The exact value is not appropriate for user information but essential for some applications. The
value can be rounded e.g. using JavaScript or server side post processing.

[cellsize]
Size of an pixel in the current image in map units. Useful for distance measurement tools in user interfaces.

Map Geometry

[mapx], [mapy]
X and Y coordinate of mouse click.

[mapext], [mapext_esc]
Full mapextent (separated by spaces).

Also available as escaped version. (mapext_esc is deprecated in MapServer 5.2. You should use the “escape=”
argument instead)

The default template [mapext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape=
Escape the coordinates returned. Default is “none”. Valid values are:

– “url”
Use URL escape codes to encode the coordinates returned.

– “none”
Do not escape.
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• expand=
Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext] might return:

123456 123456 567890 567890

and [mapext expand=1000] would therefore return:

122456 122456 568890 568890

• format=
Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add commas to
the coordinates you would use:

[mapext format="$minx,$miny,$maxx,$maxy"]

• precision=
The number of decimal places to output for coordinates (default is 0).

[minx], [miny], [maxx], [maxy]
Minimum / maximum X or Y coordinate of new map extent.

[dx], [dy]
The differences of minimum / maximum X or Y coordinate of new map extent.

Useful for creating cachable extents (i.e. 0 0 dx dy) with legends and scalebars

[rawext], [rawext_esc]
Raw mapextent, that is the extent before fitting to a window size (separated by spaces). In cases where input
came from imgbox (via Java or whatever) rawext refers to imgbox coordinates transformed to map units. Useful
for spatial query building.

Also available as escaped version. (rawext_esc is deprecated in MapServer 5.2. You should use the “escape=”
argument instead)

The default template [rawext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape=
Escape the coordinates returned. Default is “none”. Valid values are:

– “url”
Use URL escape codes to encode the coordinates returned.

– “none”
Do not escape.

• expand=
Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[rawext] might return:

123456 123456 567890 567890

and [rawext expand=1000] would therefore return:

122456 122456 568890 568890

• format=
Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add commas to
the coordinates you would use:
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[rawext format="$minx,$miny,$maxx,$maxy"]

• precision=
The number of decimal places to output for coordinates (default is 0).

[rawminx], [rawminy], [rawmaxx], [rawmaxy]
Minimum / maximum X or Y coordinate of a raw map/search extent.

The following substitutions are only available if the MapServer was compiled with PROJ support and a PROJECTION
is defined in the Mapfile.

[maplon], [maplat]
Longitude / latitude value of mouse click. Available only when projection enabled.

[mapext_latlon], [mapext_latlon_esc]
Full mapextent (separated by spaces). Available only when projection enabled.

Also available as escaped version. (mapext_latlon_esc is deprecated in MapServer 5.2. You should use the
“escape=” argument instead)

The default template [mapext_latlon] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape=
Escape the coordinates returned. Default is “none”. Valid values are:

– “url”
Use URL escape codes to encode the coordinates returned.

– “none”
Do not escape.

• expand=
Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext_latlon] might return:

123456 123456 567890 567890

and [mapext_latlon expand=1000] would therefore return:

122456 122456 568890 568890

• format=
Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add commas to
the coordinates you would use:

[mapext_latlon format="$minx,$miny,$maxx,$maxy"]

• precision=
The number of decimal places to output for coordinates (default is 0).

[minlon], [minlat], [maxlon] [maxlat]
Minimum / maximum longitude or latitude value of mapextent. Available only when projection enabled.

[refext], [refext_esc]
Reference map extent (separated by spaces).

This template has been added with version 4.6 on behalf of an enhancement request. See the thread in the
MapServer ticket#1102 for potential use cases.
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Also available as escaped version. (refext_esc is deprecated in MapServer 5.2. You should use the “escape=”
argument instead)

The default template [refext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape=
Escape the coordinates returned. Default is “none”. Valid values are:

– “url”
Use URL escape codes to encode the coordinates returned.

– “none”
Do not escape.

• expand=
Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[refext] might return:

123456 123456 567890 567890

and [refext expand=1000] would therefore return:

122456 122456 568890 568890

• format=
Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add commas to
the coordinates you would use:

[refwext format="$minx,$miny,$maxx,$maxy"]

• precision=
The number of decimal places to output for coordinates (default is 0).

Layer

[layers] | [layers_esc]
All active layers space delimited. Used for a “POST” request.

Also available as escaped version.

[toggle_layers] | [toggle_layers_esc]
List of all layers that can be toggled, i.e. all layers defined in the Mapfile which status is currently not default.

Also available as escaped version.

[layername_check | select]
Used for making layers persistent across a map creation session. String is replaced with the keyword “checked”,
“selected” or “” if layername is on. Layername is the name of a layer as it appears in the Mapfile. Does not work
for default layers.

[layername_meta data key]
Layer meta data access (e.g. [streets_build] the underscore is essential).
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Zoom

[zoom_minzoom to maxzoom_check|select]
Used for making the zoom factor persistent. Zoom values can range from -25 to 25 by default. The string is
replaced with the HTML keyword “checked”, “selected” or “” depending on the current zoom value.

E.g. if the zoom is 12, a [zoom_12_select] is replaced with “selected”, while a [zoom_13_select] in the same
HTML template file is not.

[zoomdir_-1|0|1_check|select]
Used for making the zoom direction persistent. Use check with a radio control or select with a selection list. See
the demo for an example. The string is replaced with the HTML keyword “checked”, “selected” or “” depending
on the current value of zoomdir.

Query

The following substitutions are only available when the template is processed as a result of a query.

[shpext], [shpext_esc]
Extent of current shape plus a 5 percent buffer. Available only when processing query results.

The default template [shpext] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

• escape=
Escape the coordinates returned. Default is “none”. Valid values are:

– “url”

Use URL escape codes to encode the coordinates returned.

– “none”
Do not escape.

• expand=
Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[shpext] might return:

123456 123456 567890 567890

and [shpext expand=1000] would therefore return:

122456 122456 568890 568890

• format=
Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add commas to
the coordinates you would use:

[shpext format="$minx,$miny,$maxx,$maxy"]

• precision=
The number of decimal places to output for coordinates (default is 0).

[shpminx], [shpminy], [shpmaxx], [shpmaxy]
Minimum / maximum X or Y coordinate of shape extent. Available only when processing query results.

[shpmid]
Middle of the extent of current shape. Available only when processing query results.
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[shpmidx], [shpmidy]
X or Y coordinate of middle of the extent of the current shape. Available only when processing query results.

[shpidx]
Index value of the current shape. Available only when processing query results.

[shpclass]
Classindex value of the current shape. Available only when processing query results.

[shpxy formatting options]
The list of shape coordinates, with list formatting options, especially useful for SVG.

The default template [shpxy] returns a comma separated list of space delimited of coordinates (i.e. x1 y1, x2 y2,
x3 y3).

Available only when processing query results.

Available attributes (h = header, f=footer, s=separator):

• buffer=,
Buffer size, currently the only unit available is pixels. Default is 0.

• centroid=
Should only the centroid of the shape be used? true or false (case insensitive). Default is false.

• cs=
Coordinate separator. Default is “,”.

• irh=, irf=, orh=, orf=

Characters to be put before (irh) and after (irf ) inner rings, and before (orh) and after (orf ) outer
rings of polygons with holes. Defaults are “”.

Note: Within each polygon, the outer ring is always output first, followed by the inner rings.

If neither irh nor orh are set, rings are output as “parts” using ph/pf /ps.

• ph=, pf=, ps=
Characters to put before (ph) and after (pf ) and separators between (ps) feature parts (e.g. rings of
multigeometries). Defaults are ph=””, pf=”” and ps=” “.

• precision=
The number of decimal places to output for coordinates. Default is 0.

• proj=
The output projection definition for the coordinates, a special value of “image” will convert to image
coordinates. Default is none.

• scale=, scale_x=, scale_y=
Scaling factor for coordinates: Both axes (scale), x axis (scale_x) and y axis (scale_y). Defaults are
1.0.

• sh=, sf=
Characters to put before (sh) and after (sf ) a feature. Defaults are “”.

• xh=, xf=
Characters to put before (xh) and after (xf ) the x coordinates. Defaults are xh=”” and xf=”,”).

• yh= yf=
Characters to put before (yh) and after (yf ) the y coordinates. Defaults are “”.

As a simple example:

4.1. Mapfile 278



MapServer Documentation, Release 7.6.6

[shpxy xh="(" yf=")"] will result in: (x1 y1),(x2 y2),(x3 y3)

or

[shpxy precision="2" xh="(" yf=")"] will result in: (x1,y1) (x2,y2) (x3,y3)

or

[shpxy precision="2" xf=" " xh="(" yf=")"] will result in: (x1 y1) (x2 y2) (x3 y3)

And a more complicated example of outputting KML for multipolygons which may potentially have holes (note
that the parameters must all be on one line):

<MultiGeometry>
<Point>

<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>
</Point>
[shpxy ph="<Polygon><tessellate>1</tessellate>" pf="</Polygon>" xf=","
xh=" " yh=" " yf=",0 " orh="<outerBoundaryIs><LinearRing><coordinates>"
orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"
irf="</coordinates></LinearRing></innerBoundaryIs>" proj=epsg:4326
precision=10]

</MultiGeometry>

[tileindex]
Index value of the current tile. If no tiles used for the current shape this is replaced by "-1". Available only when
processing query results.

[item formatting options]
An attribute table “item”, with list formatting options. The “name” attribute is required.

Available only when processing query results.

Available attributes:

• name =
The name of an attribute, case insenstive. (required)

• precision =
The number of decimal places to use for numeric data. Use of this will force display as a number and
will lead to unpredicable results with non-numeric data.

• pattern =
Regular expression to compare the value of an item against. The tag is output only if there is a match.

• uc =
Set this attribute to “true” to convert the attribute value to upper case.

• lc =
Set this attribute to “true” to convert the attribute value to lower case.

• commify =
Set this attribute to “true” to add commas to a numeric value. Again, only useful with numeric data.

• escape =
Default escaping is for HTML, but you can escape for inclusion in a URL (=url), or not escape at all
(=none).
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• format =
A format string used to output the attribute value. The token “$value” is used to place the value in a
more complex presentation. Default is to output only the value.

• nullformat =
String to output if the attribute value is NULL, empty or doesn’t match the pattern (if defined). If not
set and any of these conditions occur the item tag is replaced with an empty string.

• padding =
Set to an integer value to pad an item value with spaces to the right. Useful to create fixed width strings.

As a simple example:

[item name="area" precision="2" commify="2" format="Area is $value"]

[attribute name],[attrribute name_esc],[attribute item name_raw]
Attribute name from the data table of a queried layer. Only attributes for the active query layers are accessible.
Case must be the same as what is stored in the data file. ArcView, for example, uses all caps for shapefile field
names. Available only when processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version (for
use in URLs) as well as the raw data is available.

[Join name_attribute name],[Join name_attribute name_esc], [Join name_attribute name_raw]

One-to-one joins: First the join name (as specified in the Mapfile has to be given, second the tables fields
can be accessed similar to the layers attribute data. Available only when processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version
(for use in URLs) as well as the raw data is available.

[join_Join name]
One-to-many joins: The more complex variant. If the join type is multiple (one-to-many) the template is replaced
by the set of header, template file and footer specified in the Mapfile.

[metadata_meta data key], [metadata_meta data key_esc]
Queried layer meta data access (e.g [metadata_projection]

Also available as escaped version.

For query modes that allow for multiple result sets, the following string substitutions are available. For FEATURESE-
LECT and FEATURENSELECT modes the totals a re adjusted so as not to include the selection layer. The selection
layer results ARE available for display to the user.

[nr]
Total number of results. Useful in web header and footers. Available only when processing query results.

[nl]
Number of layers returning results. Useful in web header and footers. Available only when processing query
results.

[nlr]
Total number of results within the current layer. Useful in web header and footers. Available only when process-
ing query results.

[rn]
Result number within all layers. Starts at 1. Useful in web header and footers. Available only when processing
query results.

[lrn]
Result number within the current layer. Starts at 1. Useful in query templates. Available only when processing
query results.
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[cl]
Current layer name. Useful in layer headers and footers. Available only when processing query results.

Example Template

A small example to give an idea how to work with templates. Note that it covers MapServer specific templates (e.g.
the [map], [mapext]) and user defined templates (e.g. [htmlroot] or [program]) used to store application settings.

1 <!-- MapServer Template -->
2 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3 "http://www.w3.org/TR/html4/transitional.dtd">
4 <html>
5 <head>
6 <title>MapServer Template Sample</title>
7 </head>
8

9 <body>
10 MapServer Template Sample<br>
11

12 <!-- The central form the application is based on. -->
13 <form method="GET" action="[program]">
14

15 <!-- CGI MapServer applications are server stateless in principle,
16 all information must be "stored" in the client. This includes
17 some basic settings as below.
18 The example is based on the pan and zoom test suite:
19 http://maps.dnr.state.mn.us/mapserver_demos/tests36/ -->
20 <input type="hidden" name="map" value="[map]">
21 <input type="hidden" name="imgext" value="[mapext]">
22 <input type="hidden" name="imgxy" value="149.5 199.5">
23 <input type="hidden" name="program" value="[program]">
24 <input type="hidden" name="htmlroot" value="[htmlroot]">
25 <input type="hidden" name="map_web" value="[map_web]">
26

27 <!-- A table for minimal page formatting. -->
28 <table border=0 cellpadding=5>
29 <tr>
30 <!-- First column: Map and scale bar -->
31 <td align=center>
32 <!-- The map -->
33 <input type="image" name="img" src="[img]"
34 style="border:0;width:300;height:400">
35 <br>
36 <!-- The scale bar-->
37 <img src="[scalebar]" alt="Scale Bar">
38 </td>
39

40 <!-- Second column: Zoom direction, Legend and Reference -->
41 <td valign=top>
42 <!-- Zoom direction -->
43 <b>Map Controls</b><br>
44 Set your zoom option:<br>
45 <select name="zoom" size="1">

(continues on next page)
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(continued from previous page)

46 <option value="2" [zoom_2_select]> Zoom in 2 times
47 <option value="1" [zoom_1_select]> Recenter Map
48 <option value="-2" [zoom_-2_select]> Zoom out 2 times
49 </select>
50 <br>
51

52 <!-- Legend -->
53 <b>Legend</b><br>
54 <img src="[legend]" alt="Legend"><br><br><br><br>
55

56 <!-- Reference map -->
57 <input type="image" name="ref" src="[ref]"
58 style="border:0;width:150;height:150">
59 </td>
60 </tr>
61 </table>
62

63 </form>
64

65 </body>
66 </html>

4.1.28 VALIDATION

Contents

• VALIDATION

– Introduction

– Default values if not provided in the URL

– Test with Commandline

– Filter example

– Expression Example

Introduction

Because Run-time Substitution affects potentially sensitive areas of your mapfile such as database columns and file-
names, it is mandatory that you use pattern validation (since version 6.0).

Note: Similar validation pattern mechanisms have been available for variable substitutions since version 4.10, but
then it was optional. The pattern for %myvar% was then provided in METADATA using “myvar_validation_pattern”.

Note: It is also strongly recommended to review the security steps for the MAP= call to the MapServer executable,
by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as recom-
mended in the document Limit Mapfile Access. All possible environment variables to secure your server are listed in
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Environment Variables.

Pattern validation uses regular expressions, which are strings that describe how to compare strings to patterns. The
exact functionality of your systems’ regular expressions may vary, but you can find a lot of general information by a
Google search for “regular expression tutorial”.

As of MapServer 5.4.0 the preferred mechanism is a VALIDATION block in the LAYER definition. This is only slightly
different from the older METADATA mechanism. VALIDATION blocks can be used with CLASS, LAYER and WEB.

VALIDATION
# %firstname% substitutions can only have letters and hyphens
'firstname' '^[a-zA-Z\-]+$'

# %parcelid% must be numeric and between 5 and 8 characters
'parcelid' '^[0-9]{5,8)$'

# %taxid% must be two capital letters and six digits
'taxid' '^[A-Z]{2}[0-9]{6}$'

END

If identical keys appear in more than one validation block, then keys in more specialised blocks override those in more
generalised blocks. So CLASS overrides LAYER which overrides WEB.

Default values if not provided in the URL

The runtime substitution mechanism will usually create syntactically incorrect, and almost always semantically incor-
rect mapfiles if the substitution parameter was not provided in the calling URL.

Since version 5.6, you can provide a default value for any substitution parameter, that will be applied if the parameter
was not found in the url. You do this by providing special entries inside CLASS, LAYER or WEB validation blocks:

VALIDATION
'default_sound' 'yes'
'default_nseats' '5'
'default_multimedia' 'yes'

END

In this example, the mapfile will be created as if the url contained “&sound=yes&nseats=5&multimedia=yes”

If identical default keys appear in more than one validation block then keys in more specialised blocks override those
in more generalised blocks. i.e. CLASS overrides LAYER which overrides WEB.

The same functionality is available using METADATA blocks instead of VALIDATION but this is deprecated as of
MapServer 5.4.0.
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Test with Commandline

You can test at the commandline, allowing you to test runtime substitution mapfiles without using a webserver, with
the mapserv utility such as:

mapserv -nh "QUERY_STRING=map=D:\ms4w\apps\filter-validation\filter-validation.map&
→˓mode=map&layers=all&nseats=10" > ttt.png

Filter example

You can use runtime substitutions to change values within a FILTER as you go. For example your FILTER could be
written like this:

FILTER ("multimedia='%multimedia%' and seats >= %nseats% and Sound= '%sound%')

Then (assuming you’re using the CGI interface) you could pass in variables named multimedia, nseats and sound with
values defined by the user in an HTML form.

You must define validation expressions on these variables to guard against unintentional SQL being submitted to your
server. Within the layer you’d do the following:

VALIDATION
'multimedia' '^yes|no$'
'sound' '^yes|no$'
'nseats' '^[0-9]{1,2}$'

END

The first two limit the value of multimedia and sound to yes or no. The third limits the value for nseats to a 2 digit
integer.

Note: Be careful not to use a variable specifically named id as this will cause an error such as:

msCGILoadForm(): Web application error. Parameter 'id' value fails to validate

Instead use another variable name such as code or myid. For example:

LAYER
..
VALIDATION
"code" "[0-9]"

END
..
FILTER ("[reg_code]" IN "%code%")
...

END # Layer

..and calling it as: https://xxx.xx/cgi-bin/mapserv?map=xxx.map&mode=map&code=12,13
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Expression Example

You can also use runtime substitutions to change values within a CLASS EXPRESSION, such as EXPRESSION ([year]
< %year%).

Again you must define validation expressions on these variables to guard against unintentional requests being submitted
to your server. Within the layer you’d do the following:

VALIDATION
'year' '^[0-9]{4}$'
'default_year' '1976'

END

The first limits the possible values to 4 digits, with each a valid number. The second sets the default value.

The entire layer may appear as:

LAYER
NAME 'yearly-data'
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "data.vrt"
VALIDATION
'year' '^[0-9]{4}$'
'default_year' '1976'

END #validation
STATUS ON
CLASS
NAME "Passed"
EXPRESSION ([year] < %year%)
STYLE
SYMBOL "circlef"
COLOR 0 0 255
SIZE 4

END # STYLE
END # CLASS
CLASS
NAME "Current"
EXPRESSION ([year] = %year%)
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4

END # STYLE
END # CLASS

END # LAYER

Tip: For the expression syntax, be sure to check the ogrinfo response on your data layer, to see if OGR/GDAL reads
the data value as an integer or as a string, such as:

ogrinfo data.vrt data -summary

using driver `OGR_VRT' successful.

(continues on next page)
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(continued from previous page)

Layer name: data
Geometry: Point
Feature Count: 3590
Extent: (136.852100, -43.533900) - (153.550600, -17.253900)
Layer SRS WKT:
...
year: Integer (0.0)

From above we can see that year is read by OGR as a number, so therefore our expression should check for a number on
both sides, such as EXPRESSION ([year] = %year%). Alternatively, if the field was treated as a string the expression
might be: EXPRESSION (“[year]” = “%year%”)

You can test this at the commandline, allowing you to test runtime substitution mapfiles without using a webserver,
with the mapserv utility such as:

mapserv -nh "QUERY_STRING=map=D:\ms4w\apps\validation-expression\validation.map&mode=map&
→˓year=1976" > out.png

4.1.29 Union Layer

Author
Tamas Szekeres

Contact
szekerest at gmail.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-03-30

Table of Contents

• Union Layer
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– Feature attributes

– Classes and Styles
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– Supported Processing Options

– Examples

∗ Mapfile Example
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∗ PHP MapScript Example

Description

Since version 6.0, MapServer has the ability to display features from multiple vector layers (called ‘source layers’) in
a single mapfile layer. This feature was added through rfc68. Raster layers cannot be combined using this feature.

Requirements

This is a native MapServer option that doesn’t use any external libraries to support it.

Mapfile Configuration

• The CONNECTIONTYPE parameter must be set to UNION.

• The CONNECTION parameter must contain a comma separated list of the source layer names.

• All of the source layers and the union layer must be the same TYPE (e.g. all must be TYPE POINT, or all TYPE
POLYGON etc.)

Note: You may wish to disable the visibility (change their STATUS) of the source layers to avoid displaying the
features twice.

For example:

LAYER
NAME "union-layer"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE UNION
CONNECTION "layer1,layer2,layer3" # reference to the source layers
PROCESSING "ITEMS=itemname1,itemname2,itemname3"
...

END
LAYER
NAME "layer1"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END
LAYER
NAME "layer2"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END
(continues on next page)
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(continued from previous page)

LAYER
NAME "layer3"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...
...

END

Feature attributes

In the LAYER definition you may refer to any attributes supported by each of the source layers. In addition to the
source layer attributes the union layer provides the following additional attributes:

1) Union_SourceLayerName - The name of the source layer the feature belongs to

2) Union_SourceLayerGroup - The group of the source layer the feature belongs to

During the selection / feature query operations only the ‘Union_SourceLayerName’ and ‘Union_SourceLayerGroup’
attributes are provided by default. The set of the provided attributes can manually be overridden (and further attributes
can be exposed) by using the ITEMS processing option (refer to the example above).

Classes and Styles

We can define the symbology and labelling for the union layers in the same way as for any other layer by specifying the
classes and styles. In addition the STYLEITEM AUTO option is also supported for the union layer, which provides to
display the features as specified at the source layers. The source layers may also use the STYLEITEM AUTO setting
if the underlying data source provides that.

Projections

For speed, it is recommended to always use the same projection for the union layer and source layers. However
MapServer will reproject the source layers to the union layer if requested. (for more information on projections in
MapServer refer to PROJECTION)

Supported Processing Options

The following processing options can be used with the union layers:

UNION_STATUS_CHECK (TRUE or FALSE)
Controls whether the status of the source layers should be checked and the invisible layers (STATUS=OFF)
should be skipped. Default value is FALSE.

UNION_SCALE_CHECK (TRUE or FALSE)
Controls whether the scale range of the source layers should be checked and the invisible layers (falling outside
of the scale range and zoom range) should be skipped. Default value is TRUE.

UNION_SRCLAYER_CLOSE_CONNECTION
Override the connection pool setting of the source layers. By introducing this setting we alter the current be-
haviour which is equivalent to:

UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS

4.1. Mapfile 288



MapServer Documentation, Release 7.6.6

Examples

Mapfile Example

The follow example contains 3 source layers in different formats, and one layer (yellow) in a different projection.
The union layer uses the STYLEITEM “AUTO” parameter to draw the styles from the source layers. (in this case
MapServer will reproject the yellow features, in EPSG:4326, for the union layer, which is in EPSG:3978).

MAP
...
PROJECTION
"init=epsg:3978"

END
...
LAYER
NAME 'unioned'
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE UNION
CONNECTION "red,green,yellow"
STYLEITEM "AUTO"
# Define an empty class that will be filled at runtime from the color and
# styles read from each source layer.
CLASS
END
PROJECTION
"init=epsg:3978"

END
END

LAYER
NAME 'red'
TYPE POLYGON

(continues on next page)
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(continued from previous page)

STATUS OFF
DATA 'nb.shp'
CLASS
NAME 'red'
STYLE
OUTLINECOLOR 0 0 0
COLOR 255 85 0

END
END

END

LAYER
NAME 'green'
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION 'ns.mif'
CLASS
NAME 'green'
STYLE
OUTLINECOLOR 0 0 0
COLOR 90 218 71

END
END

END

LAYER
NAME 'yellow'
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION 'pei.gml'
CLASS
NAME 'yellow'
STYLE
OUTLINECOLOR 0 0 0
COLOR 255 255 0

END
END
PROJECTION
"init=epsg:4326"

END
END

END # Map
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PHP MapScript Example

<?php

// open map
$oMap = ms_newMapObj( "D:/ms4w/apps/osm/map/osm.map" );

// create union layer
$oLayer = ms_newLayerObj($oMap);
$oLayer->set("name", "unioned");
$oLayer->set("type", MS_LAYER_POLYGON);
$oLayer->set("status", MS_ON);
$oLayer->setConnectionType(MS_UNION);
$oLayer->set("connection", "red,green,yellow");
$oLayer->set("styleitem", "AUTO");
$oLayer->setProjection("init=epsg:3978");
// create empty class
$oClass = ms_newClassObj($oLayer);
...

?>

4.1.30 WEB

BROWSEFORMAT [mime-type]
Format of the interface output, using MapServer CGI. (added to MapServer 4.8.0) The default value is
“text/html”. Example:

BROWSEFORMAT "image/svg+xml"

EMPTY [url]
URL to forward users to if a query fails. If not defined the value for ERROR is used.

ERROR [url]
URL to forward users to if an error occurs. Ugly old MapServer error messages will appear if this is not defined

FOOTER [filename]
Template to use AFTER anything else is sent. Multiresult query modes only.

HEADER [filename]
Template to use BEFORE everything else has been sent. Multiresult query modes only.

IMAGEPATH [path]
Path to the temporary directory for writing temporary files and images. Must be writable by the user the web
server is running as. Must end with a / or depending on your platform.

IMAGEURL [path]
Base URL for IMAGEPATH. This is the URL that will take the web browser to IMAGEPATH to get the images.

LEGENDFORMAT [mime-type]
Format of the legend output, using MapServer CGI. (added to MapServer 4.8.0) The default value is “text/html”.
Example:

LEGENDFORMAT "image/svg+xml"
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LOG [filename]
Deprecated since version 5.0.

Since MapServer 5.0 the recommended parameters to use for debugging are the MAP object’s CONFIG and
DEBUG parameters instead (see the Debugging MapServer document).

File to log MapServer activity in. Must be writable by the user the web server is running as.

MAXSCALEDENOM [double]
Minimum scale at which this interface is valid. When a user requests a map at a smaller scale, MapServer
automatically returns the map at this scale. This effectively prevents user from zooming too far out. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated MAXSCALE parameter.

See also:
Map Scale

MAXSCALE [double]
Deprecated since version 5.0.

Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM instead. The deprecated MAXSCALE
is the minimum scale at which this interface is valid. When a user requests a map at a smaller scale, MapServer
automatically returns the map at this scale. This effectively prevents user from zooming too far out. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

MAXTEMPLATE [file|url]
Template to be used if below the minimum scale for the app (the denominator of the requested scale is larger
than MAXSCALEDENOM), useful for nesting apps.

METADATA
This keyword allows for arbitrary data to be stored as name value pairs.

• Used with OGC services (WMS Server, WFS Server, WCS Server, SOS Server, . . . ) to define things such
as layer title.

• It can also allow more flexibility in creating templates, as anything you put in here will be accessible via
template tags.

• If you have XMP support enabled, you can also embed xmp_metadata in your output images by specifying
XMP tag information here. Example:

METADATA
title "My layer title"
author "Me!"
xmp_dc_Title "My Map Title"

END

• labelcache_map_edge_buffer
For tiling, the amount of gutter around an image where no labels are to be placed is controlled by the
parameter labelcache_map_edge_buffer. The unit is pixels. The value had to be a negative value for 6.0
and earlier versions. From 6.2 the absolute value is taken, so the sign does not matter.

METADATA
"labelcache_map_edge_buffer" "10"

END

• ms_enable_modes
Enable / disable modes (see rfc90).
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Use the asterisk “*” to specify all modes and a preceding exclamation sign “!” to negate the given condition

To disable all CGI modes:

METADATA
"ms_enable_modes" "!*"

END

To disable everything but MAP and LEGEND:

METADATA
"ms_enable_modes" "!* MAP LEGEND"

END

• tile_map_edge_buffer
Added in version 6.0.

For mode=tile, renders the tile into a buffered rendering frame, then clips out the final tile. This will reduce
edge effects when large symbols or wide lines are drawn. Recommended value: the size of the largest
symbol or line width in your mapfile.

See also:
Tile Mode

• tile_metatile_level
Added in version 6.0.

For mode=tile, renders the tiles into a fixed metatile, then clips out the final tile. This will reduce label
repetition, at the expense of much higher rendering cost. Recommended value: 1 if you are doing labelling
of large features in your layer. 0 otherwise.

See also:
Tile Mode

MINSCALEDENOM [double]
Maximum scale at which this interface is valid. When a user requests a map at a larger scale, MapServer au-
tomatically returns the map at this scale. This effectively prevents the user from zooming in too far. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated MINSCALE parameter.

See also:
Map Scale

MINSCALE [double]
Deprecated since version 5.0.

Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM instead. The deprecated MINSCALE
is the maximum scale at which this interface is valid. When a user requests a map at a larger scale, MapServer
automatically returns the map at this scale. This effectively prevents the user from zooming in too far. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

MINTEMPLATE [file|url]
Template to be used if above the maximum scale for the app (the denominator of the requested scale is smaller
than MINSCALEDENOM), useful for nesting apps.

QUERYFORMAT [mime-type]
Format of the query output. (added to MapServer 4.8.0) This works for mode=query (using query templates in
CGI mode), but not for mode=browse. The default value is “text/html”. Example:
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QUERYFORMAT "image/svg+xml"

TEMPLATE [filename|url]

Template file or URL to use in presenting the results to the user in an interactive mode (i.e. map generates
map and so on . . . ).

URL is not a remote file, rather a template. For example:

TEMPLATE 'http://someurl/somescript.cgi?mapext=[mapext]'

TEMPPATH [path]
Added in version 6.0.

Path for storing temporary files. If not set, the standard system temporary file path will be used (e.g. tmp for
unix). TEMPPATH can also be set using the environment variable MS_TEMPPATH.

TEMPPATH is used in many contexts (see rfc66).

Make sure that that MapServer has sufficient rights to read and write files at the specified location.

VALIDATION
Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1.31 XML Mapfile support

MapServer is able to load XML mapfiles automatically, without user XSLT transformations. Basically, MapServer
will simply do an XSLT transformation when the mapfile passed to it is an XML one, convert it to a text mapfile in a
temporary file on disk, then process the mapfile normally.

New Dependencies

• libxslt

• libexslt

Enabling the support

You can enable the XML mapfile support by adding the following option: –with-xml-mapfile. This configure option
will enable the libxslt and libexslt check up. If your libxslt/libexslt are not installed in /usr, you’ll have to add the
following options:

--with-xslt=/path/to/xslt/installation
--with-exslt=/path/to/exslt/installation
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Usage:

In order to enable this feature, set the MS_XMLMAPFILE_XSLT environment variable to point to the location of the
XSLT to use for the XML->text mapfile conversion. e.g. in Apache:

SetEnv MS_XMLMAPFILE_XSLT /path/to/mapfile.xsl
PassEnv MS_XMLMAPFILE_XSLT

With this enabled, passing an .xml filename to the CGI map parameter will automatically trigger the conversion.

Note: This is a first step to XML mapfile loading support. Obviously, there is a cost to parse and translate the XML
mapfile, but this allows easier use of XML mapfiles.

4.1.32 Notes

• The Mapfile is NOT case-sensitive.

• The Mapfile is read from top to bottom by MapServer; this means that LAYERs near the top of your Mapfile
will be drawn before those near the bottom. Therefore users commonly place background imagery and other
background layer types near the top of their mapfile, and lines and points near the bottom of their mapfile.

• Strings containing non-alphanumeric characters or a MapServer keyword MUST be quoted. It is recommended
to put ALL strings in double-quotes.

• As of MapServer 7.0, Mapfiles are expected to be UTF-8 encoded. Non UTF-8 encoded mapfiles will need to
be iconv’ed to UTF-8.

• For MapServer versions < 5, there was a default maximum of 200 layers per mapfile (there is no layer limit with
MapServer >= 5). This can be changed by editing the map.h file to change the value of MS_MAXLAYERS to
the desired number and recompiling. Here are other important default limits when using a MapServer version <
5:

– MAXCLASSES 250 (set in map.h)

– MAXSTYLES 5 (set in map.h)

– MAXSYMBOLS 64 (set in mapsymbol.h)

MapServer versions >= 5 have no limits for classes, styles, symbols, or layers.

• File paths may be given as absolute paths, or as paths relative to the location of the mapfile. In addition, data
files may be specified relative to the SHAPEPATH.

• The mapfile has a hierarchical structure, with the MAP object being the “root”. All other objects fall under this
one.

• Comments are designated with a #. Since version 7.2 MapServer also supports single or multi-line C-style
comments, as /* . . . */

• Attributes are named using the following syntax: [ATTRIBUTENAME].

Note: that the name of the attribute included between the square brackets IS CASE SENSITIVE. Generally
ESRI generated shape data sets have their attributes (.dbf column names) all in upper-case for instance, and for
PostGIS, ALWAYS use lower-case.
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• MapServer Regular Expressions are used through the operating system’s C Library. For information on how to
use and write Regular Expressions on your system, you should read the documentation provided with your C
Library. On Linux, this is GLibC, and you can read “man 7 regex” . . . This man page is also available on most
UNIX’s. Since these RegEx’s are POSIX compliant, they should be the same on Windows as well, so windows
users can try searching the web for “man 7 regex” since man pages are available all over the web.

• Syntax coloring for .map files should be available for your favorite text editor (for example: Notepad++ steps)
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FIVE

MAPSCRIPT

5.1 MapScript

Release
7.6.6

Note: As of the 7.4.0 release PHP 7 is available through MapServer’s SWIG API .

5.1.1 Introduction

This is language agnostic documentation for the MapScript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
located at Mapfile

Appendices

Language-specific extensions are described in the following appendices

Python Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be format-
ted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise description.
To make the document as agnostic as possible, we refer to the following types: int, float, and string. There are yet no
mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.
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fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute
[type [access]] Concise description of the attribute.

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members we
are exposing to SWIG this problem will continue to grow.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default])
[type] Description of the method including elaboration on the method arguments, the method’s actions, and
returned values. Optional parameters and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

5.1.2 SWIG MapScript API Reference

Author
Sean Gillies

Author
Steve Lime

Contact
steve.lime at dnr.state.mn.us

Author
Frank Warmerdam

Contact
warmerdam at pobox.com

Author
Umberto Nicoletti

Contact
umberto.nicoletti at gmail.com

Author
Tamas Szekeres

Contact
szekerest at gmail.com
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Author
Daniel Morissette

Contact
dmorisette at mapgears.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-05-21

Note: PHP 7 support is included in the SWIG API as of the MapServer 7.4.0 release.

Contents

• SWIG MapScript API Reference

– Introduction

∗ Appendices

∗ Documentation Elements

∗ fooObj

∗ Additional Documentation

– MapScript Constants

∗ Version

∗ Logical Control - Boolean Values

∗ Logical Control - Status Values

∗ Map Units

∗ Layer Types

∗ Label Positions

∗ Label Size (Bitmap only)

∗ Shape Types

∗ Measured Shape Types

∗ Shapefile Types

∗ Query Types

∗ File Types

∗ Querymap Styles

∗ Connection Types

∗ DB Connection Types

∗ Join Types
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∗ Line Join Types (for rendering)

∗ Image Types

∗ Image Modes

∗ Symbol Types

∗ Return Codes

∗ Limiters

∗ Error Return Codes

– MapScript Functions

– MapScript Classes

∗ classObj

∗ colorObj

∗ errorObj

∗ fontSetObj

∗ hashTableObj

∗ imageObj

∗ intarray

∗ labelCacheMemberObj

∗ labelCacheObj

∗ labelObj

∗ layerObj

∗ legendObj

∗ lineObj

∗ mapObj

∗ markerCacheMemberObj

∗ outputFormatObj

∗ OWSRequest

∗ pointObj

∗ projectionObj

∗ rectObj

∗ referenceMapObj

∗ resultCacheMemberObj

∗ resultCacheObj

∗ scalebarObj

∗ shapefileObj

∗ shapeObj
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∗ styleObj

∗ symbolObj

∗ symbolSetObj

∗ webObj

Introduction

This is language agnostic documentation for the mapscript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
in DocBook format for the MDP.

Appendices

Language-specific extensions are described in the following appendices

Python MapScript Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be format-
ted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise description.
To make the document as agnostic as possible, we refer to the following types: int, float, and string. There are yet no
mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute
[type [access]] Concise description of the attribute.

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
might be exposed by objects.
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fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default])
[type] Description of the method including elaboration on the method arguments, the method’s actions, and
returned values. Optional parameters and their default values are enclosed in brackets.

might be exposed byClass method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

MapScript Constants

The constants are ordered alphabetically within each group.

Version

Name Type
MS_VERSION character

Logical Control - Boolean Values

Name Type
MS_FALSE integer
MS_NO integer
MS_OFF integer
MS_ON integer
MS_TRUE integer
MS_YES integer

Logical Control - Status Values

Name Type
MS_DEFAULT integer
MS_DELETE integer
MS_EMBED integer

5.1. MapScript 302



MapServer Documentation, Release 7.6.6

Map Units

Name Type
MS_DD integer
MS_FEET integer
MS_INCHES integer
MS_METERS integer
MS_MILES integer
MS_NAUTICALMILES integer
MS_PIXELS integer

Layer Types

Name Type
MS_LAYER_ANNOTATION (deprecated since 6.2) integer
MS_LAYER_CIRCLE integer
MS_LAYER_LINE integer
MS_LAYER_POINT integer
MS_LAYER_POLYGON integer
MS_LAYER_QUERY integer
MS_LAYER_RASTER integer
MS_LAYER_TILEINDEX integer

Label Positions

Name Type
MS_AUTO integer
MS_CC integer
MS_CL integer
MS_CR integer
MS_LC integer
MS_LL integer
MS_LR integer
MS_UC integer
MS_UL integer
MS_UR integer
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Label Size (Bitmap only)

Name Type
MS_GIANT integer
MS_LARGE integer
MS_MEDIUM integer
MS_SMALL integer
MS_TINY integer

Shape Types

Name Type
MS_SHAPE_LINE integer
MS_SHAPE_NULL integer
MS_SHAPE_POINT integer
MS_SHAPE_POLYGON integer

Measured Shape Types

Name Type
MS_SHP_ARCM integer
MS_SHP_MULTIPOINTM integer
MS_SHP_POINTM integer
MS_SHP_POLYGONM integer

Shapefile Types

Name Type
MS_SHAPEFILE_ARC integer
MS_SHAPEFILE_MULTIPOINT integer
MS_SHAPEFILE_POINT integer
MS_SHAPEFILE_POLYGON integer
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Query Types

Name Type
MS_MULTIPLE integer
MS_SINGLE integer

File Types

Name Type
MS_FILE_MAP integer
MS_FILE_SYMBOL integer

Querymap Styles

Name Type
MS_HILITE integer
MS_NORMAL integer
MS_SELECTED integer

Connection Types

Name Typ
MS_GRATICULE integer
MS_INLINE integer
MS_MYGIS integer
MS_OGR integer
MS_ORACLESPATIAL integer
MS_POSTGIS integer
MS_RASTER integer
MS_SDE integer
MS_SHAPEFILE integer
MS_TILED_SHAPEFILE integer
MS_WFS integer
MS_WMS integer
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DB Connection Types

Name Type
MS_DB_CSV integer
MS_DB_MYSQL integer
MS_DB_ORACLE integer
MS_DB_POSTGRES integer
MS_DB_XBASE integer

Join Types

Name Type
MS_JOIN_ONE_TO_MANY integer
MS_JOIN_ONE_TO_ONE integer

Line Join Types (for rendering)

Name Type
MS_CJC_BEVEL integer
MS_CJC_BUTT integer
MS_CJC_MITER integer
MS_CJC_NONE integer
MS_CJC_ROUND integer
MS_CJC_SQUARE integer
MS_CJC_TRIANGLE integer

Image Types

Name Type
GD/GIF integer
GD/JPEG integer
GD/PNG integer
GD/PNG24 integer
GD/WBMP integer
GDAL/GTiff integer
imagemap integer
pdf integer
swf integer
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Image Modes

Name Type
MS_GD_ALPHA integer
MS_IMAGEMODE_BYTE integer
MS_IMAGEMODE_FLOAT32 integer
MS_IMAGEMODE_INT16 integer
MS_IMAGEMODE_NULL integer
MS_IMAGEMODE_PC256 integer
MS_IMAGEMODE_RGB integer
MS_IMAGEMODE_RGBA integer
MS_NOOVERRIDE integer

Symbol Types

Name Type
MS_SYMBOL_ELLIPSE integer
MS_SYMBOL_PIXMAP integer
MS_SYMBOL_SIMPLE integer
MS_SYMBOL_TRUETYPE integer
MS_SYMBOL_VECTOR integer

Return Codes

Name Type
MS_DONE integer
MS_FAILURE integer
MS_SUCCESS integer

Limiters

Name Type
MS_IMAGECACHESIZE long
MS_MAXSTYLELENGTH long
MS_MAXSYMBOLS long
MS_MAXVECTORPOINTS long
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Error Return Codes

Name Type
MESSAGELENGTH long
MS_CGIERR long
MS_CHILDERR long
MS_DBFERR long
MS_EOFERR long
MS_GDERR long
MS_HASHERR long
MS_HTTPERR long
MS_IDENTERR long
MS_IMGERR long
MS_IOERR long
MS_JOINERR long
MS_MAPCONTEXTERR long
MS_MEMERR long
MS_MISCERR long
MS_NOERR long
MS_NOTFOUND long
MS_NUMERRORCODES long
MS_OGRERR long
MS_ORACLESPATIALERR long
MS_PARSEERR long
MS_PROJERR long
MS_QUERYERR long
MS_REGEXERR long
MS_SDEERR long
MS_SHPERR long
MS_SYMERR long
MS_TTFERR long
MS_TYPEERR long
MS_WCSERR long
MS_WEBERR long
MS_WFSCONNERR long
MS_WFSERR long
MS_WMSCONNERR long
MS_WMSERR long
ROUTINELENGTH long

MapScript Functions

msCleanup()
[void] msCleanup() attempts to recover all dynamically allocated resources allocated by MapServer code and
dependent libraries. It it used primarily for final cleanup in scripts that need to do memory leak testing to get rid
of “noise” one-time allocations. It should not normally be used by production code.

msGetVersion()
[string] Returns a string containing MapServer version information, and details on what optional components
are built in. The same report as produced by “mapserv -v”.

msGetVersionInt()
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[int] Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New in v5.0) e.g.
V5.4.3 would return 50403.

msIO_getStdoutBufferBytes()
[binary data] Fetch the current stdout buffer contents as a binary buffer. The exact form of this buffer will vary
by mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

msIO_getStdoutBufferString()
[string] Fetch the current stdout buffer contents as a string. This method does not clear the buffer.

msIO_installStdinFromBuffer()
[void] Installs a mapserver IO handler directing future stdin reading (ie. post request capture) to come from a
buffer.

msIO_installStdoutToBuffer()
[void] Installs a mapserver IO handler directing future stdout output to a memory buffer.

msIO_resetHandlers()
[void] Resets the default stdin and stdout handlers in place of “buffer” based handlers.

msIO_stripStdoutBufferContentHeaders(): void
Strip all Content-* headers off the stdout buffer if it has ones.

msIO_stripStdoutBufferContentType()
[string] Strip the Content-type header off the stdout buffer if it has one, and if a content type is found it is return
(otherwise NULL/None/etc).

msResetErrorList()
[void] Clears the current error stack.

MapScript Classes

classObj

An instance of classObj is associated with with one instance of layerObj:

+-------+ 0..* 1 +-------+
| Class | <--------> | Layer |
+-------+ +-------+

The other important associations for classObj are with styleObj, labelObj, and hashTableObj:

+-------+ 1 0..* +-------+
| Class | ---------> | Style |
+-------+ +-------+

+-------+ 1 0..* +-------+
| Class | ---------> | Label |
+-------+ +-------+

+-------+ 1 1 +-----------+
| Class | ---------> | HashTable |
+-------+ | -- |

| metadata |
+-----------+
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Multiple class styles have been supported since 4.1, and multiple class labels since 6.2. See the styleObj section for
details on use of multiple class styles.

classObj Attributes

debug
[int] MS_TRUE or MS_FALSE

See also:
Debugging MapServer

keyimage
[string] TODO Not sure what this attribute is for

label
[labelObj immutable] Definition of class labeling. Removed (6.2) - use addLabel, getLabel and removeLabel
instead.

layer
[layerObj immutable] Reference to the parent layer

maxscaledenom
[float] The minimum scale at which class is drawn

metadata
[hashTableObj immutable] class metadata hash table.

minscaledenom
[float] The maximum scale at which class is drawn

name
[string] Unique within a layer

numlabels
[int] Added in version 6.2.

Number of labels for class.

numstyles
[int] Number of styles for class. In the future, probably the 4.4 release, this attribute will be made immutable.

status
[int] MS_ON or MS_OFF. Draw features of this class or do not.

template
[string] Template for queries

title
[string] Text used for legend labeling

type
[int] The layer type of its parent layer
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classObj Methods

new classObj( [ layerObj parent_layer=NULL ] )
[classObj] Create a new child classObj instance at the tail (highest index) of the class array of the parent_layer.
A class can be created outside the context of a parent layer by omitting the single constructor argument.

addLabel( labelObj )
[int] Added in version 6.2.

Add a labelObj to the classObj and return its index in the labels array.

clone( )
[classObj] Return an independent copy of the class without a parent layer.

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

createLegendIcon( mapObj map, layerObj layer, int width, int height )
[imageObj] Draw and return a new legend icon.

drawLegendIcon( mapObj map, layerObj layer, int width, int height, imageObj image, int dstx, int dsty )
[int] Draw the legend icon onto image at dstx, dsty. Returns MS_SUCCESS or MS_FAILURE.

getExpressionString()
[string] Return a string representation of the expression enclosed in the quote characters appropriate to the ex-
pression type.

getFirstMetaDataKey()
[string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), provides an opaque iterator
over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getLabel( int index )
[labelObj] Added in version 6.2.

Return a reference to the labelObj at index in the labels array.

See the labelObj section for more details on multiple class labels.

getMetaData( string key )
[string] Return the value of the classObj metadata at key.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey( string lastkey )
[string] Returns the next key in the metadata hash table or NULL if lastkey is the last valid key. If lastkey is
NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

5.1. MapScript 311



MapServer Documentation, Release 7.6.6

getStyle( int index )
[styleObj] Return a reference to the styleObj at index in the styles array.

See the styleObj section for more details on multiple class styles.

getTextString()
[string] Return a string representation of the text enclosed in the quote characters appropriate to the text expression
type (logical or simple string).

insertStyle( styleObj style [, int index=-1 ] )
[int] Insert a copy of style into the styles array at index index. Default is -1, or the end of the array. Returns the
index at which the style was inserted.

moveStyleDown( int index )
[int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp( int index )
[int] Swap the styleObj at index with the styleObj index - 1.

removeLabel( int index )
[labelObj] Added in version 6.2.

Remove the labelObj at index from the labels array and return a reference to the labelObj. numlabels is decre-
mented, and the array is updated.

removeStyle( int index )
[styleObj] Remove the styleObj at index from the styles array and return a copy.

setExpression( string expression )
[int] Set expression string where expression is a MapServer regular, logical or string expression. Returns
MS_SUCCESS or MS_FAILUIRE.

setMetaData( string key, string value )
[int] Insert value into the classObj metadata at key. Returns MS_SUCCESS or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableObj.

setText( string text )
[int] Set text string where text is a MapServer text expression. Returns MS_SUCCESS or MS_FAILUIRE.

Note: Older versions of MapScript (pre-4.8) featured the an undocumented setText() method that required a
layerObj be passed as the first argument. That argument was completely bogus and has been removed.

colorObj

Since the 4.0 release, MapServer colors are instances of colorObj. A colorObj may be a lone object or an attribute of
other objects and have no other associations.
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colorObj Attributes

alpha
[int] Alpha (opacity) component of color in range [0-255]

blue
[int] Blue component of color in range [0-255]

green
[int] Green component of color in range [0-255]

red
[int] Red component of color in range [0-255]

colorObj Methods

new colorObj( [ int red=0, int green=0, int blue=0, int alpha=255 ] )
[colorObj] Create a new instance. The color arguments are optional.

setHex( string hexcolor )
[int] Set the color to values specified in case-independent hexadecimal notation. hex must start with a ‘#’ followed
by three or four hex bytes, e.g. ‘#ffffff’ or ‘#ffffffff’. If only three hex bytes are supplied, the alpha will be set
to 255. Calling setHex(‘#ffffff’) therefore assigns values of 255 to each color component, including the alpha.
Returns MS_SUCCESS or MS_FAILURE.

setRGB( int red, int green, int blue, int alpha=255 )
[int] Set all four RGBA components. Returns MS_SUCCESS or MS_FAILURE.

toHex()
[string] Complement to setHex, returning a hexadecimal representation of the color components. If alpha is 255
then this is three hex bytes “#rrggbb”, otherwise four hex bytes “#rrggbbaa”.

errorObj

This class allows inspection of the MapServer error stack. Only needed for the Perl module as the other language
modules expose the error stack through exceptions.

errorObj Attributes

code
[int] MapServer error code such as MS_IMGERR (1).

message
[string] Context-dependent error message.

routine
[string] MapServer function in which the error was set.
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errorObj Methods

next
[errorObj] Returns the next error in the stack or NULL if the end has been reached.

fontSetObj

A fontSetObj is always a ‘fontset’ attribute of a mapObj.

fontSetObj Attributes

filename
[string immutable] Path to the fontset file on disk.

fonts
[hashTableObj immutable] Mapping of fonts.

numfonts
[int immutable] Number of fonts in set.

fontSetObj Methods

None

hashTableObj

A hashTableObj is a very simple mapping of case-insensitive string keys to single string values. Map, Layer, and Class
metadata have always been hash hables and now these are exposed directly. This is a limited hash that can contain no
more than 41 values.

hashTableObj Attributes

numitems
[int immutable] Number of hash items.

hashTableObj Methods

clear( )
[void] Empties the table of all items.

get( string key [, string default=NULL ] )
[string] Returns the value of the item by its key, or default if the key does not exist.

nextKey( [string key=NULL] )
[string] Returns the name of the next key or NULL if there is no valid next key. If the input key is NULL, returns
the first key.

remove( string key )
[int] Removes the hash item by its key. Returns MS_SUCCESS or MS_FAILURE.
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set( string key, string value )
[int] Sets a hash item. Returns MS_SUCCESS or MS_FAILURE.

imageObj

An image object is a wrapper for GD and GDAL images.

imageObj Attributes

format
[outputFormatObj immutable] Image format.

height
[int immutable] Image height in pixels.

imagepath
[string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imagepath.

imageurl
[string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imageurl.

renderer
[int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Don’t mess with this!

size
[int immutable] To access this attribute use the getSize method.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The bytearray is then immediately discarded. In most cases it is more efficient to call getBytes directly.

width
[int immutable] Image width in pixels.

imageObj Methods

new imageObj( int width, int height [, outputFormatObj format=NULL [, string filename=NULL ] ] )
[imageObj] Create new instance of imageObj. If filename is specified, an imageObj is created from the file
and any specified width, height, and format parameters will be overridden by values of the image in filename.
Otherwise, if format is specified an imageObj is created using that format. See the format attribute above for
details. If filename is not specified, then width and height should be specified.

getBytes()
[binary data] Returns the image contents as a binary buffer. The exact form of this buffer will vary by mapscript
language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

getSize()
[int] Resturns the size of the binary buffer representing the image buffer.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The byte array is then immediately discarded. In most cases it is more efficient to call getBytes directly.
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save( string filename [, mapObj parent_map=NULL ] )
[int] Save image to filename. The optional parent_map parameter must be specified if saving GeoTIFF images.

write( [ FILE file=NULL ] )
[int] Write image data to an open file descriptor or, by default, to stdout. Returns MS_SUCCESS or
MS_FAILURE.

Note: This method is current enabled for Python and C# only. C# supports writing onto a Stream object.
User-contributed typemaps are needed for Perl, Ruby, and Java.

Note: The free() method of imageObj has been deprecated. In MapServer revisions 4+ all instances of imageObj will
be properly disposed of by the interpreter’s garabage collector. If the application can’t wait for garabage collection,
then the instance can simply be deleted or undef’d.

intarray

An intarray is a utility class generated by SWIG useful for manipulating map layer draw-
ing order. See mapObj::getLayersDrawingOrder for discussion of mapscript use and see
http://www.swig.org/Doc1.3/Library.html#Library_nn5 for a complete reference.

intarray Attributes

None

intarray Methods

new intarray( int numitems )
[intarray] Returns a new instance of the specified length.

labelCacheMemberObj

An individual feature label. The labelCacheMemberObj class is associated with labelCacheObj:

+------------------+ 0..* 1 +------------+
| LabelCacheMember | <--------- | LabelCache |
+------------------+ +------------+
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labelCacheMemberObj Attributes

classindex
[int immutable] Index of the class of the labeled feature.

featuresize
[float immutable] TODO

label
[labelObj immutable] Copied from the class of the labeled feature.

layerindex
[int immutable] The index of the layer of the labeled feature.

numstyles
[int immutable] Number of styles as for the class of the labeled feature.

point
[pointObj immutable] Label point.

poly
[shapeObj immutable] Label bounding box.

shapeindex
[int immutable] Index within shapefile of the labeled feature.

status
[int immutable] Has the label been drawn or not?

styles
[styleObj immutable] TODO this should be protected from SWIG.

text
[string immutable] Label text.

tileindex
[int immutable] Tileindex of the layer of the labeled feature.

labelCacheMemberObj Methods

None.

Note: No real scripting control over labeling currently, but there may be some interesting new possibilities if users
have control over labeling text, position, and status.

labelCacheObj

Set of a map’s cached labels. Has no other existence other than as a ‘labelcache’ attribute of a mapObj. Associated
with labelCacheMemberObj and markerCacheMemberObj:

+------------+ 1 0..* +-------------------+
| LabelCache | ---------> | LabelCacheMember |
+------------+ + ----------------- +

| MarkerCacheMember |
+-------------------+
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labelCacheObj Attributes

cachesize
[int immutable] TODO

markercachesize
[int immutable] TODO

numlabels
[int immutable] Number of label members.

nummarkers
[int immutable] Number of marker members.

labelCacheObj Methods

freeCache( )
[void] Free the labelcache.

labelObj

A labelObj is associated with a classObj, a scalebarObj, or a legendObj:

+-------+ 0..1 1 +----------+
| Label | <--------- | Scalebar |
+-------+ | -------- |

| Legend |
+----------+

+-------+ 0..* 1 +-------+
| Label | <--------- | Class |
+-------+ +-------+

An instance of labelObj can exist outside of a classObj container and be explicitly inserted into the classObj:

new_label = new labelObj()
the_class.addLabel(new_label)

labelObj Attributes

angle
[float] TODO

antialias
[int] MS_TRUE or MS_FALSE

autoangle
[int] MS_TRUE or MS_FALSE

autofollow
[int] MS_TRUE or MS_FALSE. Tells mapserver to compute a curved label for appropriate linear features (see
rfc11 for specifics).
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autominfeaturesize: int
MS_TRUE or MS_FALSE

backgroundcolor
[colorObj] Deprecated since version 6.0: Use styleObj and geomtransform.

Color of background rectangle or billboard.

backgroundshadowcolor
[colorObj] Deprecated since version 6.0: Use styleObj and geomtransform.

Color of background rectangle or billboard shadow.

backgroundshadowsizex
[int] Deprecated since version 6.0: Use styleObj and geomtransform.

Horizontal offset of drop shadow in pixels.

backgroundshadowsizey
[int] Deprecated since version 6.0: Use styleObj and geomtransform.

Vertical offset of drop shadow in pixels.

buffer
[int] Maybe this should’ve been named ‘padding’ since that’s what it is: padding in pixels around a label.

color
[colorObj] Foreground color.

encoding
[string] Supported encoding format to be used for labels. If the format is not supported, the label will not be
drawn. Requires the iconv library (present on most systems). The library is always detected if present on the
system, but if not the label will not be drawn. Required for displaying international characters in MapServer.
More information can be found at: https://mapserver.org/mapfile/encoding.html

font
[string] Name of TrueType font.

force
[int] MS_TRUE or MS_FALSE.

maxsize
[int] Maximum height in pixels for scaled labels. See symbolscale attribute of layerObj.

mindistance
[int] Minimum distance in pixels between duplicate labels.

minfeaturesize
[int] Features of this size of greater will be labeled.

minsize
[int] Minimum height in pixels.

numstyles
[int] Number of label styles

offsetx
[int] Horizontal offset of label.

offsety
[int] Vertical offset of label.

outlinecolor
[colorObj] Color of one point outline.
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partials
[int] MS_TRUE or MS_FALSE (default). Whether or not labels can flow past the map edges.

Note: The default changed from true to false, since the MapServer 7.2 release.

position
[int] MS_UL, MS_UC, MS_UR, MS_CL, MS_CC, MS_CR, MS_LL, MS_LC, MS_LR, or MS_AUTO.

shadowcolor
[colorObj] Color of drop shadow.

shadowsizex
[int] Horizontal offset of drop shadow in pixels.

shadowsizey
[int] Vertical offset of drop shadow in pixels.

size
[int] Annotation height in pixels.

type : removed in version 7.0. All labels are truetype.

wrap
[string] Character on which legend text will be broken to make multi-line legends.

labelObj Methods

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

getBinding( int binding )
[string] Get the attribute binding for a specified label property. Returns NULL if there is no binding for this
property.

getExpressionString( )
[string] Returns the label expression string.

getStyle( int index )
[styleObj] Return a reference to the styleObj at index in the styles array.

getTextString( )
[string] Returns the label text string.

insertStyle( styleObj style [, int index=-1 ] )
[int] Insert a copy of style into the styles array at index index. Default is -1, or the end of the array. Returns the
index at which the style was inserted.

moveStyleDown( int index )
[int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp( int index )
[int] Swap the styleObj at index with the styleObj index - 1.

removeBinding( int binding )
[int] Remove the attribute binding for a specfiled label property.

removeStyle( int index )
[styleObj] Remove the styleObj at index from the styles array and return a copy.
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setBinding ( int binding, string item )
[int] Set the attribute binding for a specified label property. Binding constants look like this:
MS_LABEL_BINDING_[attribute name]:

setBinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

setExpression( string expression )
[int] Set the label expression.

setText( string text )
[int] Set the label text.

updateFromString ( string snippet )
[int] Update a label from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

layerObj

A layerObj is associated with mapObj. In the most recent revision, an instance of layerObj can exist outside of a
mapObj:

+-------+ 0..* 0..1 +-----+
| Layer | <--------> | Map |
+-------+ +-----+

The other important association for layerObj is with classObj:

+-------+ 1 0..* +-------+
| Layer | <--------> | Class |
+-------+ +-------+

and hashTableObj:

+-------+ 1 1 +-----------+
| Layer | ---------> | HashTable |
+-------+ | -- |

| metadata |
+-----------+

layerObj Attributes

bandsitem
[string] The attribute from the index file used to select the source raster band(s) to be used. Normally NULL for
default bands processing.

classitem
[string] The attribute used to classify layer data.

connection
[string] Layer connection or DSN.

connectiontype
[int] See MS_CONNECTION_TYPE in mapserver.h for possible values. When setting the connection type
setConnectionType() should be used in order to initialize the layer vtable properly.
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data
[string] Layer data definition, values depend upon connectiontype.

debug
[int] Enable debugging of layer. MS_ON or MS_OFF (default).

See also:
Debugging MapServer

dump
[int] Deprecated since version 6.0: use metadata instead.

Since 6.0, dump is not available anymore. Use metadata is instead.

Switch to allow mapserver to return data in GML format. MS_TRUE or MS_FALSE. Default is MS_FALSE.

extent
[rectObj] optional limiting extent for layer features.

filteritem
[string] Attribute defining filter.

footer
[string] TODO

group
[string] Name of a group of layers.

header
[string] TODO

index
[int immutable] Index of layer within parent map’s layers array.

labelangleitem
[string] Attribute defining label angle.

labelcache
[int] MS_ON or MS_OFF. Default is MS_ON.

labelitem
[string] Attribute defining feature label text.

labelmaxscaledenom
[float] Minimum scale at which layer will be labeled.

labelminscaledenom
[float] Maximum scale at which layer will be labeled.

labelrequires
[string] Logical expression.

labelsizeitem
[string] Attribute defining label size.

map
[mapObj immutable] Reference to parent map.

mask
[string] Layer name for masking. (rfc79)

maxfeatures
[int] Maximum number of layer features that will be drawn. For shapefile data this means the first N features
where N = maxfeatures.
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maxscaledenom
[float] Minimum scale at which layer will be drawn.

metadata
[hashTableObj immutable] Layer metadata.

minscaledenom
[float] Maximum scale at which layer will be drawn.

name
[string] Unique identifier for layer.

numclasses
[int immutable] Number of layer classes.

numitems
[int immutable] Number of layer feature attributes (items).

numjoins
[int immutable] Number of layer joins.

numprocessing
[int immutable] Number of raster processing directives.

offsite
[colorObj] transparent pixel value for raster layers.

opacity
[int] Layer opacity percentage in range [0, 100]. The special value of MS_GD_ALPHA (1000) indicates that
the alpha transparency of pixmap symbols should be honored, and should be used only for layers that use RGBA
pixmap symbols.

Note: opacity is deprecated as of MapServer 7.0 and should instead be managed through the layer’s COMPOS-
ITE block (see also the layerObj’s setOpacity() & getOpacity() methods below).

postlabelcache
[int] MS_TRUE or MS_FALSE. Default is MS_FALSE.

requires
[string] Logical expression.

sizeunits
[int] Units of class size values. MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES,
MS_METERS, MS_KILOMETERS, MS_DD or MS_PIXELS

status
[int] MS_ON, MS_OFF, or MS_DEFAULT.

styleitem
[string] Attribute defining styles.

symbolscaledenom
[float] Scale at which symbols are default size.

template
[string] Template file. Note that for historical reasons, the query attribute must be non-NULL for a layer to be
queryable.

tileindex
[string] Layer index file for tiling support.
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tileitem
[string] Attribute defining tile paths.

tolerance
[float] Search buffer for point and line queries.

toleranceunits
[int] MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES, MS_METERS, MS_KILOMETERS,
MS_DD or MS_PIXELS

transform
[int] Whether or not layer data is to be transformed to image units. MS_TRUE or MS_FALSE. Default is
MS_TRUE. Case of MS_FALSE is for data that are in image coordinates such as annotation points.

type
[int] See MS_LAYER_TYPE in mapserver.h.

units
[int] Units of the layer. See MS_UNITS in mapserver.h.

layerObj Methods

new layerObj( [ mapObj parent_map=NULL ] )
[layerObj] Create a new layerObj in parent_map. The layer index of the new layerObj will be equal to the
parent_map numlayers - 1. The parent_map arg is now optional and Layers can exist outside of a Map.

addFeature( shapeObj shape )
[int] Add a new inline feature on a layer. Returns -1 on error. TODO: Is this similar to inline features in a
mapfile? Does it work for any kind of layer or connection type?

addProcessing( string directive )
[void] Adds a new processing directive line to a layer, similar to the PROCESSING directive in a map file.
Processing directives supported are specific to the layer type and underlying renderer.

applySLD( string sld, string stylelayer )
[int] Apply the SLD document to the layer object. The matching between the sld document and the layer will be
done using the layer’s name. If a namedlayer argument is passed (argument is optional), the NamedLayer in the
sld that matchs it will be used to style the layer. See SLD HOWTO for more information on the SLD support.

applySLDURL( string sld, string stylelayer )
[int] Apply the SLD document pointed by the URL to the layer object. The matching between the sld document
and the layer will be done using the layer’s name. If a namedlayer argument is passed (argument is optional), the
NamedLayer in the sld that matchs it will be used to style the layer. See SLD HOWTO for more information on
the SLD support.

clearProcessing()
[int] Clears the layer’s raster processing directives. Returns the subsequent number of directives, which will
equal MS_SUCCESS if the directives have been cleared.

clone()
[layerObj] Return an independent copy of the layer with no parent map.

close()
[void] Close the underlying layer.

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.
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Note: demote() is removed in MapServer 4.4

draw( mapObj map, imageObj image )
[int] Renders this layer into the target image, adding labels to the cache if required. Returns MS_SUCCESS or
MS_FAILURE. TODO: Does the map need to be the map on which the layer is defined? I suspect so.

drawQuery( mapObj map, imageObj image ) :
Draw query map for a single layer into the target image. Returns MS_SUCCESS or MS_FAILURE.

executeWFSGetFeature( layer )
[string] Executes a GetFeature request on a WFS layer and returns the name of the temporary GML file created.
Returns an empty string on error.

generateSLD()
[void] Returns an SLD XML string based on all the classes found in the layer (the layer must have STATUS on).

getClass( int i )
[classObj] Fetch the requested class object. Returns NULL if the class index is out of the legal range. The
numclasses field contains the number of classes available, and the first class is index 0.

getExtent()
[rectObj] Fetches the extents of the data in the layer. This normally requires a full read pass through the features
of the layer and does not work for raster layers.

getFeature( int shapeindex [, int tileindex=-1 ] )
[shapeObj] Return the layer feature at shapeindex and tileindex.

Note: getFeature has been removed as of version 6.0 and replaced by getShape

getFilterString()
[string] Returns the current filter expression.

getFirstMetaDataKey()
[string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), provides an opaque iterator
over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getItem( int i )
[string] Returns the requested item. Items are attribute fields, and this method returns the item name (field name).
The numitems field contains the number of items available, and the first item is index zero.

getMetaData( string key )
[string] Return the value at key from the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey( string lastkey )
[string] Returns the next key in the metadata hash table or NULL if lastkey is the last valid key. If lastkey is
NULL, returns the first key of the metadata hash table.
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Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getNumFeatures()
[int] Returns the number of inline features in a layer. TODO: is this really only online features or will it return
the number of non-inline features on a regular layer?

getNumResults()
[int] Returns the number of entries in the query result cache for this layer.

getOpacity()
[int] Returns the opacity value for the layer.

getProcessing( int index)
[string] Return the raster processing directive at index.

getProjection( )
[string] Returns the PROJ definition of the layer’s projection.

getResult( int i )
[resultCacheMemberObj] Fetches the requested query result cache entry, or NULL if the index is outside the
range of available results. This method would normally only be used after issuing a query operation.

getResults()
[resultCacheObj] Returns a reference to layer’s result cache. Should be NULL prior to any query, or after a failed
query or query with no results.

getResultsBounds()
[rectObj] Returns the bounds of the features in the result cache.

getShape( resultCacheMemberObj result )
[int] Get a shape from layer data. Argument is a result cache member from layerObj::getResult(i)

getWMSFeatureInfoURL( mapObj map, int click_x, int click_y, int feature_count, string info_format )
[string] Return a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of
to query in pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to
return. infoFormat is the format the format in which the result should be requested. Depends on remote server’s
capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns “”
and outputs a warning if layer is not a WMS layer or if it is not queriable.

insertClass( classObj class [, int index=-1 ] )
[int] Insert a copy of the class into the layer at the requested index. Default index of -1 means insertion at the end
of the array of classes. Returns the index at which the class was inserted.

isVisible( )
[int] Returns MS_TRUE or MS_FALSE after considering the layer status, minscaledenom, and maxscaledenom
within the context of the parent map.

moveClassDown( int class )
[int] The class specified by the class index will be moved up into the array of layers. Returns MS_SUCCESS or
MS_FAILURE. ex. moveClassDown(1) will have the effect of moving class 1 down to position 2, and the class
at position 2 will be moved to position 1.

moveClassUp( int class )
[int] The class specified by the class index will be moved up into the array of layers. Returns MS_SUCCESS
or MS_FAILURE. ex. moveClassUp(1) will have the effect of moving class 1 up to position 0, and the class at
position 0 will be moved to position 1.
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nextShape( )
[shapeObj] Called after msWhichShapes has been called to actually retrieve shapes within a given area returns
a shape object or MS_FALSE

example of usage:

mapObj map = new mapObj("d:/msapps/gmap-ms40/htdocs/gmap75.map");
layerObj layer = map.getLayerByName('road');
int status = layer.open();
status = layer.whichShapes(map.extent);
shapeObj shape;
while ((shape = layer.nextShape()) != null)
{
...

}
layer.close();

open()
[void] Opens the underlying layer. This is required before operations like getFeature() will work, but is not
required before a draw or query call.

Note: promote() is eliminated in MapServer 4.4.

queryByAttributes( mapObj map, string qitem, string qstring, int mode )
[int] Query layer for shapes that intersect current map extents. qitem is the item (attribute) on which the query
is performed, and qstring is the expression to match. The query is performed on all the shapes that are part of a
CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value.

Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened.

queryByFeatures( mapObj map, int slayer )
[int] Perform a query set based on a previous set of results from another layer. At present the results MUST be
based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found
or if some other error happened

queryByIndex( mapObj map, int shapeindex, int tileindex [, int bAddToQuery=MS_FALSE ])
[int] Pop a query result member into the layer’s result cache. By default clobbers existing cache. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint( mapObj map, pointObj point, int mode, float buffer )
[int] Query layer at point location specified in georeferenced map coordinates (i.e. not pixels). The query is
performed on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match any class
in a layer that contains a LAYER TEMPLATE value. Mode is MS_SINGLE or MS_MULTIPLE depending
on number of results you want. Passing buffer <=0 defaults to tolerances set in the map file (in pixels) but you
can use a constant buffer (specified in ground units) instead. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened.

queryByRect( mapObj map, rectObj rect )
[int] Query layer using a rectangle specified in georeferenced map coordinates (i.e. not pixels). The query is
performed on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match any
class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened.
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queryByShape( mapObj map, shapeObj shape )
[int] Query layer based on a single shape, the shape has to be a polygon at this point. Returns MS_SUCCESS if
shapes were found or MS_FAILURE if nothing was found or if some other error happened

removeClass( int index )
[classObj] Removes the class indicated and returns a copy, or NULL in the case of a failure. Note that subsequent
classes will be renumbered by this operation. The numclasses field contains the number of classes available.

removeMetaData( string key )
[int] Delete the metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

Note: removeMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata
access, see hashTableObj.

resultsGetShape(int shapeindex [, int tileindex = -1])
[shapeObj] Retrieve shapeObj from a layer’s resultset by index. Tileindex is optional and is used only for tiled
shapefiles, Simply omit or pass tileindex = -1 for other data sources. Added in MapServer 5.6.0 due to the
one-pass query implementation.

setConnectionType(int connectiontype, string library_str)
[int] Changes the connectiontype of the layer and recreates the vtable according to the new connection type.
This method should be used instead of setting the connectiontype parameter directly. In case when the
layer.connectiontype = MS_PLUGIN the library_str parameter should also be specified so as to select the li-
brary to load by mapserver. For the other connection types this parameter is not used.

setExtent( float minx, float miny, float maxx, float maxy )
[int] Sets the extent of a layer. Returns MS_SUCCESS or MS_FAILURE.

setFilter( string filter )
[int] Sets a filter expression similarly to the FILTER expression in a map file. Returns MS_SUCCESS on success
or MS_FAILURE if the expression fails to parse.

setMetaData( string key, string value )
[int] Assign value to the metadata hash at key. Return MS_SUCCESS or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableObj.

setOpacity( string opacity )
[int] Sets an opacity for the layer, where the value is an integer in range [0, 100]. A new COMPOSITE block is
generated, containing this OPACITY value.

setProcessingKey( string key, string value )
[void] Adds or replaces a processing directive of the form “key=value”. Unlike the addProcessing() call, this will
replace an existing processing directive for the given key value. Processing directives supported are specific to
the layer type and underlying renderer.

setProjection( string proj4 )
[int] Set the layer projection using a PROJ format projection definition (ie. “+proj=utm +zone=11 +da-
tum=WGS84” or “init=EPSG:26911”). Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection( string wkt )
[int] Set the layer projection using OpenGIS Well Known Text format. Returns MS_SUCCESS or
MS_FAILURE.

whichShapes( rectObj rect )
[int] Performs a spatial, and optionally an attribute based feature search. The function basically prepares things
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so that candidate features can be accessed by query or drawing functions (eg using nextShape function). Returns
MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the layer extent does not overlap rect.

legendObj

legendObj is associated with mapObj:

+--------+ 0..1 1 +-----+
| Legend | <--------> | Map |
+--------+ +-----+

and with labelObj:

+--------+ 1 1 +-------+
| Legend | ---------> | Label |
+--------+ +-------+

legendObj Attributes

height
[int] Legend height.

imagecolor
[colorObj] Legend background color.

keysizex
[int] Width in pixels of legend keys.

keysizey
[int] Pixels.

keyspacingx
[int] Horizontal padding around keys in pixels.

keyspacingy
[int] Vertical padding.

label
[labelObj immutable] legend label.

map
[mapObj immutable] Reference to parent mapObj.

outlinecolor
[colorObj] key outline color.

position
[int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.

postlabelcache
[int] MS_TRUE or MS_FALSE.

status
[int] MS_ON, MS_OFF, or MS_EMBED.

template
[string] Path to template file.

5.1. MapScript 329



MapServer Documentation, Release 7.6.6

width
[int] Label width.

legendObj Methods

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

lineObj

A lineObj is composed of one or more pointObj instances:

+------+ 0..1 1..* +-------+
| Line | ---------> | Point |
+------+ +-------+

lineObj Attributes

numpoints
[int immutable] Number of points in the line.

lineObj Methods

new lineObj( )
[lineObj] Create a new instance.

add(pointObj point)
[int] Add point to the line. Returns MS_SUCCESS or MS_FAILURE.

get(int index)
[pointObj] Return reference to point at index.

project(projectionObj proj_in, projectionObj proj_out)
[int] Transform line in place from proj_in to proj_out. Returns MS_SUCCESS or MS_FAILURE.

set(int index, pointObj point)
[int] Set the point at index to point. Returns MS_SUCCESS or MS_FAILURE.

mapObj

A mapObj is primarily associated with instances of layerObj:

+-----+ 0..1 0..* +-------+
| Map | <--------> | Layer |
+-----+ +-------+

Secondary associations are with legendObj, scalebarObj, referenceMapObj:
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+-----+ 1 0..1 +--------------+
| Map | ---------> | Legend |
+-----+ | ------------ |

| Scalebar |
| ------------ |
| ReferenceMap |
+--------------+

outputFormatObj:

+-----+ 1 1..* +--------------+
| Map | ---------> | OutputFormat |
+-----+ +------------- +

mapObj Attributes

cellsize
[float] Pixel size in map units.

configoptions
[hashObj immutable] A hash table of configuration options from CONFIG keywords in the .map. Direct access
to config options is discouraged. Use the setConfigOption() and getConfigOption() methods instead.

datapattern
[string] TODO not sure this is meaningful for mapscript.

debug
[int] MS_TRUE or MS_FALSE.

See also:
Debugging MapServer

extent
[rectObj] Map’s spatial extent.

fontset
[fontSetObj immutable] The map’s defined fonts.

height
[int] Map’s output image height in pixels.

Note: direct setting of height is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

imagecolor
[colorObj] Initial map background color.

imagequality
[int] JPEG image quality.

Note: map imagequality is deprecated in MapServer 4.4 and should instead be managed through map output-
formats.
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imagetype
[string immutable] Name of the current output format.

interlace
[int] Output image interlacing.

Note: map interlace is deprecated in MapServer 4.4 and should instead be managed through map outputformats.

lablecache
[labelCacheObj immutable] Map’s labelcache.

legend
[legendObj immutable] Reference to map’s legend.

mappath
[string] Filesystem path of the map’s mapfile.

maxsize
[int] TODO ?

name
[string] Unique identifier.

numlayers
[int immutable] Number of map layers.

numoutputformats
[int] The number of output formats currently configured on the map object. Can be used to iterate over the list
of output formats with the getOutputFormat(idx) method (see below).

outputformat
[outputFormatObj] The currently selected output format.

Note: Map outputformat should not be modified directly. Use the selectOutputFormat() method to select named
formats.

outputformatlist
[outputFormatObj[]] Array of the available output formats.

Note: Currently only available for C#. A proper typemaps should be implemented for the other languages.

Note: As of 6.2 other languages can use the getoutputFormat(idx) and getNumoutputformats() functions to
iterate over the format array.

querymap
[queryMapObj immutable] TODO should this be exposed to mapscript?

reference
[referenceMapObj immutable] Reference to reference map.

resolution
[float] Nominal DPI resolution. Default is 72.

scalebar
[scalebarObj immutable] Reference to the scale bar.
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scaledenom
[float] The nominal map scale. A value of 25000 means 1:25000 scale.

shapepath
[string] Base filesystem path to layer data.

status
[int] MS_OFF, MS_ON, or MS_DEFAULT.

symbolset
[symbolSetObj immutable] The map’s set of symbols.

templatepattern
[string] TODO not sure this is meaningful for mapscript.

transparent
[int] MS_TRUE or MS_FALSE.

Note: map transparent is deprecated in MapServer 4.4 and should instead be managed through map outputfor-
mats.

units
[int] MS_DD, MS_METERS, etc.

web
[webObj immutable] Reference to map’s web definitions.

width
[int] Map’s output image width in pixels.

Note: direct setting of width is deprecated in MapServer version 4.4. Users should set width and height simul-
taneously using setSize().

mapObj Methods

new mapObj( [ string filename=” ] )
[mapObj] Create a new instance of mapObj. Note that the filename is now optional.

appendOutputFormat( outputFormatObj format )
[int] Attach format to the map’s output format list. Returns the updated number of output formats.

applyConfigOptions( )
[void] Apply the defined configuration options set by setConfigOption().

applySLD( string sldxml )
[int] Parse the SLD XML string sldxml and apply to map layers. Returns MS_SUCCESS or MS_FAILURE.

applySLDURL( string sldurl )
[int] Fetch SLD XML from the URL sldurl and apply to map layers. Returns MS_SUCCESS or MS_FAILURE.

clone( )
[mapObj] Returns a independent copy of the map, less any caches.

Note: In the Java module this method is named ‘cloneMap’.
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convertToString()
[string] Added in version 6.4.

Saves the object to a string.

Note: The inverse method updateFromString does not exist for the mapObj

draw( )
[imageObj] Draw the map, processing layers according to their defined order and status. Return an imageObj.

drawLabelCache( imageObj image )
[int] Draw map’s label cache on image. Returns MS_SUCCESS or MS_FAILURE.

drawLegend( )
[imageObj] Draw map legend, returning an imageObj.

drawQuery( )
[imageObj] Draw query map, returning an imageObj.

drawReferenceMap( )
[imageObj] Draw reference map, returning an imageObj.

drawScalebar( )
[imageObj] Draw scale bar, returning an imageObj.

embedLegend( imageObj image )
[int] Embed map’s legend in image. Returns MS_SUCCESS or MS_FAILURE.

embedScalebar( imageObj image )
[int] Embed map’s scalebar in image. Returns MS_SUCCESS or MS_FAILURE.

freeQuery( [ int qlayer=-1 ] )
[void] Clear layer query result caches. Default is -1, or all layers.

generateSLD( )
[string] Return SLD XML as a string for map layers that have STATUS on.

getConfigOption( string key )
[string] Fetches the value of the requested configuration key if set. Returns NULL if the key is not set.

getFirstMetaDataKey( )
[string] Returns the first key in the web.metadata hash table. With getNextMetaDataKey( ), provides an opaque
iterator over keys.

getLabel( int labelindex )
[labelCacheMemberObj] Return label at specified index from the map’s labelcache.

getLayer( int index )
[layerObj] Returns a reference to the layer at index.

getLayerByName( string name )
[layerObj] Returns a reference to the named layer.

getLayersDrawingOrder( )
[int*] Returns an array of layer indexes in drawing order.

Note: Unless the proper typemap is implemented for the module’s language a user is more likely to get back an
unusable SWIG pointer to the integer array.
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getMetaData( string key )
[string] Return the value at key from the web.metadata hash table.

getNextMetaDataKey( string lastkey )
[string] Returns the next key in the web.metadata hash table or NULL if lastkey is the last valid key. If lastkey is
NULL, returns the first key of the metadata hash table.

getNumSymbols( )
[int] Return the number of symbols in map.

getOutputFormat(int i): outputFormatObj
Returns the output format at the specified i index from the output formats array or null if i is beyond the array
bounds. The number of outpuFormats can be retrieved by calling getNumoutputformats.

getOutputFormatByName( string imagetype )
[outputFormatObj] Return the output format corresponding to driver name imagetype or to format name im-
agetype. This works exactly the same as the IMAGETYPE directive in a mapfile, is case insensitive and allows
an output format to be found either by driver (like ‘GD/PNG’) or name (like ‘PNG24’).

getProjection( )
[string] Returns the PROJ definition of the map’s projection.

getRotation( )
[double] Added in version 7.6.0.

Returns the map rotation angle.

getSymbolByName( string name )
[int] Return the index of the named symbol in the map’s symbolset.

Note: This method is poorly named and too indirect. It is preferable to use the getSymbolByName method of
symbolSetObj, which really does return a symbolObj reference, or use the index method of symbolSetObj to get
a symbol’s index number.

insertLayer( layerObj layer [, int nIndex=-1 ] )
[int] Insert a copy of layer into the Map at index nIndex. The default value of nIndex is -1, which means the last
possible index. Returns the index of the new Layer, or -1 in the case of a failure.

loadMapContext( string filename [, int useUniqueNames=MS_FALSE ] )
[int] Load an OGC map context file to define extents and layers of a map.

loadOWSParameters( OWSRequest request [, string version=’1.1.1’ ] )
[int] Load OWS request parameters (BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or
MS_FAILURE.

loadQuery( string filename )
[int] Load a saved query. Returns MS_SUCCESS or MS_FAILURE.

moveLayerDown( int layerindex )
[int] Move the layer at layerindex down in the drawing order array, meaning that it is drawn later. Returns
MS_SUCCESS or MS_FAILURE.

moveLayerUp( int layerindex )
[int] Move the layer at layerindex up in the drawing order array, meaning that it is drawn earlier. Returns
MS_SUCCESS or MS_FAILURE.

nextLabel( )
[labelCacheMemberObj] Return the next label from the map’s labelcache, allowing iteration over labels.
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Note: nextLabel() is deprecated and will be removed in a future version. Replaced by getLabel().

OWSDispatch( OWSRequest req )
[int] Processes and executes the passed OpenGIS Web Services request on the map. Returns MS_DONE (2) if
there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS request was successfully processed
and MS_FAILURE (1) if an OWS request was not successfully processed. OWS requests include WMS, WFS,
WCS and SOS requests supported by MapServer. Results of a dispatched request are written to stdout and can
be captured using the msIO services (ie. msIO_installStdoutToBuffer() and msIO_getStdoutBufferString())

prepareImage( )
[imageObj] Returns an imageObj initialized to map extents and outputformat.

prepareQuery( )
[void] TODO this function only calculates the scale or am I missing something?

processLegendTemplate( string names[], string values[], int numitems )
[string] Process MapServer legend template and return HTML.

Note: None of the three template processing methods will be usable unless the proper typemaps are implemented
in the module for the target language. Currently the typemaps are not implemented.

processQueryTemplate( string names[], string values[], int numitems )
[string] Process MapServer query template and return HTML.

Note: None of the three template processing methods will be usable unless the proper typemaps are implemented
in the module for the target language. Currently the typemaps are not implemented.

processTemplate( int generateimages, string names[], string values[], int numitems )
[string] Process MapServer template and return HTML.

Note: None of the three template processing methods will be usable unless the proper typemaps are implemented
in the module for the target language. Currently the typemaps are not implemented.

queryByFeatures( int layerindex )
[int] Query map layers, result sets contain features that intersect or are contained within the features in the result
set of the MS_LAYER_POLYGON type layer at layerindex. Returns MS_SUCCESS or MS_FAILURE.

queryByPoint( pointObj point, int mode, float buffer )
[int] Query map layers, result sets contain one or more features, depending on mode, that intersect point within
a tolerance buffer. Returns MS_SUCCESS or MS_FAILURE.

queryByRect( rectObj rect )
[int] Query map layers, result sets contain features that intersect or are contained within rect. Returns
MS_SUCCESS or MS_FAILURE.

queryByShape( shapeObj shape )
[int] Query map layers, result sets contain features that intersect or are contained within shape. Returns
MS_SUCCESS or MS_FAILURE.

removeLayer( int index )
[int] Remove the layer at index.
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removeMetaData( string key )
[int] Delete the web.metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

removeOutputFormat( string name )
[int] Removes the format named name from the map’s output format list. Returns MS_SUCCESS or
MS_FAILURE.

save( string filename )
[int] Save map to disk as a new map file. Returns MS_SUCCESS or MS_FAILURE.

saveMapContext( string filename )
[int] Save map definition to disk as OGC-compliant XML. Returns MS_SUCCESS or MS_FAILURE.

saveQuery( string filename )
[int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

saveQueryAsGML( string filename )
[int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

selectOutputFormat( string imagetype )
[void] Set the map’s active output format to the internal format named imagetype. Built-in formats are “PNG”,
“PNG24”, “JPEG”, “GIF”, “GTIFF”.

setConfigOption( string key, string value )
[void] Set the indicated key configuration option to the indicated value. Equivalent to including a CONFIG
keyword in a map file.

setExtent( float minx, float miny, float maxx, float maxy )
[int] Set the map extent, returns MS_SUCCESS or MS_FAILURE. This method will correct the extents
(width/height ratio) before setting the minx,miny,maxx,maxy values. See extent properties to set up a custom
extent from rectObj.

offsetExtent( float x, float y)
[int] Offset the map extent based on the given distances in map coordinates, returns MS_SUCCESS or
MS_FAILURE.

scaleExtent( float zoomfactor, float minscaledenom, float maxscaledenom)
[int] Scale the map extent using the zoomfactor and ensure the extent within the minscaledenom and maxscalede-
nom domain. If minscaledenom and/or maxscaledenom is 0 then the parameter is not taken into account. returns
MS_SUCCESS or MS_FAILURE.

setCenter( pointObj center )
[int] Set the map center to the given map point, returns MS_SUCCESS or MS_FAILURE.

setFontSet( string filename )
[int] Load fonts defined in filename into map fontset. The existing fontset is cleared. Returns MS_SUCCESS or
MS_FAILURE.

setImageType( string name )
[void] Sets map outputformat to the named format.

Note: setImageType() remains in the module but it’s use is deprecated in favor of selectOutputFormat().

setLayersDrawingOrder( int layerindexes[])
[int] Set map layer drawing order.

Note: Unless the proper typemap is implemented for the module’s language users will not be able to pass arrays
or lists to this method and it will be unusable.
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setMetaData( string key, string value )
[int] Assign value to the web.metadata hash at key. Return MS_SUCCESS or MS_FAILURE.

setOutputFormat( outputFormatObj format )
[void] Sets map outputformat.

setProjection( string proj4 )
[int] Set map projection from PROJ definition string proj4.

setRotation( float rotation_angle )
[int] Set map rotation angle. The map view rectangle (specified in EXTENTS) will be rotated by the indicated
angle in the counter- clockwise direction. Note that this implies the rendered map will be rotated by the angle in
the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

setSize( int width, int height )
[int] Set map’s image width and height together and carry out the necessary subsequent geotransform computa-
tion. Returns MS_SUCCESS or MS_FAILURE.

setSymbolSet( string filename )
[int] Load symbols defined in filename into map symbolset. The existing symbolset is cleared. Returns
MS_SUCCESS or MS_FAILURE.

setWKTProjection( string wkt )
[int] Sets map projection from OGC definition wkt.

zoomPoint( int zoomfactor, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent )
[int] Zoom by zoomfactor to imgpoint in pixel units within the image of height and width dimensions and georefer-
enced extent. Zooming can be constrained to a maximum maxextent. Returns MS_SUCCESS or MS_FAILURE.

zoomRectangle( rectObj imgrect, int width, int height, rectObj extent,
rectObj maxextent ) : int Zoom to a pixel coordinate rectangle in the image of width and height dimensions and
georeferencing extent. Zooming can be constrained to a maximum maxextent. The imgrect rectangle contains the
coordinates of the LL and UR coordinates in pixel: the maxy in the rect object should be < miny value. Returns
MS_SUCCESS or MS_FAILURE:

------- UR (values in the rect object : maxx, maxy)
| |
| |
| |
------
LL (values in the rectobject minx, miny)

zoomScale( float scale, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent)
[int] Like the previous methods, but zooms to the point at a specified scale.

markerCacheMemberObj

An individual marker. The markerCacheMemberObj class is associated with labelCacheObj:

+------------------+ 0..* 1 +------------+
| MarkerCacheMember | <--------- | LabelCache |
+------------------+ +------------+
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markerCacheMemberObj Attributes

id
[int immutable] Id of the marker.

poly
[shapeObj immutable] Marker bounding box.

markerCacheMemberObj Methods

None.

outputFormatObj

An outputFormatObj is associated with a mapObj:

+--------------+ 1..* 1 +-----+
| OutputFormat | <--------- | Map |
+--------------+ +-----+

and can also be an attribute of an imageObj.

outputFormatObj Attributes

bands
[int] The number of bands in the raster. Only used for the “raw” modes, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_INT16, and MS_IMAGEMODE_FLOAT32. Normally set via the BAND_COUNT for-
matoption . . . this field should be considered read-only.

driver
[string] A string such as ‘GD/PNG’ or ‘GDAL/GTiff’.

extension
[string] Format file extension such as ‘png’.

imagemode
[int] MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE, or
MS_IMAGEMODE_NULL.

mimetype
[string] Format mimetype such as ‘image/png’.

name
[string] A unique identifier.

numformatoptions: int
The number of option values set on this format. Can be used to iterate over the options array in conjunction with
getOptionAt

renderer
[int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Normally set internally based on
the driver and some other setting in the constructor.
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transparent
[int] MS_ON or MS_OFF.

outputFormatObj Methods

new outputFormatObj( string driver [, string name=driver ] )
[outputFormatObj] Create new instance. If name is not provided, the value of driver is used as a name.

getOption( string key [, string defaultvalue=”” ] )
[string] Return the format option at key or defaultvalue if key is not a valid hash index.

getOptionAt(int idx): string
Returns the option at idx or null if the index is beyond the array bounds. The option is returned as the original
KEY=VALUE string. The number of available options can be obtained by calling getNumformatoptions.

setExtension( string extension )
[void] Set file extension for output format such as ‘png’ or ‘jpg’. Method could probably be deprecated since the
extension attribute is mutable.

setMimetype( string mimetype )
[void] Set mimetype for output format such as ‘image/png’ or ‘image/jpeg’. Method could probably be deprecated
since the mimetype attribute is mutable.

setOption( string key, string value )
[void] Set the format option at key to value. Format options are mostly driver specific.

validate()
[int] Checks some internal consistency issues, and returns MS_TRUE if things are OK and MS_FALSE if there
are problems. Some problems are fixed up internally. May produce debug output if issues encountered.

OWSRequest

Not associated with other mapscript classes. Serves as a message intermediary between an application and MapServer’s
OWS capabilities. Using it permits creation of lightweight WMS services:

wms_map = mapscript.mapObj('wms.map')
wms_request = mapscript.OWSRequest()

# Convert application request parameters (req.args)
for param, value in req.args.items():

wms_request.setParam(param, value)

# Map loads parameters from OWSRequest, adjusting its SRS, extents,
# active layers accordingly
wms_map.loadWMSRequest('1.1.0', wms_request)

# Render the Map
img = wms_map.draw()
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OWSRequest Attributes

NumParams
[int immutable] Number of request parameters. Eventually should be changed to numparams lowercase like other
attributes.

postrequest
[string] TODO

type
[int] MS_GET_REQUEST or MS_POST_REQUEST.

OWSRequest Methods

new OWSRequest( )
[OWSRequest] Create a new instance.

Note: MapServer’s OWSRequest supports only single valued parameters.

addParameter( string name, string value )
[void] Add a request parameter, even if the parameter key was previousely set. This is useful when multiple
parameters with the same key are required. For example:

request.addParameter('SIZE', 'x(100)')
request.addParameter('SIZE', 'y(100)')

getName( int index )
[string] Return the name of the parameter at index in the request’s array of parameter names.

getValue( int index )
[string] Return the value of the parameter at index in the request’s array of parameter values.

getValueByName( string name)
[string] Return the value associated with the parameter name.

loadParams()
[int] Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected. Warning: most
errors will result in a process exit!

loadParamsFromURL( string url )
[int] Initializes the OWSRequest object from the provided URL which is treated like a QUERY_STRING. Note
that REQUEST_METHOD=GET and no post data is assumed in this case. This method was added in MapServer
6.0.

setParameter( string name, string value )
[void] Set a request parameter. For example:

request.setParameter('REQUEST', 'GetMap')
request.setParameter('BBOX', '-107.0,40.0,-106.0,41.0')
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pointObj

A pointObj instance may be associated with a lineObj:

+-------+ 1..* 0..1 +------+
| Point | <--------- | Line |
+-------+ +------+

pointObj Attributes

m
[float] Measure. Meaningful only for measured shapefiles. Given value -2e38 if not otherwise assigned to
indicate “nodata”.

x
[float] Easting

y
[float] Northing

z
[float] Elevation

pointObj Methods

new pointObj( [ float x=0.0, float y=0.0, float z=0.0, float m=-2e38 ] )
[pointObj] Create new instance. Easting, northing, and measure arguments are optional.

distanceToPoint( pointObj point )
[float] Returns the distance to point.

distanceToSegment( pointObj point1, pointObj point2 )
[float] Returns the minimum distance to a hypothetical line segment connecting point1 and point2.

distanceToShape( shapeObj shape )
[float] Returns the minimum distance to shape.

draw( mapObj map, layerObj layer, imageObj image, int classindex, string text )
[int] Draw the point using the styles defined by the classindex class of layer and labeled with string text. Returns
MS_SUCCESS or MS_FAILURE.

project( projectionObj proj_in, projectionObj proj_out )
[int] Reproject point from proj_in to proj_out. Transformation is done in place. Returns MS_SUCCESS or
MS_FAILURE.

setXY( float x, float y [, float m=2e-38 ] )
[int] Set spatial coordinate and, optionally, measure values simultaneously. The measure will be set only if the
value of m is greater than the ESRI measure no-data value of 1e-38. Returns MS_SUCCESS or MS_FAILURE.

setXYZ( float x, float y, float z [, float m=-2e38 ] )
[int] Set spatial coordinate and, optionally, measure values simultaneously. The measure will be set only if the
value of m is greater than the ESRI measure no-data value of -1e38. Returns MS_SUCCESS or MS_FAILURE.

setXYZM( float x, float y, float z, float m )
[int] Set spatial coordinate and, optionally, measure values simultaneously. The measure will be set only if the
value of m is greater than the ESRI measure no-data value of -1e38. Returns MS_SUCCESS or MS_FAILURE.
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toShape()
[shapeObj] Convience method to quickly turn a point into a shapeObj.

toString()
[string] Return a string formatted like:

{ 'x': %f , 'y': %f, 'z': %f }

with the coordinate values substituted appropriately. Python users can get the same effect via the pointObj __str__
method:

>>> p = mapscript.pointObj(1, 1)
>>> str(p)
{ 'x': 1.000000 , 'y': 1.000000, 'z': 1.000000 }

projectionObj

This class is not really fully implemented yet. MapServer’s Maps and Layers have Projection attributes, and these
are C projectionObj structures, but are not directly exposed by the mapscript module. Currently we have to do some
round-a-bout logic like this:

point.project(projectionObj(mapobj.getProjection(),
projectionObj(layer.getProjection())

to project a point from map to layer reference system.

projectionObj Attributes

numargs
[int immutable] Number of PROJ arguments.

projectionObj Methods

new projectionObj( string proj4 )
[projectionObj] Create new instance of projectionObj. Input parameter proj4 is a PROJ definition string such as
“init=EPSG:4269”.

getUnits()
[int] Returns the units of a projection object. Returns -1 on error.

rectObj

A rectObj may be a lone object or an attribute of another object and has no other associations.
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rectObj Attributes

maxx
[float] Maximum easting

maxy
[float] Maximum northing

minx
[float] Minimum easting

miny
[float] Minimum northing

rectObj Methods

new rectObj( [ float minx=-1.0, float miny=-1.0, float maxx=-1.0, float maxy=-1.0, int imageunits=MS_FALSE ]
)

[rectObj] Create new instance. The four easting and northing arguments are optional and default to -1.0. Note
the new optional fifth argument which allows creation of rectangles in image (pixel/line) units which are also
tested for validity.

draw( mapObj map, layerObj layer, imageObj img, int classindex, string text )
[int] Draw rectangle into img using style defined by the classindex class of layer. The rectangle is labeled with
the string text. Returns MS_SUCCESS or MS_FAILURE.

getCenter()
[pointObj] Return the center point of the rectagle.

project( projectionObj proj_in, projectionObj proj_out )
[int] Reproject rectangle from proj_in to proj_out. Transformation is done in place. Returns MS_SUCCESS or
MS_FAILURE.

toPolygon()
[shapeObj] Convert to a polygon of five vertices.

toString()
[string] Return a string formatted like:

{ 'minx': %f , 'miny': %f , 'maxx': %f , 'maxy': %f }

with the bounding values substituted appropriately. Python users can get the same effect via the rectObj __str__
method:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ 'minx': 0 , 'miny': 0 , 'maxx': 1 , 'maxy': 1 }
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referenceMapObj

A referenceMapObj is associated with mapObj:

+--------------+ 0..1 1 +-----+
| ReferenceMap | <--------> | Map |
+--------------+ +-----+

referenceMapObj Attributes

color
[colorObj] Color of reference box.

extent
[rectObj] Spatial extent of reference in units of parent map.

height
[int] Height of reference map in pixels.

image
[string] Filename of reference map image.

map
[mapObj immutable] Reference to parent mapObj.

marker
[int] Index of a symbol in the map symbol set to use for marker.

markername
[string] Name of a symbol.

markersize
[int] Size of marker.

maxboxsize
[int] Pixels.

minboxsize
[int] Pixels.

outlinecolor
[colorObj] Outline color of reference box.

status
[int] MS_ON or MS_OFF.

width
[int] In pixels.
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referenceMapObj Methods

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

resultCacheMemberObj

Has no associations with other MapScript classes and has no methods. By using several indexes, a resultCacheMem-
berObj refers to a single layer feature.

resultCacheMemberObj Attributes

classindex
[int immutable] The index of the layer class into which the feature has been classified.

shapeindex
[int immutable] Index of the feature within the layer.

tileindex
[int immutable] Meaningful for tiled layers only, index of the shapefile data tile.

resultCacheObj

See querying-HOWTO.txt for extra guidance in using the new 4.4 query API.

resultCacheObj Attributes

bounds
[rectObj immutable] Bounding box of query results.

numresults
[int immutable] Length of result set.

resultCacheObj Methods

getResult( int i )
[resultCacheMemberObj] Returns the result at index i, like layerObj::getResult, or NULL if index is outside the
range of results.
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scalebarObj

A scalebarObj is associated with mapObj:

+----------+ 0..1 1 +-----+
| Scalebar | <--------- | Map |
+----------+ +-----+

and also with labelObj:

+----------+ 1 1 +-------+
| Scalebar | ---------> | Label |
+----------+ +-------+

scalebarObj Attributes

backgroundcolor
[colorObj] Scalebar background color.

color
[colorObj] Scalebar foreground color.

height
[int] Pixels.

imagecolor
[colorObj] Background color of scalebar.

intervals
[int] Number of intervals.

label
[labelObj] Scalebar label.

outlinecolor
[colorObj] Foreground outline color.

position
[int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.

postlabelcache
[int] MS_TRUE or MS_FALSE.

status
[int] MS_ON, MS_OFF, or MS_EMBED.

style
[int] 0 or 1.

units
[int] See MS_UNITS in mapserver.h.

width
[int] Pixels.
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scalebarObj Methods

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

shapefileObj

shapefileObj Attributes

bounds
[rectObj] Extent of shapes.

numshapes
[int] Number of shapes.

type
[int] See mapshape.h for values of type.

shapefileObj Methods

new shapefileObj( string filename [, int type=-1 ] )
[shapefileObj] Create a new instance. Omit the type argument or use a value of -1 to open an existing shapefile.

add( shapeObj shape )
[int] Add shape to the shapefile. Returns MS_SUCCESS or MS_FAILURE.

get( int i, shapeObj shape )
[int] Get the shapefile feature from index i and store it in shape. Returns MS_SUCCESS or MS_FAILURE.

getShape( int i )
[shapeObj] Returns the shapefile feature at index i. More efficient than get.

TODO

shapeObj

Each feature of a layer’s data is a shapeObj. Each part of the shape is a closed lineObj:

+-------+ 1 1..* +------+
| Shape | --------> | Line |
+-------+ +------+
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shapeObj Attributes

bounds
[rectObj] Bounding box of shape.

classindex
[int] The class index for features of a classified layer.

index
[int] Feature index within the layer.

numlines
[int immutable] Number of parts.

numvalues
[int immutable] Number of shape attributes.

text
[string] Shape annotation.

tileindex
[int] Index of tiled file for tileindexed layers.

type
[int] MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, or MS_SHAPE_NULL.

shapeObj Methods

new shapeObj( int type )
[shapeObj] Return a new shapeObj of the specified type. See the type attribute above. No attribute values created
by default. initValues should be explicitly called to create the required number of values.

add( lineObj line )
[int] Add line (i.e. a part) to the shape. Returns MS_SUCCESS or MS_FAILURE.

boundary()
[shapeObj] Returns the boundary of the existing shape. Requires GEOS support. Returns NULL/undef on
failure.

buffer( int distance )
[shapeObj] Returns a new buffered shapeObj based on the supplied distance (given in the coordinates of the
existing shapeObj). Requires GEOS support. Returns NULL/undef on failure.

clone()
[shapeObj] Return an independent copy of the shape.

contains( pointObj point )
[int] Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

contains( shapeObj shape2 )
[int] Returns MS_TRUE if shape2 is entirely within the shape. Returns -1 on error and MS_FALSE otherwise.
Requires GEOS support.

convexHull()
[shapeObj] Returns the convex hull of the existing shape. Requires GEOS support. Returns NULL/undef on
failure.

copy( shapeObj shape_copy )
[int] Copy the shape to shape_copy. Returns MS_SUCCESS or MS_FAILURE.
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crosses( shapeObj shape2 )
[int] Returns MS_TRUE if shape2 crosses the shape. Returns -1 on error and MS_FALSE otherwise. Requires
GEOS support.

difference( shapeObj shape )
[shapeObj] Returns the computed difference of the supplied and existing shape. Requires GEOS support. Returns
NULL/undef on failure.

disjoint( shapeObj shape2 )
[int] Returns MS_TRUE if shape2 and the shape are disjoint. Returns -1 on error and MS_FALSE otherwise.
Requires GEOS support.

distanceToPoint( pointObj point )
[float] Return distance to point.

distanceToShape( shapeObj shape )
[float] Return the minimum distance to shape.

draw( mapObj map, layerObj layer, imageObj img )
[int] Draws the individual shape using layer. Returns MS_SUCCESS or MS_FAILURE.

equals( shapeObj shape2 )
[int] Returns MS_TRUE if the shape and shape2 are equal (geometry only). Returns -1 on error and MS_FALSE
otherwise. Requires GEOS support.

fromWKT( char *wkt )
[shapeObj] Returns a new shapeObj based on a well-known text representation of a geometry. Requires GEOS
support. Returns NULL/undef on failure.

get( int index )
[lineObj] Returns a reference to part at index. Reference is valid only during the life of the shapeObj.

getArea()
[double] Returns the area of the shape (if applicable). Requires GEOS support.

getCentroid()
[pointObj] Returns the centroid for the existing shape. Requires GEOS support. Returns NULL/undef on failure.

getLength()
[double] Returns the length (or perimeter) of a shape. Requires GEOS support.

getValue( int i )
[string] Return the shape attribute at index i.

initValues( int numvalues )
[void] Allocates memory for the requested number of values.

intersects( shapeObj shape )
[int] Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

Note: Does not require GEOS support but will use GEOS functions if available.

intersection( shapeObj shape )
[shapeObj] Returns the computed intersection of the supplied and existing shape. Requires GEOS support.
Returns NULL/undef on failure.

overlaps( shapeObj shape2 )
[int] Returns MS_TRUE if shape2 overlaps shape. Returns -1 on error and MS_FALSE otherwise. Requires
GEOS support.
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project( projectionObj proj_in, projectionObj proj_out )
[int] Reproject shape from proj_in to proj_out. Transformation is done in place. Returns MS_SUCCESS or
MS_FAILURE.

setBounds
[void] Must be called to calculate new bounding box after new parts have been added.

TODO: should return int and set msSetError.

setValue( int i, string value )
[int] Set the shape value at index i to value.

simplify( double tolerance ): shapeObj
Given a tolerance, returns a simplified shape object or NULL on error. Requires GEOS support (>=3.0).

symDifference( shapeObj shape )
[shapeObj] Returns the computed symmetric difference of the supplied and existing shape. Requires GEOS
support. Returns NULL/undef on failure.

topologyPreservingSimplify( double tolerance ): shapeObj
Given a tolerance, returns a simplified shape object or NULL on error. Requires GEOS support (>=3.0).

touches( shapeObj shape2 )
[int] Returns MS_TRUE if the shape and shape2 touch. Returns -1 on error and MS_FALSE otherwise. Requires
GEOS support.

toWKT()
[string] Returns the well-known text representation of a shapeObj. Requires GEOS support. Returns
NULL/undef on failure.

Union( shapeObj shape )
[shapeObj] Returns the union of the existing and supplied shape. Shapes must be of the same type. Requires
GEOS support. Returns NULL/undef on failure.

within( shapeObj shape2 )
[int] Returns MS_TRUE if the shape is entirely within shape2. Returns -1 on error and MS_FALSE otherwise.
Requires GEOS support.

styleObj

An instance of styleObj is associated with one instance of classObj:

+-------+ 0..* 1 +-------+
| Style | <-------- | Class |
+-------+ +-------+

An instance of styleObj can exist outside of a classObj container and be explicitly inserted into the classObj for use in
mapping:

new_style = new styleObj()
the_class.insertStyle(new_style)

It is important to understand that insertStyle inserts a copy of the styleObj instance, not a reference to the instance itself.

The older use case:

new_style = new styleObj(the_class)
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remains supported. These will be the only ways to access the styles of a class. Programmers should no longer directly
access the styles attribute.

styleObj Attributes

angle
[double] Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is the
angle of the hatched lines.

angleitem
[string] Deprecated since version 5.0: Use setBinding.

backgroundcolor
[colorObj] Background pen color.

color
[colorObj] Foreground or fill pen color.

mincolor
[colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the range
for mapping a continuous feature value to a continuous range of colors when rendering the feature on the map.

minsize
[int] Minimum pen or symbol width for scaling styles.

minvalue
[double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the range
for mapping a continuous feature value to a continuous range of colors when rendering the feature on the map.

minwidth
[int] Minimum width of the symbol.

maxcolor
[colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the range
for mapping a continuous feature value to a continuous range of colors when rendering the feature on the map.

maxsize
[int] Maximum pen or symbol width for scaling.

maxvalue
[double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the range
for mapping a continuous feature value to a continuous range of colors when rendering the feature on the map.

maxwidth
[int] Maximum width of the symbol.

offsetx
[int] Draw with pen or symbol offset from map data.

offsety
[int] Draw with pen or symbol offset from map data.

outlinecolor
[colorObj] Outline pen color.

pattern
[array of double values] List of on, off values to define a dash pattern for line work (lines, polygon outlines, hatch
lines, . . . )

patternlength
[int] Number of elements in the pattern attribute.
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rangeitem
[string] Attribute/field that stores the values for the Color Range Mapping (rfc6).

size
[int] Pixel width of the style’s pen or symbol.

sizeitem
[string] Deprecated since version 5.0: Use setBinding.

symbol
[int] The index within the map symbolset of the style’s symbol.

symbolname
[string immutable] Name of the style’s symbol.

width
[int] Width refers to the thickness of line work drawn, in pixels. Default is 1. For symbols of Type HATCH, the
with is how thick the hatched lines are.

styleObj Methods

new styleObj( [ classObj parent_class ] )
[styleObj] Returns new default style Obj instance. The parent_class is optional.

clone
[styleObj] Returns an independent copy of the style with no parent class.

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

getBinding( int binding )
[string] Get the attribute binding for a specified style property. Returns NULL if there is no binding for this
property.

removeBinding( int binding )
[int] Remove the attribute binding for a specfiled style property.

setBinding ( int binding, string item )
[int] Set the attribute binding for a specified style property. Binding constants look like this:
MS_STYLE_BINDING_[attribute name]:

setBinding(MS_STYLE_BINDING_SIZE, 'mySizeItem');

setSymbolByName(mapObj map, string symbolname)
[int] Setting the symbol of the styleObj given the reference of the map object and the symbol name.

updateFromString ( string snippet )
[int] Update a style from a string snippet. Returns MS_SUCCESS/MS_FAILURE.
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symbolObj

A symbolObj is associated with one symbolSetObj:

+--------+ 0..* 1 +-----------+
| Symbol | <-------- | SymbolSet |
+--------+ +-----------+

A styleObj will often refer to a symbolObj by name or index, but this is not really an object association, is it?

symbolObj Attributes

antialias
[int] MS_TRUE or MS_FALSE.

character
[string] For TrueType symbols.

filled
[int] MS_TRUE or MS_FALSE.

font
[string] For TrueType symbols.

gap
[int] Moved to STYLE

imagepath
[string] Path to pixmap file.

inmapfile
[int] If set to TRUE, the symbol will be saved inside the mapfile. Added in MapServer 5.6.1

linecap
[int] Moved to STYLE

linejoin
[int] Moved to STYLE

linejoinmaxsize
[float] Moved to STYLE

name
[string] Symbol name

numpoints
[int immutable] Number of points of a vector symbol.

position
[int] No more available?

sizex
[float] TODO what is this?

sizey
[float] TODO what is this?

stylelength
[int] Number of intervals
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transparent
[int] TODO what is this?

transparentcolor
[int] TODO is this a derelict attribute?

type
[int] MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, or MS_SYMBOL_TRUETYPE.

symbolObj Methods

new symbolObj( string symbolname [, string imagefile ] )
[symbolObj] Create new default symbol named name. If imagefile is specified, then the symbol will be of type
MS_SYMBOL_PIXMAP.

getImage()
[imageObj] Returns a pixmap symbol’s imagery as an imageObj.

getPoints()
[lineObj] Returns the symbol points as a lineObj.

setImage( imageObj image )
[int] Set a pixmap symbol’s imagery from image.

setPoints( lineObj line )
[int] Sets the symbol points from the points of line. Returns the updated number of points.

setStyle( int index, int value )
[int] Set the style at index to value. Returns MS_SUCCESS or MS_FAILURE.

symbolSetObj

A symbolSetObj is an attribute of a mapObj and is associated with instances of symbolObj:

+-----------+ 1 0..* +--------+
| SymbolSet | --------> | Symbol |
+-----------+ +--------+

symbolSetObj Attributes

filename
[string] Symbolset filename

numsymbols
[int immutable] Number of symbols in the set.
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symbolSetObj Methods

new symbolSetObj( [ string symbolfile ] )
[symbolSetObj] Create new instance. If symbolfile is specified, symbols will be loaded from the file.

appendSymbol( symbolObj symbol )
[int] Add a copy of symbol to the symbolset and return its index.

getSymbol( int index )
[symbolObj] Returns a reference to the symbol at index.

getSymbolByName( string name )
[symbolObj] Returns a reference to the symbol named name.

index( string name )
[int] Return the index of the symbol named name or -1 in the case that no such symbol is found.

removeSymbol( int index )
[symbolObj] Remove the symbol at index and return a copy of the symbol.

save( string filename )
[int] Save symbol set to a file. Returns MS_SUCCESS or MS_FAILURE.

webObj

Has no other existence than as an attribute of a mapObj. Serves as a container for various run-time web application
definitions like temporary file paths, template paths, etc.

webObj Attributes

empty
[string] TODO

error
[string] TODO

extent
[rectObj] Clipping extent.

footer
[string] Path to footer document.

header
[string] Path to header document.

imagepath
[string] Filesystem path to temporary image location.

imageurl
[string] URL to temporary image location.

log
[string] TODO

map
[mapObj immutable] Reference to parent mapObj.

maxscaledenom
[float] Minimum map scale.
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maxtemplate
[string] TODO

metadata
[hashTableObj immutable] metadata hash table.

minscaledenom
[float] Maximum map scale.

mintemplate
[string] TODO

queryformat
[string] TODO

template
[string] Path to template document.

webObj Methods

convertToString()
[string] Added in version 6.4.

Saves the object to a string. Provides the inverse option for updateFromString.

5.1.3 PHP MapScript

Release
7.6.6

PHP MapScript

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last updated
2019-05-25

Introduction

This is a PHP module that makes MapServer’s MapScript functionalities available in a PHP Dynamically Loadable
Library. In simple terms, this module will allow you to use the powerful PHP scripting language to dynamically create
and modify map images in MapServer.
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Versions Supported

PHP 5.2.0 or more recent is required; As of MapServer 7.4.0, PHP 7 is available through the SWIG API , and all existing
MapServer users are encouraged to update their scripts for the new SWIG syntax; see the MapServer Migration Guide
for example syntax.

Support for PHP 4, PHP 5.0 and PHP 5.1 was dropped as of MapServer 6.0. PHP MapScript was originally developed
for PHP 3.0.14, and after MapServer 3.5 support for PHP 3 was dropped.

The module has been tested and used on Linux, Solaris, *BSD, and Windows.

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documentation
instead.

Note: If you are migrating your existing application that is based on MapServer 5.6 or older, to MapServer
7.4 or beyond, please read the PHP MapScript Migration Guide for important changes.

Windows Binaries

PHP 7+ mapscript is included in MS4W, the popular installer maintained by Gateway Geomatics. You can also see
user-contributed PHP 7 scripts through the SWIG API, on the MS4W wiki.

How to Get More Information on PHP MapScript

• For installation questions regarding the PHP MapScript module, see PHP MapScript Installation.

• The MapServer Wiki has information on this module, that was contributed by users.

• New PHP MapScript users should read the By Example document.

• The project’s home is the PHP/MapScript page on MapTools.org.

• Also, see the MapScript, and the Mapfile sections of this site.

• Refer to the main PHP site for their official documentation.

Memory Management

Normally, you should not have to worry about the memory management because php has a garbage collector and will
free resources for you. If you write only small scripts that don’t do a lot of processing, it’s not worth to care about that.
Everything will be freed at the end of the script.

However, it may be useful to free resources during the execution if the script executes many tasks. To do so, you’ll have
to call the free() method of the mapscript objects and unset the php variables. The purpose of the free methods is to
break the circular references between an object and its properties to allow the zend engine to free the resources.

Here’s an example of a script (using the legacy syntax, not the SWIG API syntax) that doesn’t free things during the
execution:
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$map = new mapObj("mapfile.map");
$of = $map->outputformat;
echo $map->extent->minx." - ".$map->extent->miny." - ".

$map->extent->maxx." - ".$map->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset($of);
unset($map); // Even if we unset the php variables, resources

// won't be freed. Resources will be only freed
// at the end of the script

and the same script that frees resources as soon as it can

$map = new mapObj("mapfile.map");
$of = $map->outputformat;
echo $map->extent->minx." - ".$map->extent->miny." - ".

$map->extent->maxx." - ".$map->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset($of);
$map->free(); // break the circular references
// at this place, the outputformat ($of) and the rect object
// ($map->extent) resources are freed
unset($map);
// the map object is immediately freed after the unset (before the
// end of the script)

PHP MapScript API

Author
Daniel Morissette

Contact
dmorissette at mapgears.com

Author
Yewondwossen Assefa

Contact
yassefa at dmsolutions.ca

Author
Alan Boudreault

Contact
aboudreault at mapgears.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documenta-
tion instead.
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Tip: PHP 7 native support is included as of the MapServer 7.4.0 release. Also, as of the 7.4.0
release PHP 7 is available through MapServer’s SWIG API.

Contents

• PHP MapScript API

– Important Note

– Constants

– Functions

– Classes

∗ classObj

∗ clusterObj

∗ colorObj

∗ errorObj

∗ gridObj

∗ hashTableObj

∗ imageObj

∗ labelcacheMemberObj

∗ labelcacheObj

∗ labelObj

∗ layerObj

∗ legendObj

∗ lineObj

∗ mapObj

∗ outputformatObj

∗ OwsrequestObj

∗ pointObj

∗ projectionObj

∗ querymapObj

∗ rectObj

∗ referenceMapObj

∗ resultObj

∗ scalebarObj

∗ shapefileObj

∗ shapeObj

∗ styleObj
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∗ symbolObj

∗ webObj

Important Note

• Constant names and class member variable names are case-sensitive in PHP.

Constants

The following MapServer constants are available:

Boolean values
MS_TRUE, MS_FALSE, MS_ON, MS_OFF, MS_YES, MS_NO

Map units
MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD, MS_PIXELS,
MS_NAUTICALMILES

Layer types
MS_LAYER_POINT, MS_LAYER_LINE, MS_LAYER_POLYGON, MS_LAYER_RASTER,
MS_LAYER_ANNOTATION (deprecated since 6.2), MS_LAYER_QUERY, MS_LAYER_CIRCLE,
MS_LAYER_TILEINDEX, MS_LAYER_CHART

Layer/Legend/Scalebar/Class Status
MS_ON, MS_OFF, MS_DEFAULT, MS_EMBED, MS_DELETE

Layer alpha transparency
allows alpha transparent pixmaps to be used with RGB map images MS_GD_ALPHA

Label positions
MS_UL, MS_LR, MS_UR, MS_LL, MS_CR, MS_CL, MS_UC, MS_LC, MS_CC, MS_XY, MS_AUTO,
MS_AUTO2, MS_FOLLOW, MS_NONE

Bitmap font styles
MS_TINY , MS_SMALL, MS_MEDIUM, MS_LARGE, MS_GIANT

Shape types
MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, MS_SHAPE_NULL

Shapefile types
MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON, MS_SHP_MULTIPOINT

Query/join types
MS_SINGLE, MS_MULTIPLE

Querymap styles
MS_NORMAL, MS_HILITE, MS_SELECTED

Connection Types
MS_INLINE, MS_SHAPEFILE, MS_TILED_SHAPEFILE, MS_SDE, MS_OGR, MS_TILED_OGR,
MS_POSTGIS, MS_WMS, MS_ORACLESPATIAL, MS_WFS, MS_GRATICULE, MS_RASTER,
MS_PLUGIN, MS_UNION

Error codes
MS_NOERR, MS_IOERR, MS_MEMERR, MS_TYPEERR, MS_SYMERR, MS_REGEXERR,
MS_TTFERR, MS_DBFERR, MS_GDERR, MS_IDENTERR, MS_EOFERR, MS_PROJERR,
MS_MISCERR, MS_CGIERR, MS_WEBERR, MS_IMGERR, MS_HASHERR, MS_JOINERR,
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MS_NOTFOUND, MS_SHPERR, MS_PARSEERR, MS_SDEERR, MS_OGRERR, MS_QUERYERR,
MS_WMSERR, MS_WMSCONNERR, MS_ORACLESPATIALERR, MS_WFSERR, MS_WFSCONNERR,
MS_MAPCONTEXTERR, MS_HTTPERR, MS_WCSERR

Symbol types
MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE, MS_SYMBOL_PIXMAP,
MS_SYMBOL_TRUETYPE

Image Mode types (outputFormatObj)
MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_FEATURE, MS_IMAGEMODE_NULL

Style/Attribue binding
MS_STYLE_BINDING_SIZE, MS_STYLE_BINDING_ANGLE, MS_STYLE_BINDING_COLOR,
MS_STYLE_BINDING_OUTLINECOLOR, MS_STYLE_BINDING_SYMBOL,
MS_STYLE_BINDING_WIDTH

Label/Attribute binding
MS_LABEL_BINDING_SIZE, MS_LABEL_BINDING_ANGLE, MS_LABEL_BINDING_COLOR,
MS_LABEL_BINDING_OUTLINECOLOR, MS_LABEL_BINDING_FONT,
MS_LABEL_BINDING_PRIORITY, MS_LABEL_BINDING_POSITION, MS_LABEL_BINDING_SHADOWSIZEX,
MS_LABEL_BINDING_SHADOWSIZEY

Alignment
MS_ALIGN_LEFT, MS_ALIGN_CENTER, MS_ALIGN_RIGHT

OwsRequest
MS_GET_REQUEST, MS_POST_REQUEST

Functions

string ms_GetVersion()
Returns the MapServer version and options in a string. This string can be parsed to find out which modules were
compiled in, etc.

int ms_GetVersionInt()
Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New in v5.0) e.g. V5.4.3
would return 50403.

int ms_iogetStdoutBufferBytes()
Writes the current buffer to stdout. The PHP header() function should be used to set the documents’s content-
type prior to calling the function. Returns the number of bytes written if output is sent to stdout. See MapScript
Wrappers for WxS Services for more info.

void ms_iogetstdoutbufferstring()
Fetch the current stdout buffer contents as a string. This method does not clear the buffer.

void ms_ioinstallstdinfrombuffer()
Installs a mapserver IO handler directing future stdin reading (ie. post request capture) to come from a buffer.

void ms_ioinstallstdouttobuffer()
Installs a mapserver IO handler directing future stdout output to a memory buffer.

void ms_ioresethandlers()
Resets the default stdin and stdout handlers in place of “buffer” based handlers.
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string ms_iostripstdoutbuffercontenttype()
Strip the Content-type header off the stdout buffer if it has one, and if a content type is found it is return. Otherwise
return false.

void ms_iostripstdoutbuffercontentheaders()
Strip all the Content-* headers off the stdout buffer if it has some.

array ms_TokenizeMap(string map_file_name)
Preparses a mapfile through the MapServer parser and return an array with one item for each token from the
mapfile. Strings, logical expressions, regex expressions and comments are returned as individual tokens.

errorObj ms_GetErrorObj()
Returns a reference to the head of the list of errorObj.

void ms_ResetErrorList()
Clear the current error list. Note that clearing the list invalidates any errorObj handles obtained via the $error-
>next() method.

Classes

The following class objects are available through PHP MapScript.

classObj

Constructor

Class Objects can be returned by the layerObj class, or can be created using:

new classObj(layerObj layer [, classObj class])

or using the old constructor

classObj ms_newClassObj(layerObj layer [, classObj class])

The second argument class is optional. If given, the new class created will be a copy of this class.

Members

Type Name Note
string group
string keyimage
labelObj label Removed (6.2) - use addLabel, getLabel, . . .
double maxscaledenom
hashTableObj metadata
double minscaledenom
string name
int numlabels read-only (since 6.2)
int numstyles read-only
int status MS_ON, MS_OFF or MS_DELETE
string template
string title
int type
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Methods

int addLabel( labelObj label)
Added in version 6.2.

Add a labelObj to the classObj and return its index in the labels array.

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

imageObj createLegendIcon(int width, int height)
Draw the legend icon and return a new imageObj.

int deletestyle(int index)
Delete the style specified by the style index. If there are any style that follow the deleted style, their index will
decrease by 1.

int drawLegendIcon(int width, int height, imageObj im, int dstX, int dstY)
Draw the legend icon on im object at dstX, dstY. Returns MS_SUCCESS/MS_FAILURE.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

string getExpressionString()
Returns the expression string for the class object.

labelObj getLabel(int index)
Added in version 6.2.

Return a reference to the labelObj at index in the labels array.

See the labelObj section for more details on multiple class labels.

int getMetaData(string name)
Fetch class metadata entry by name. Returns “” if no entry matches the name. Note that the search is case
sensitive.

Note: getMetaData’s query is case sensitive.

styleObj getStyle(int index)
Return the style object using an index. index >= 0 && index < class->numstyles.

string getTextString()
Returns the text string for the class object.

int insertStyle( styleObj style [, int index=-1 ] )
Insert a copy of style into the styles array at index index. Default is -1, or the end of the array. Returns the index
at which the style was inserted.

int movestyledown(int index)
The style specified by the style index will be moved down into the array of classes. Returns MS_SUCCESS or
MS_FAILURE. ex class->movestyledown(0) will have the effect of moving style 0 up to position 1, and the style
at position 1 will be moved to position 0.

int movestyleup(int index)
The style specified by the style index will be moved up into the array of classes. Returns MS_SUCCESS or
MS_FAILURE. ex class->movestyleup(1) will have the effect of moving style 1 up to position 0, and the style at
position 0 will be moved to position 1.
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labelObj removeLabel(int index)
Added in version 6.2.

Remove the labelObj at index from the labels array and return a reference to the labelObj. numlabels is decre-
mented, and the array is updated.

int removeMetaData(string name)
Remove a metadata entry for the class. Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value)
Set object property to a new value.

int setExpression(string expression)
Set the expression string for the class object.

int setMetaData(string name, string value)
Set a metadata entry for the class. Returns MS_SUCCESS/MS_FAILURE.

int settext(string text)
Set the text string for the class object.

int updateFromString(string snippet)
Update a class from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

/*set the color */
$oClass->updateFromString('CLASS STYLE COLOR 255 0 255 END END');

clusterObj

Constructor

Instance of clusterObj is always embedded inside the layerObj.

Members

Type Name
double buffer
double maxdistance
string region

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

string getFilterString()
Returns the expression for this cluster filter or NULL on error.

string getGroupString()
Returns the expression for this cluster group or NULL on error.

int setFilter(string expression)
Set layer filter expression.
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int setGroup(string expression)
Set layer group expression.

colorObj

Constructor

Instances of colorObj are always embedded inside other classes.

Members

Type Name
int red
int green
int blue
int alpha

Methods

int setRGB(int red, int green, int blue, int alpha = 255)
Set red, green, blue and alpha values. Returns MS_SUCCESS.

string toHex()
Added in version 7.0.0.

Get the color as a hex string “#rrggbb” or (if alpha is not 255) “#rrggbbaa”.

int setHex(string hex)
Added in version 7.0.0.

Set red, green, blue and alpha values. The hex string should have the form “#rrggbb” (alpha will be set to 255)
or “#rrggbbaa”. Returns MS_SUCCESS.

errorObj

Instances of errorObj are created internally by MapServer as errors happen. Errors are managed as a chained list with
the first item being the most recent error. The head of the list can be fetched using ms_GetErrorObj(), and the list can
be cleared using ms_ResetErrorList()

Members

Type Name
int code //See error code constants above
string message
string routine
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Method

errorObj next()
Returns the next errorObj in the list, or NULL if we reached the end of the list.

Example

This example draws a map and reports all errors generated during the draw() call, errors can potentially come from
multiple layers.

ms_ResetErrorList();
$img = $map->draw();
$error = ms_GetErrorObj();
while($error && $error->code != MS_NOERR)
{
printf("Error in %s: %s<br>\n", $error->routine, $error->message);
$error = $error->next();

}

gridObj

Constructor

The grid is always embedded inside a layer object defined as a grid (layer->connectiontype = MS_GRATICULE) (for
more docs : https://github.com/MapServer/MapServer/wiki/MapServerGrid)

A layer can become a grid layer by adding a grid object to it using : ms_newGridObj(layerObj layer)

$oLayer = ms_newlayerobj($oMap);
$oLayer->set("name", "GRID");
ms_newgridobj($oLayer);
$oLayer->grid->set("labelformat", "DDMMSS");

Members

Type Name
string labelformat
double maxacrs
double maxinterval
double maxsubdivide
double minarcs
double mininterval
double minsubdivide
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Methods

int set(string property_name, new_value)
Set object property to a new value.

hashTableObj

Constructor

Instance of hashTableObj is always embedded inside the classObj, layerObj, mapObj and webObj. It is uses a read
only.

$hashTable = $oLayer->metadata;
$key = null;
while ($key = $hashTable->nextkey($key))
echo "Key: ".$key." value: ".$hashTable->get($key)."<br/>";

Methods

void clear()
Clear all items in the hashTable (To NULL).

string get(string key)
Fetch class metadata entry by name. Returns “” if no entry matches the name. Note that the search is case
sensitive.

string nextkey(string previousKey)
Return the next key or first key if previousKey = NULL. Return NULL if no item is in the hashTable or end of
hashTable is reached

int remove(string key)
Remove a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

int set(string key, string value)
Set a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

imageObj

Constructor

Instances of imageObj are always created by the mapObj class methods.
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Members

Type Name Note
int width read-only
int height read-only
int resolution read-only
int resolutionfactor read-only
string imagepath
string imageurl

Methods

void pasteImage(imageObj srcImg, int transparentColorHex [[, int dstX, int dstY], int angle])
Copy srcImg on top of the current imageObj. transparentColorHex is the color (in 0xrrggbb format) from srcImg
that should be considered transparent (i.e. those pixels won’t be copied). Pass -1 if you don’t want any transparent
color. If optional dstx,dsty are provided then it defines the position where the image should be copied (dstx,dsty
= top-left corner position). The optional angle is a value between 0 and 360 degrees to rotate the source image
counterclockwise. Note that if an angle is specified (even if its value is zero) then the dstx and dsty coordinates
specify the CENTER of the destination area. Note: this function works only with 8 bits GD images (PNG or
GIF).

int saveImage([string filename, MapObj oMap])
Writes image object to specified filename. Passing no filename or an empty filename sends output to stdout. In
this case, the PHP header() function should be used to set the document’s content-type prior to calling saveIm-
age(). The output format is the one that is currently selected in the map file. The second argument oMap is not
manadatory. It is usful when saving to formats like GTIFF that needs georeference information contained in the
map file. On success, it returns either MS_SUCCESS if writing to an external file, or the number of bytes written
if output is sent to stdout.

string saveWebImage()
Writes image to temp directory. Returns image URL. The output format is the one that is currently selected in
the map file.

labelcacheMemberObj

Accessible only through the mapObj (map->getLabel()).
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Members

Type Name Note
int classindex read-only
int featuresize read-only
int layerindex read-only
int markerid read-only
int numstyles read-only
int shapeindex read-only
int status read-only
string text read-only
int tileindex read-only

Method

None

labelcacheObj

Accessible only through the mapObj (map->labelcache). This object is only used to give the possibility to free the
label cache (map->labelcache->freeCache())

Methods

boolean freeCache()
Free the label cache. Always returns MS_SUCCESS. Ex : map->labelcache->freeCache();

labelObj

Constructor

labelObj are always embedded inside other classes.

new labelObj()

Members

Type Name
int align
double angle
int anglemode
int antialias
int autominfeaturesize
colorObj backgroundcolor (deprecated since 6.0)

continues on next page
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Table 2 – continued from previous page
Type Name
colorObj backgroundshadowcolor (deprecated since 6.0)
int backgroundshadowsizex (deprecated since 6.0)
int backgroundshadowsizey (deprecated since 6.0)
int buffer
colorObj color
string encoding
string font
int force
int maxlength
int maxsize
int mindistance
int minfeaturesize
int minlength
int minsize
int numstyles
int offsetx
int offsety
colorObj outlinecolor
int outlinewidth
int partials
int position
int priority
int repeatdistance
colorObj shadowcolor
int shadowsizex
int shadowsizey
int size
int wrap

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

int deleteStyle(int index)
Delete the style specified by the style index. If there are any style that follow the deleted style, their index will
decrease by 1.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

string getBinding(mixed labelbinding)
Get the attribute binding for a specified label property. Returns NULL if there is no binding for this property.

Example:

$oLabel->setbinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oLabel->getbinding(MS_LABEL_BINDING_COLOR); // FIELD_NAME_COLOR

string getExpressionString()
Returns the label expression string.
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styleObj getStyle(int index)
Return the style object using an index. index >= 0 && index < label->numstyles.

string getTextString()
Returns the label text string.

int insertStyle( styleObj style [, int index=-1 ] )
Insert a copy of style into the styles array at index index. Default is -1, or the end of the array. Returns the index
at which the style was inserted.

int moveStyleDown(int index)
The style specified by the style index will be moved down into the array of classes. Returns MS_SUCCESS or
MS_FAILURE. ex label->movestyledown(0) will have the effect of moving style 0 up to position 1, and the style
at position 1 will be moved to position 0.

int moveStyleUp(int index)
The style specified by the style index will be moved up into the array of classes. Returns MS_SUCCESS or
MS_FAILURE. ex label->movestyleup(1) will have the effect of moving style 1 up to position 0, and the style at
position 0 will be moved to position 1.

int removeBinding(mixed labelbinding)
Remove the attribute binding for a specfiled style property.

Example:

$oStyle->removebinding(MS_LABEL_BINDING_COLOR);

int set(string property_name, new_value)
Set object property to a new value.

int setBinding(mixed labelbinding, string value)
Set the attribute binding for a specified label property.

Example:

$oLabel->setbinding(MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setExpression( string expression )
Set the label expression.

int setText( string text )
Set the label text.

int updateFromString(string snippet)
Update a label from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

layerObj

Constructor

Layer Objects can be returned by the mapObj class, or can be created using:

layerObj ms_newLayerObj(MapObj map [, layerObj layer])

A second optional argument can be given to ms_newLayerObj() to create the new layer as a copy of an existing layer.
If a layer is given as argument then all members of a this layer will be copied in the new layer created.
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Members

Type Name Note
int annotate
hashTableObj bindvals
string classgroup
string classitem
clusterObj cluster
string connection
int connectiontype read-only, use setConnectionType() to set it
string data
int debug
int dump deprecated since 6.0
string filteritem
string footer
gridObj grid only available on a layer defined as grid (MS_GRATICULE)
string group
string header
int index read-only
int labelcache
string labelitem
double labelmaxscaledenom
double labelminscaledenom
string labelrequires
string mask
int maxfeatures
double maxscaledenom
hashTableObj metadata
double minscaledenom
string name
int num_processing
int numclasses read-only
colorObj offsite
int opacity
projectionObj projection
int postlabelcache
string requires
int sizeunits
int startindex
int status MS_ON, MS_OFF, MS_DEFAULT or MS_DELETE
string styleitem
double symbolscaledenom
string template
string tileindex
string tileitem
double tolerance
int toleranceunits
int transform
int type
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Methods

int addFeature(shapeObj shape)
Add a new feature in a layer. Returns MS_SUCCESS or MS_FAILURE on error.

int applySLD(string sldxml, string namedlayer)
Apply the SLD document to the layer object. The matching between the sld document and the layer will be done
using the layer’s name. If a namedlayer argument is passed (argument is optional), the NamedLayer in the sld
that matchs it will be used to style the layer. See SLD HowTo for more information on the SLD support.

int applySLDURL(string sldurl, string namedlayer)
Apply the SLD document pointed by the URL to the layer object. The matching between the sld document and
the layer will be done using the layer’s name. If a namedlayer argument is passed (argument is optional), the
NamedLayer in the sld that matchs it will be used to style the layer. See SLD HowTo for more information on the
SLD support.

void clearProcessing()
Clears all the processing strings.

void close()
Close layer previously opened with open().

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

int draw(imageObj image)
Draw a single layer, add labels to cache if required. Returns MS_SUCCESS or MS_FAILURE on error.

int drawQuery(imageObj image)
Draw query map for a single layer.

string executeWFSGetfeature()
Executes a GetFeature request on a WFS layer and returns the name of the temporary GML file created. Returns
an empty string on error.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

string generateSLD()
Returns an SLD XML string based on all the classes found in the layer (the layer must have STATUS on).

classObj getClass(int classIndex)
Returns a classObj from the layer given an index value (0=first class)

int getClassIndex(shape [, classgroup, numclasses])
Get the class index of a shape for a given scale. Returns -1 if no class matches. classgroup is an array of class
ids to check (Optional). numclasses is the number of classes that the classgroup array contains. By default, all
the layer classes will be checked.

rectObj getExtent()
Returns the layer’s data extents or NULL on error. If the layer’s EXTENT member is set then this value is used,
otherwise this call opens/closes the layer to read the extents. This is quick on shapefiles, but can be an expensive
operation on some file formats or data sources. This function is safe to use on both opened or closed layers: it is
not necessary to call open()/close() before/after calling it.

string getFilterString()
Returns the expression for this layer or NULL on error.
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array getGridIntersectionCoordinates()
Returns an array containing the grid intersection coordinates. If there are no coordinates, it returns an empty
array.

array getItems()
Returns an array containing the items. Must call open function first. If there are no items, it returns an empty
array.

int getMetaData(string name)
Fetch layer metadata entry by name. Returns “” if no entry matches the name. Note that the search is case
sensitive.

Note: getMetaData’s query is case sensitive.

int getNumResults()
Returns the number of results in the last query.

array getProcessing()
Returns an array containing the processing strings. If there are no processing strings, it returns an empty array.

string getProjection()
Returns a string representation of the projection. Returns NULL on error or if no projection is set.

resultObj getResult(int index)
Returns a resultObj by index from a layer object with index in the range 0 to numresults-1. Returns a valid object
or FALSE(0) if index is invalid.

rectObj getResultsBounds()
Returns the bounding box of the latest result.

shapeObj getShape(resultObj result])
If the resultObj passed has a valid resultindex, retrieve shapeObj from a layer’s resultset. (You get it from the
resultObj returned by getResult() for instance). Otherwise, it will do a single query on the layer to fetch the
shapeindex

$map = new mapObj("gmap75.map");
$l = $map->getLayerByName("popplace");
$l->queryByRect($map->extent);
for ($i=0; $i<$l->getNumResults();$i++){
$s = $l->getShape($l->getResult($i));
echo $s->getValue($l,"Name");
echo "\n";

}

string getWMSFeatureInfoURL(int clickX, int clickY, int featureCount, string infoFormat)
Returns a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query in
pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to return. infoFor-
mat is the format the format in which the result should be requested. Depends on remote server’s capabilities.
MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns “” and outputs a
warning if layer is not a WMS layer or if it is not queriable.

boolean isVisible()
Returns MS_TRUE/MS_FALSE depending on whether the layer is currently visible in the map (i.e. turned on,
in scale, etc.).

int moveclassdown(int index)
The class specified by the class index will be moved down into the array of layers. Returns MS_SUCCESS or

5.1. MapScript 375



MapServer Documentation, Release 7.6.6

MS_FAILURE. ex layer->moveclassdown(0) will have the effect of moving class 0 up to position 1, and the class
at position 1 will be moved to position 0.

int moveclassup(int index)
The class specified by the class index will be moved up into the array of layers. Returns MS_SUCCESS or
MS_FAILURE. ex layer->moveclassup(1) will have the effect of moving class 1 up to position 0, and the class
at position 0 will be moved to position 1.

int open()
Open the layer for use with getShape(). Returns MS_SUCCESS/MS_FAILURE.

shapeObj nextShape()
Called after msWhichShapes has been called to actually retrieve shapes within a given area. Returns a shape
object or NULL on error.

$map = ms_newmapobj("d:/msapps/gmap-ms40/htdocs/gmap75.map");
$layer = $map->getLayerByName('road');
$status = $layer->open();
$status = $layer->whichShapes($map->extent);
while ($shape = $layer->nextShape())
{
echo $shape->index ."<br>\n";

}
$layer->close();

int queryByAttributes(string qitem, string qstring, int mode)
Query layer for shapes that intersect current map extents. qitem is the item (attribute) on which the query is
performed, and qstring is the expression to match. The query is performed on all the shapes that are part of a
CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value. Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened (note that the error message in case nothing
was found can be avoided in PHP using the ‘@’ control operator).

int queryByFeatures(int slayer)
Perform a query set based on a previous set of results from another layer. At present the results MUST be based
on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if
some other error happened (note that the error message in case nothing was found can be avoided in PHP using
the ‘@’ control operator).

int queryByPoint(pointObj point, int mode, double buffer)
Query layer at point location specified in georeferenced map coordinates (i.e. not pixels). The query is performed
on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match any class in a layer
that contains a LAYER TEMPLATE value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of
results you want. Passing buffer -1 defaults to tolerances set in the map file (in pixels) but you can use a constant
buffer (specified in ground units) instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if
nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByRect(rectObj rect)
Query layer using a rectangle specified in georeferenced map coordinates (i.e. not pixels). The query is performed
on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match any class in a layer
that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes were found or MS_FAILURE if
nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape)
Query layer based on a single shape, the shape has to be a polygon at this point. Returns MS_SUCCESS if shapes
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were found or MS_FAILURE if nothing was found or if some other error happened (note that the error message
in case nothing was found can be avoided in PHP using the ‘@’ control operator).

classObj removeClass(int index)
Removes the class indicated and returns a copy, or NULL in the case of a failure. Note that subsequent classes
will be renumbered by this operation. The numclasses field contains the number of classes available.

int removeMetaData(string name)
Remove a metadata entry for the layer. Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value)
Set object property to a new value.

int setConnectionType(int connectiontype [,string plugin_library])
Changes the connectiontype of the layer and recreates the vtable according to the new connection type.
This method should be used instead of setting the connectiontype parameter directly. In the case when the
layer.connectiontype = MS_PLUGIN the plugin_library parameter should also be specified so as to select the
library to load by MapServer. For the other connection types this parameter is not used.

int setFilter(string expression)
Set layer filter expression.

int setMetaData(string name, string value)
Set a metadata entry for the layer. Returns MS_SUCCESS/MS_FAILURE.

int setProcessing(string)
Add the string to the processing string list for the layer. The layer->num_processing is incremented by 1. Returns
MS_SUCCESS or MS_FAILURE on error.

$oLayer->setprocessing("SCALE_1=AUTO");
$oLayer->setprocessing("SCALE_2=AUTO");

int setProjection(string proj_params)
Set layer projection and coordinate system. Parameters are given as a single string of comma-delimited PROJ.4
parameters. Returns MS_SUCCESS or MS_FAILURE on error.

int setWKTProjection(string proj_params)
Same as setProjection(), but takes an OGC WKT projection definition string as input.

Note: setWKTProjection requires GDAL support

int updateFromString(string snippet)
Update a layer from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

/*modify the name */
$oLayer->updateFromString('LAYER NAME land_fn2 END');
/*add a new class*/
$oLayer->updateFromString('LAYER CLASS STYLE COLOR 255 255 0 END END END');

int whichshapes(rectobj)
Performs a spatial, and optionally an attribute based feature search. The function basically prepares things so
that candidate features can be accessed by query or drawing functions (eg using nextshape function). Returns
MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the layer extent does not overlap the
rectObj.
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legendObj

Constructor

Instances of legendObj are always are always embedded inside the mapObj.

Members

Type Name Note
int height
colorObj imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelObj label
colorObj outlinecolor Color of outline of box, -1 for no outline
int position for embedded legends, MS_UL, MS_UC, . . .
int postlabelcache MS_TRUE, MS_FALSE
int status MS_ON, MS_OFF, MS_EMBED
string template
int width

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

int set(string property_name, new_value)
Set object property to a new value.

int updateFromString(string snippet)
Update a legend from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

lineObj

Constructor

new lineObj()

or using the old constructor

LineObj ms_newLineObj()
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Members

Type Name Note
int numpoints read-only

Methods

int add(pointObj point)
Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

int addXY(double x, double y [, double m])
Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int addXYZ(double x, double y, double z [, double m])
Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

PointObj point(int i)
Returns a reference to point number i.

int project(projectionObj in, projectionObj out)
Project the line from “in” projection (1st argument) to “out” projection (2nd argument). Returns
MS_SUCCESS/MS_FAILURE.

mapObj

Constructor

new mapObj(string map_file_name [, string new_map_path])

or using the old constructors

mapObj ms_newMapObj(string map_file_name [, string new_map_path])
Returns a new object to deal with a MapServer map file.

mapObj ms_newMapObjFromString(string map_file_string [, string new_map_path])
Construct a new mapObj from a mapfile string. Returns a new object to deal with a MapServer map file.

Note: By default, the SYMBOLSET, FONTSET, and other paths in the mapfile are relative to the mapfile location. If
new_map_path is provided then this directory will be used as the base path for all the rewlative paths inside the mapfile.
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Members

Type Name Note
double cellsize
int debug
double defresolution pixels per inch, defaults to 72
rectObj extent;
string fontsetfilename read-only, set by setFontSet()
int height see setSize()
colorObj imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelcacheObj labelcache no members. Used only to free the label cache (map->labelcache->free()
legendObj legend
string mappath
int maxsize
hashTableObj metadata
string name
int numlayers read-only
outputformatObj outputformat
int numoutputformats read-only
projectionObj projection
querymapObj querymap
referenceMapObj reference
double resolution pixels per inch, defaults to 72
scalebarObj scalebar
double scaledenom read-only, set by drawMap()
string shapepath
int status
string symbolsetfilename read-only, set by setSymbolSet()
int units map units type
webObj web
int width see setSize()

Methods

int applyconfigoptions()
Applies the config options set in the map file. For example setting the PROJ_LIB using the setconfigoption only
modifies the value in the map object. applyconfigoptions will actually change the PROJ_LIB value that will be
used when dealing with projection.

int applySLD(string sldxml)
Apply the SLD document to the map file. The matching between the sld document and the map file will be done
using the layer’s name. See SLD HowTo for more information on the SLD support.

int applySLDURL(string sldurl)
Apply the SLD document pointed by the URL to the map file. The matching between the sld document and the
map file will be done using the layer’s name. See SLD HowTo for more information on the SLD support.

string convertToString()
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Added in version 6.4.

Saves the object to a string.

Note: The inverse method updateFromString does not exist for the mapObj

imageObj draw()
Render map and return an image object or NULL on error.

int drawLabelCache(imageObj image)
Renders the labels for a map. Returns MS_SUCCESS or MS_FAILURE on error.

imageObj drawLegend()
Render legend and return an image object.

imageObj drawQuery()
Render a query map and return an image object or NULL on error.

imageObj drawReferenceMap()
Render reference map and return an image object.

imageObj drawScaleBar()
Render scale bar and return an image object.

int embedLegend(imageObj image)
embeds a legend. Actually the legend is just added to the label cache so you must invoke drawLabelCache() to ac-
tually do the rendering (unless postlabelcache is set in which case it is drawn right away). Returns MS_SUCCESS
or MS_FAILURE on error.

int embedScalebar(imageObj image)
embeds a scalebar. Actually the scalebar is just added to the label cache so you must invoke drawLabel-
Cache() to actually do the rendering (unless postlabelcache is set in which case it is drawn right away). Returns
MS_SUCCESS or MS_FAILURE on error.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

void freeQuery(layerindex)
Frees the query result on a specified layer. If the layerindex is -1, all queries on layers will be freed.

string generateSLD()
Returns an SLD XML string based on all the classes found in all the layers that have STATUS on.

array getAllGroupNames()
Return an array containing all the group names used in the layers. If there are no groups, it returns an empty
array.

array getAllLayerNames()
Return an array containing all the layer names. If there are no layers, it returns an empty array.

colorObj getColorbyIndex(int iCloIndex)
Returns a colorObj corresponding to the color index in the palette.

string getConfigOption(string key)
Returns the config value associated with the key. Returns an empty sting if key not found.

labelcacheMemberObj getLabel(int index)
Returns a labelcacheMemberObj from the map given an index value (0=first label). Labelcache has to be enabled.
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while ($oLabelCacheMember = $oMap->getLabel($i)) {
/* do something with the labelcachemember */
++$i;

}

layerObj getLayer(int index)
Returns a layerObj from the map given an index value (0=first layer)

layerObj getLayerByName(string layer_name)
Returns a layerObj from the map given a layer name. Returns NULL if layer doesn’t exist.

array getLayersDrawingOrder()
Return an array containing layer’s index in the order which they are drawn. If there are no layers, it returns an
empty array.

array getLayersIndexByGroup(string groupname)
Return an array containing all the layer’s indexes given a group name. If there are no layers, it returns an empty
array.

int getMetaData(string name)
Fetch metadata entry by name (stored in the WEB object in the map file). Returns “” if no entry matches the
name.

Note: getMetaData’s query is case sensitive.

int getNumSymbols()
Return the number of symbols in map.

string getProjection()
Returns a string representation of the projection. Returns NULL on error or if no projection is set.

int getSymbolByName(string symbol_name)
Returns the symbol index using the name.

symbolObj getSymbolObjectById(int symbolid)
Returns the symbol object using a symbol id. Refer to the symbol object reference section for more details.

int insertLayer( layerObj layer [, int nIndex=-1 ] )
Insert a copy of layer into the Map at index nIndex. The default value of nIndex is -1, which means the last
possible index. Returns the index of the new Layer, or -1 in the case of a failure.

int loadMapContext(string filename [, boolean unique_layer_name])
Available only if WMS support is enabled. Load a WMS Map Context XML file into the current mapObj. If the
map already contains some layers then the layers defined in the WMS Map context document are added to the
current map. The 2nd argument unique_layer_name is optional and if set to MS_TRUE layers created will have
a unique name (unique prefix added to the name). If set to MS_FALSE the layer name will be the the same name
as in the context. The default value is MS_FALSE. Returns MS_SUCCESS/MS_FAILURE.

int loadOWSParameters(OwsrequestObj request, string version)
Load OWS request parameters (BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE.
2nd argument version is not mandatory. If not given, the version will be set to 1.1.1

int loadQuery(filename)
Loads a query from a file. Returns MS_SUCCESS or MS_FAILURE. To be used with savequery.

int moveLayerDown(int layerindex)
Move layer down in the hierarchy of drawing. Returns MS_SUCCESS or MS_FAILURE on error.
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int moveLayerUp(int layerindex)
Move layer up in the hierarchy of drawing. Returns MS_SUCCESS or MS_FAILURE on error.

int offsetExtent(double x, double y)
Offset the map extent based on the given distances in map coordinates. Returns MS_SUCCESS or
MS_FAILURE.

int owsDispatch(OwsrequestObj request)
Processes and executes the passed OpenGIS Web Services request on the map. Returns MS_DONE (2) if there
is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS request was successfully processed
and MS_FAILURE (1) if an OWS request was not successfully processed. OWS requests include WMS, WFS,
WCS and SOS requests supported by MapServer. Results of a dispatched request are written to stdout and can
be captured using the msIO services (ie. ms_ioinstallstdouttobuffer() and ms_iogetstdoutbufferstring())

imageObj prepareImage()
Return a blank image object.

void prepareQuery()
Calculate the scale of the map and set map->scaledenom.

string processLegendTemplate(array params)
Process legend template files and return the result in a buffer.

See also:
processtemplate

string processQueryTemplate(array params, boolean generateimages)
Process query template files and return the result in a buffer. Second argument generateimages is not mandatory.
If not given it will be set to TRUE.

See also:
processtemplate

string processTemplate(array params, boolean generateimages)
Process the template file specified in the web object and return the result in a buffer. The processing consists of
opening the template file and replace all the tags found in it. Only tags that have an equivalent element in the
map object are replaced (ex [scaledenom]). The are two exceptions to the previous statement :

• [img], [scalebar], [ref], [legend] would be replaced with the appropriate url if the parameter generateimages
is set to MS_TRUE. (Note : the images corresponding to the different objects are generated if the object is
set to MS_ON in the map file)

• the user can use the params parameter to specify tags and their values. For example if the user have a
specific tag call [my_tag] and would like it to be replaced by “value_of_my_tag” he would do

$tmparray["my_tag"] = "value_of_my_tag";
$map->processtemplate($tmparray, MS_FALSE);

int queryByFeatures(int slayer)
Perform a query based on a previous set of results from a layer. At present the results MUST be based on a
polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some
other error happened (note that the error message in case nothing was found can be avoided in PHP using the
‘@’ control operator).

int queryByIndex(layerindex, tileindex, shapeindex[, addtoquery])
Add a specific shape on a given layer to the query result. If addtoquery (which is a non mandatory argument) is
set to MS_TRUE, the shape will be added to the existing query list. Default behavior is to free the existing query
list and add only the new shape.
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int queryByPoint(pointObj point, int mode, double buffer)
Query all selected layers in map at point location specified in georeferenced map coordinates (i.e. not pixels). The
query is performed on all the shapes that are part of a CLASS that contains a Templating value or that match any
class in a layer that contains a LAYER TEMPLATE value. Mode is MS_SINGLE or MS_MULTIPLE depending
on number of results you want. Passing buffer -1 defaults to tolerances set in the map file (in pixels) but you
can use a constant buffer (specified in ground units) instead. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened (note that the error message in case nothing
was found can be avoided in PHP using the ‘@’ control operator).

int queryByRect(rectObj rect)
Query all selected layers in map using a rectangle specified in georeferenced map coordinates (i.e. not pixels).
The query is performed on all the shapes that are part of a CLASS that contains a Templating value or that match
any class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes were found or
MS_FAILURE if nothing was found or if some other error happened (note that the error message in case nothing
was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape)
Query all selected layers in map based on a single shape, the shape has to be a polygon at this point. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened
(note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control operator).

layerObj removeLayer( int nIndex )
Remove a layer from the mapObj. The argument is the index of the layer to be removed. Returns the removed
layerObj on success, else null.

int removeMetaData(string name)
Remove a metadata entry for the map (stored in the WEB object in the map file). Returns
MS_SUCCESS/MS_FAILURE.

int save(string filename)
Save current map object state to a file. Returns -1 on error. Use absolute path. If a relative path is used, then it
will be relative to the mapfile location.

int saveMapContext(string filename)
Available only if WMS support is enabled. Save current map object state in WMS Map Context format. Only
WMS layers are saved in the WMS Map Context XML file. Returns MS_SUCCESS/MS_FAILURE.

int saveQuery(string filename[, int results])
Save the current query in a file. Results determines the save format - MS_TRUE (or 1/true) saves the query
results (tile index and shape index), MS_FALSE (or 0/false) the query parameters (and the query will be re-run
in loadquery). Returns MS_SUCCESS or MS_FAILURE. Either save format can be used with loadquery. See
RFC 65 and ticket #3647 for details of different save formats.

int scaleExtent(double zoomfactor, double minscaledenom, double maxscaledenom)
Scale the map extent using the zoomfactor and ensure the extent within the minscaledenom and maxscaledenom
domain. If minscaledenom and/or maxscaledenom is 0 then the parameter is not taken into account. Returns
MS_SUCCESS or MS_FAILURE.

int selectOutputFormat(string type)
Selects the output format to be used in the map. Returns MS_SUCCESS/MS_FAILURE.

Note: the type used should correspond to one of the output formats declared in the map file. The type argument
passed is compared with the mimetype parameter in the output format structure and then to the name parameter
in the structure.

int appendOutputFormat(outputFormatObj outputFormat)
Appends outputformat object in the map object. Returns the new numoutputformats value.
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int removeOutputFormat(string name)
Remove outputformat from the map. Returns MS_SUCCESS/MS_FAILURE.

outputFormatObj getOutputFormat(int index)
Returns the outputformat at index position.

int set(string property_name, new_value)
Set map object property to new value.

int setCenter(pointObj center)
Set the map center to the given map point. Returns MS_SUCCESS or MS_FAILURE.

int setConfigOption(string key, string value)
Sets a config parameter using the key and the value passed

void setExtent(double minx, double miny, double maxx, double maxy)
Set the map extents using the georef extents passed in argument. Returns MS_SUCCESS or MS_FAILURE on
error.

int setFontSet(string fileName)
Load and set a new FONTSET .

boolean setLayersDrawingOrder(array layeryindex)
Set the layer’s order array. The argument passed must be a valid array with all the layer’s index. Returns
MS_SUCCESS or MS_FAILURE on error.

int setMetaData(string name, string value)
Set a metadata entry for the map (stored in the WEB object in the map file). Returns
MS_SUCCESS/MS_FAILURE.

int setProjection(string proj_params, boolean bSetUnitsAndExtents)
Set map projection and coordinate system. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are given as a single string of comma-delimited PROJ.4 parameters. The argument : bSetUnit-
sAndExtents is used to automatically update the map units and extents based on the new projection. Possible
values are MS_TRUE and MS_FALSE. By default it is set at MS_FALSE.

int setRotation(double rotation_angle)
Set map rotation angle. The map view rectangle (specified in EXTENTS) will be rotated by the indicated angle
in the counter- clockwise direction. Note that this implies the rendered map will be rotated by the angle in the
clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

int setSize(int width, int height)
Set the map width and height. This method updates the internal geotransform and other data structures re-
quired for map rotation so it should be used instead of setting the width and height members directly. Returns
MS_SUCCESS or MS_FAILURE.

int setSymbolSet(string fileName)
Load and set a symbol file dynamically.

int setWKTProjection(string proj_params, boolean bSetUnitsAndExtents)
Same as setProjection(), but takes an OGC WKT projection definition string as input. Returns MS_SUCCESS
or MS_FAILURE on error.

Note: setWKTProjection requires GDAL support

int zoomPoint(int nZoomFactor, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj
oGeorefExt)

Zoom to a given XY position. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are
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• Zoom factor : positive values do zoom in, negative values zoom out. Factor of 1 will recenter.

• Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

• MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossible to
zoom/pan outside of those extents.

int zoomRectangle(rectObj oPixelExt, int nImageWidth, int nImageHeight, rectObj oGeorefExt)
Set the map extents to a given extents. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are :

• oPixelExt (rect object) : Pixel Extents

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

int zoomScale(double nScaleDenom, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj
oGeorefExt [, rectObj oMaxGeorefExt])

Zoom in or out to a given XY position so that the map is displayed at specified scale. Returns MS_SUCCESS
or MS_FAILURE on error.

Parameters are :

• ScaleDenom : Scale denominator of the scale at which the map should be displayed.

• Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left

• Width : width in pixel of the current image.

• Height : Height in pixel of the current image.

• Georef extent (rectObj) : current georef extents.

• MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossible to
zoom/pan outside of those extents.

outputformatObj

Constructor

Instance of outputformatObj is always embedded inside the mapObj. It is uses a read only.

No constructor available (coming soon, see ticket 979)
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Members

Type Name Note
string driver
string extension
int imagemode MS_IMAGEMODE_* value.
string mimetype
string name
int renderer
int transparent

Methods

string getOption(string property_name)
Returns the associated value for the format option property passed as argument. Returns an empty string if
property not found.

int set(string property_name, new_value)
Set object property to a new value.

void setOption(string property_name, string new_value)
Add or Modify the format option list. return true on success.

$oMap->outputformat->setOption("OUTPUT_TYPE", "RASTER");

int validate()
Checks some internal consistency issues, Returns MS_SUCCESS or MS_FAILURE. Some problems are fixed
up internally. May produce debug output if issues encountered.

OwsrequestObj

Constructor

new OWSRequestObj()

or using the old constructor

request = ms_newOwsrequestObj();

Create a new ows request object.
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Members

Type Name
int numparams (read-only)
int type (read-only): MS_GET_REQUEST or MS_POST_REQUEST

Methods

int addParameter(string name, string value)
Add a request parameter, even if the parameter key was previousely set. This is useful when multiple parameters
with the same key are required. For example :

$request->addparameter('SIZE', 'x(100)');
$request->addparameter('SIZE', 'y(100)');

string getName(int index)
Return the name of the parameter at index in the request’s array of parameter names.

string getValue(int index)
Return the value of the parameter at index in the request’s array of parameter values.

string getValueByName(string name)
Return the value associated with the parameter name.

int loadParams()
Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected.

int setParameter(string name, string value)
Set a request parameter. For example :

$request->setparameter('REQUEST', 'GetMap');

pointObj

Constructor

new pointObj()

or using the old constructor

PointObj ms_newPointObj()
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Members

Type Name Note
double x
double y
double z used for 3d shape files. set to 0 for other types
double m used only for measured shape files - set to 0 for other types

Methods

double distanceToLine(pointObj p1, pointObj p2)
Calculates distance between a point ad a lined defined by the two points passed in argument.

double distanceToPoint(pointObj poPoint)
Calculates distance between two points.

double distanceToShape(shapeObj shape)
Calculates the minimum distance between a point and a shape.

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text])
Draws the individual point using layer. The class_index is used to classify the point based on the classes defined
for the layer. The text string is used to annotate the point. (Optional) Returns MS_SUCCESS/MS_FAILURE.

int project(projectionObj in, projectionObj out)
Project the point from “in” projection (1st argument) to “out” projection (2nd argument). Returns
MS_SUCCESS/MS_FAILURE.

int setXY(double x, double y [, double m])
Set X,Y coordinate values.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int setXYZ(double x, double y, double z [, double m])
Set X,Y,Z coordinate values.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

projectionObj

Constructor

new projectionObj(string projectionString)

or using the old constructor

ProjectionObj ms_newProjectionObj(string projectionString)

Creates a projection object based on the projection string passed as argument.
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$projInObj = ms_newprojectionobj("proj=latlong")

will create a geographic projection class.

The following example will convert a lat/long point to an LCC projection:

$projInObj = ms_newprojectionobj("proj=latlong");
$projOutObj = ms_newprojectionobj("proj=lcc,ellps=GRS80,lat_0=49,".

"lon_0=-95,lat_1=49,lat_2=77");
$poPoint = ms_newpointobj();
$poPoint->setXY(-92.0, 62.0);
$poPoint->project($projInObj, $projOutObj);

Methods

int getUnits()
Returns the units of a projection object. Returns -1 on error.

querymapObj

Constructor

Instances of querymapObj are always are always embedded inside the mapObj.

Members

Type Name Note
colorObj color
int height
int width
int style MS_NORMAL, MS_HILITE, MS_SELECTED

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

int set(string property_name, new_value)
Set object property to a new value.

int updateFromString(string snippet)
Update a queryMap object from a string snippet. Returns MS_SUCCESS/MS_FAILURE.
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rectObj

Constructor

rectObj are sometimes embedded inside other objects. New ones can also be created with:

new rectObj()

or using the old constructor

RectObj ms_newRectObj()

Note: the members (minx, miny, maxx ,maxy) are initialized to -1;

Members

Type Name
double minx
double miny
double maxx
double maxy

Methods

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text])
Draws the individual rectangle using layer. The class_index is used to classify the rectangle based on
the classes defined for the layer. The text string is used to annotate the rectangle. (Optional) Returns
MS_SUCCESS/MS_FAILURE.

double fit(int width, int height)
Adjust extents of the rectangle to fit the width/height specified.

int project(projectionObj in, projectionObj out)
Project the rectangle from “in” projection (1st argument) to “out” projection (2nd argument). Returns
MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value)
Set object property to a new value.

void setextent(double minx, double miny, double maxx, double maxy)
Set the rectangle extents.
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referenceMapObj

Constructor

Instances of referenceMapObj are always embedded inside the mapObj.

Members

Type Name
ColorObj color
int height
rectObj extent
string image
int marker
string markername
int markersize
int maxboxsize
int minboxsize
ColorObj outlinecolor
int status
int width

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

int set(string property_name, new_value)
Set object property to a new value.

int updateFromString(string snippet)
Update a referenceMap object from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

resultObj

Constructor

new resultObj(int shapeindex)

or using the layerObj’s getResult() method.
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Members

Type Name Note
int classindex read-only
int resultindex read-only
int shapeindex read-only
int tileindex read-only

Method

None

scalebarObj

Constructor

Instances of scalebarObj are always embedded inside the mapObj.

Members

Type Name Note
int align
colorObj backgroundcolor
colorObj color
int height
colorObj imagecolor
int intervals
labelObj label
colorObj outlinecolor
int position for embedded scalebars, MS_UL, MS_UC, . . .
int postlabelcache
int status MS_ON, MS_OFF, MS_EMBED
int style
int units
int width

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

int set(string property_name, new_value)
Set object property to a new value.
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int setImageColor(int red, int green, int blue)
Sets the imagecolor property (baclground) of the object. Returns MS_SUCCESS or MS_FAILURE on error.

int updateFromString(string snippet)
Update a scalebar from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

shapefileObj

Constructor

new shapeFileObj(string filename, int type)

or using the old constructor

shapefileObj ms_newShapefileObj(string filename, int type)

Opens a shapefile and returns a new object to deal with it. Filename should be passed with no extension. To create a new
file (or overwrite an existing one), type should be one of MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON or
MS_SHP_MULTIPOINT. Pass type as -1 to open an existing file for read-only access, and type=-2 to open an existing
file for update (append).

Members

Type Name Note
rectObj bounds read-only
int numshapes read-only
string source read-only
int type read-only

Methods

int addPoint(pointObj point)
Appends a point to an open shapefile.

int addShape(shapeObj shape)
Appends a shape to an open shapefile.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

Note: The shape file is closed (and changes committed) when the object is destroyed. You can explicitly close
and save the changes by calling $shapefile->free(); unset($shapefile), which will also free the php object.

rectObj getExtent(int i)
Retrieve a shape’s bounding box by index.

shapeObj getPoint(int i)
Retrieve point by index.
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shapeObj getShape(int i)
Retrieve shape by index.

shapeObj getTransformed(mapObj map, int i)
Retrieve shape by index.

shapeObj

Constructor

new shapeObj(int type)

or using the old constructor

ShapeObj ms_newShapeObj(int type)

‘type’ is one of MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON or MS_SHAPE_NULL

ShapeObj ms_shapeObjFromWkt(string wkt)

Creates new shape object from WKT string.

Members

Type Name Note
rectObj bounds read-only
int classindex
int index
int numlines read-only
int numvalues read-only
int tileindex read-only
string text
int type read-only
array values read-only

The values array is an associative array with the attribute values for this shape. It is set only on shapes obtained from
layer->getShape(). The key to the values in the array is the attribute name, e.g.

$population = $shape->values["Population"];

Methods

int add(lineObj line)
Add a line (i.e. a part) to the shape.

shapeObj boundary()
Returns the boundary of the shape. Only available if php/mapscript is built with GEOS library.
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shapeObj buffer(width)
Returns a new buffered shapeObj based on the supplied distance (given in the coordinates of the existing
shapeObj). Only available if php/mapscript is built with GEOS library.

int containsShape(shapeObj shape2)
Returns true if shape2 passed as argument is entirely within the shape. Else return false. Only available if
php/mapscript is built with GEOS library.

shapeObj convexhull()
Returns a shape object representing the convex hull of shape. Only available if php/mapscript is built with GEOS
library.

boolean contains(pointObj point)
Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

int crosses(shapeObj shape)
Returns true if the shape passed as argument crosses the shape. Else return false. Only available if php/mapscript
is built with GEOS library.

shapeObj difference(shapeObj shape)
Returns a shape object representing the difference of the shape object with the one passed as parameter. Only
available if php/mapscript is built with GEOS library.

int disjoint(shapeObj shape)
Returns true if the shape passed as argument is disjoint to the shape. Else return false. Only available if
php/mapscript is built with GEOS library.

int draw(mapObj map, layerObj layer, imageObj img)
Draws the individual shape using layer. Returns MS_SUCCESS/MS_FAILURE.

int equals(shapeObj shape)
Returns true if the shape passed as argument is equal to the shape (geometry only). Else return false. Only
available if php/mapscript is built with GEOS library.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

double getArea()
Returns the area of the shape (if applicable). Only available if php/mapscript is built with GEOS library.

pointObj getCentroid()
Returns a point object representing the centroid of the shape. Only available if php/mapscript is built with GEOS
library.

pointObj getLabelPoint()
Returns a point object with coordinates suitable for labelling the shape.

double getLength()
Returns the length (or perimeter) of the shape. Only available if php/mapscript is built with GEOS library.

pointObj getMeasureUsingPoint(pointObj point)
Apply only on Measured shape files. Given an XY Location, find the nearest point on the shape object. Return
a point object of this point with the m value set.

pointObj getPointUsingMeasure(double m)
Apply only on Measured shape files. Given a measure m, retun the corresponding XY location on the shapeobject.

string getValue(layerObj layer, string filedname)
Returns the value for a given field name.
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shapeObj intersection(shapeObj shape)
Returns a shape object representing the intersection of the shape object with the one passed as parameter. Only
available if php/mapscript is built with GEOS library.

boolean intersects(shapeObj shape)
Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

LineObj line(int i)
Returns a reference to line number i.

int overlaps(shapeObj shape)
Returns true if the shape passed as argument overlaps the shape. Else returns false. Only available if
php/mapscript is built with GEOS library.

int project(projectionObj in, projectionObj out)
Project the shape from “in” projection (1st argument) to “out” projection (2nd argument). Returns
MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value)
Set object property to a new value.

int setBounds()
Updates the bounds property of the shape. Must be called to calculate new bounding box after new parts have
been added.

shapeObj simplify(double tolerance)
Given a tolerance, returns a simplified shape object or NULL on error. Only available if php/mapscript is built
with GEOS library (>=3.0).

shapeObj symdifference(shapeObj shape)
Returns the computed symmetric difference of the supplied and existing shape. Only available if php/mapscript
is built with GEOS library.

shapeObj topologyPreservingSimplify(double tolerance)
Given a tolerance, returns a simplified shape object or NULL on error. Only available if php/mapscript is built
with GEOS library (>=3.0).

int touches(shapeObj shape)
Returns true if the shape passed as argument touches the shape. Else return false. Only available if php/mapscript
is built with GEOS library.

string toWkt()
Returns WKT representation of the shape’s geometry.

shapeObj union(shapeObj shape)
Returns a shape object representing the union of the shape object with the one passed as parameter. Only available
if php/mapscript is built with GEOS library

int within(shapeObj shape2)
Returns true if the shape is entirely within the shape2 passed as argument. Else returns false. Only available if
php/mapscript is built with GEOS library.
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styleObj

Constructor

Instances of styleObj are always embedded inside a classObj or labelObj.

new styleObj(classObj class [, styleObj style])
// or
new styleObj(labelObj label [, styleObj style])

or using the old constructor (do not support a labelObj at first argument)

styleObj ms_newStyleObj(classObj class [, styleObj style])

The second argument ‘style’ is optional. If given, the new style created will be a copy of the style passed as argument.

Members

Type Name Note
double angle
int antialias
colorObj backgroundcolor
colorObj color
double maxsize
double maxvalue
double maxwidth
double minsize
double minvalue
double minwidth
int offsetx
int offsety
int opacity only supported for the AGG driver
colorObj outlinecolor
string rangeitem
double size
int symbol
string symbolname
double width

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

string getBinding(mixed stylebinding)
Get the attribute binding for a specfiled style property. Returns NULL if there is no binding for this property.
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$oStyle->setbinding(MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oStyle->getbinding(MS_STYLE_BINDING_COLOR); // FIELD_NAME_COLOR

string getGeomTransform()

int removeBinding(mixed stylebinding)
Remove the attribute binding for a specfiled style property. Added in MapServer 5.0.

$oStyle->removebinding(MS_STYLE_BINDING_COLOR);

int set(string property_name, new_value)
Set object property to a new value.

int setBinding(mixed stylebinding, string value)
Set the attribute binding for a specfiled style property. Added in MapServer 5.0.

$oStyle->setbinding(MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setGeomTransform(string value)

int updateFromString(string snippet)
Update a style from a string snippet. Returns MS_SUCCESS/MS_FAILURE.

symbolObj

Constructor

new symbolObj(mapObj map, string symbolname)

or using the old constructor

int ms_newSymbolObj(mapObj map, string symbolname)

Creates a new symbol with default values in the symbolist.

Note: Using the new constructor, the symbol is automatically returned. The old constructor returns the id of the new
symbol.

If a symbol with the same name exists, it (or its id) will be returned. To get a symbol object using the old constructor,
you need to use a method on the map object:

$nId = ms_newSymbolObj($map, "symbol-test");
$oSymbol = $map->getSymbolObjectById($nId);
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Members

Type Name Note
int antialias
string character
int filled
string font
string imagepath read-only
int inmapfile If set to TRUE, the symbol will be saved inside the mapfile.
int patternlength read-only
int position
string name
int numpoints read-only
double sizex
double sizey
int transparent
int transparentcolor

Methods

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

array getPatternArray()
Returns an array containing the pattern. If there is no pattern, it returns an empty array.

array getPointsArray()
Returns an array containing the points of the symbol. Refer to setpoints to see how the array should be interpreted.
If there are no points, it returns an empty array.

int set(string property_name, new_value)
Set object property to a new value.

int setImagePath(string filename)
Loads a pixmap symbol specified by the filename. The file should be of either Gif or Png format.

int setPattern(array int)
Set the pattern of the symbol (used for dash patterns). Returns MS_SUCCESS/MS_FAILURE.

int setPoints(array double)
Set the points of the symbol. Note that the values passed is an array containing the x and y values of the points.
Returns MS_SUCCESS/MS_FAILURE. Example:

$array[0] = 1 # x value of the first point
$array[1] = 0 # y values of the first point
$array[2] = 1 # x value of the 2nd point
....
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Example of usage

1) create a symbol to be used as a dash line

$nId = ms_newsymbolobj($gpoMap, "mydash");
$oSymbol = $gpoMap->getsymbolobjectbyid($nId);
$oSymbol->set("filled", MS_TRUE);
$oSymbol->set("sizex", 1);
$oSymbol->set("sizey", 1);
$oSymbol->set("inmapfile", MS_TRUE);

$aPoints[0] = 1;
$aPoints[1] = 1;
$oSymbol->setpoints($aPoints);

$aPattern[0] = 10;
$aPattern[1] = 5;
$aPattern[2] = 5;
$aPattern[3] = 10;
$oSymbol->setpattern($aPattern);

$style->set("symbolname", "mydash");

2) Create a TrueType symbol

$nId = ms_newSymbolObj($gpoMap, "ttfSymbol");
$oSymbol = $gpoMap->getSymbolObjectById($nId);
$oSymbol->set("type", MS_SYMBOL_TRUETYPE);
$oSymbol->set("filled", true);
$oSymbol->set("character", "&#68;");

$oSymbol->set("font", "ttfFontName");

webObj

Constructor

Instances of webObj are always are always embedded inside the mapObj.
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Members

Type Name Note
string browseformat
string empty read-only
string error read-only
rectObj extent read-only
string footer
string header
string imagepath
string imageurl
string legendformat
string log
double maxscaledenom
string maxtemplate
hashTableObj metadata
double minscaledenom
string mintemplate
string queryformat
string template
string temppath

Methods

string convertToString()
Saves the object to a string. Provides the inverse option for updateFromString.

void free()
Free the object properties and break the internal references. Note that you have to unset the php variable to free
totally the resources.

int set(string property_name, new_value)
Set object property to a new value.

int updateFromString(string snippet)
Update a web object from a string snippet. Returns MS_SUCCESS/MS_FAILURE.
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Introduction

This document describes the changes that must be made to PHP MapScript applications when migrating from one
MapServer version to another (i.e. backwards incompatibilities), as well as information on some of the new features.

Migrating to 7.4’s new SWIG API and PHP 7

As of the MapServer 7.4.0 release, users are recommended to switch to MapServer’s new SWIG API support of PHP
7+ (reason for recommendation: as we saw with the breaking PHP 7 changes, managing PHP through SWIG will be
easier on the MapServer maintainers in the long run). Some important SWIG notes:

• you will require at least SWIG-3.0.11 (but 4.0.0 is recommended).

• if you notice any missing functions that were available in the old native PHP MapScript API, first please check
the SWIG API reference document for an alternative function to use, and if there is nothing similar available then
file a ticket for each function that you require.

• all of your PHP scripts (that leverage MapServer objects and functions) must now always first include the gener-
ated mapscript.php file containing MapServer constants:

// required SWIG include (contains MapServer constants for PHP7)
include("C:/ms4w/apps/phpmapscriptng-swig/include/mapscript.php");

• take note of the change in how to declare your new objects:
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// open map
$oMap = new mapObj("C:/ms4w/apps/phpmapscriptng-swig/sample.map");

instead of the former way:

// open map
$oMap = ms_newMapObj("C:/ms4w/apps/phpmapscript/sample.map");

Migrating 5.6 to 6.0

PHP Version Required

PHP 5.2.0 or more recent is required. The support for earlier versions has been dropped.

Error Reporting

PHP MapScript now uses exceptions for error reports. All errors are catchable. There are no more fatal errors reported
via the standard uncatchable PHP system (Only Warnings).

Manipulating Objects

• Object properties can be set like all other PHP objects.

$map->scaledenom = 25000;

Note: The set/setProperty methods are still available.

• Objects can be created with the PHP “new” operator.

$myShape = ms_newShapeObj(MS_SHAPE_LINE); // or
$myShape = new shapeObj(MS_SHAPE_LINE);

Note: All object constructors throw an exception on failure.

Note: ms_newSymbolObj() and new symbolObj() are different

• ms_newSymbolObj() returns the id of the new/existing symbol.

• new symbolObj() returns the symbolObj. You don’t need to get it with getSymbolObjectById().

• Cloneable objects should be cloned with the PHP clone keyword. There is no more clone methods.
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Class Properties

Class properties that have been removed:

• classObj: maxscale, minscale

• layerObj: labelsizeitem, labelangleitem, labelmaxscale, labelminscale, maxscale, minscale, symbolscale, trans-
parency

• legendObj: interlace, transparent

• mapObj: imagetype, imagequality, interlace, scale, transparent

• scalebarObj: interlace, transparent

• symbolObj: gap, stylelength

• webObj: minscale, maxscale

Class Methods

Class methods that have been removed:

• imageObj: free

• layerObj: getFilter, getShape

• lineObj: free

• pointObj: free

• projectionObj: free

• rectObj: free

• shapeObj: union_geos

• symbolObj: getstylearray

• classObj: clone

• styleObj: clone

• mapObj: clone

• outputFormatObj: getformatoption, setformatoption

layerObj

layerObj->clearProcessing() method now returns void.
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mapObj

mapObj->queryByIndex(): default behavior for the addToQuery parameter was not ok, now it is.

referenceMapObj

referenceMapObj has new properties: marker, markername, markersize, maxboxsize, minboxsize.

shapeFileObj

shapeFileObj is automatically closed/writed on destroy. (At the end of the script or with an explicit free(), unset())

labelCacheObj

To free the cache, you’ll have to call the method freeCache() rather than free().

Methods that now return MS_SUCCESS/MS_FAILURE

• layerObj: setProcessing, addFeature, draw

• mapObj: moveLayerUp, moveLayerDown, zoomRectangle, zoomScale, setProjection, setWKTProjection, set-
LayersDrawingOrder

• outputFormatObj: validate

• scalebarObj: setImageColor

• symbolObj: setPoints, setPattern

Methods that now return NULL on failure

• classObj: clone

• mapObj: clone, draw, drawQuery getLayerByName, getProjection

• layerObj: nextShape, getExtent

• styleObj: clone

Methods that now return an empty array

• layerObj: getItems, getProcessing, getGridIntersectionCoordinates

• mapObj: getLayersIndexByGroup, getAllGroupNames, getLayersDrawingOrder, getAllLayerNames

• symbolObj: getPatternArray
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– MapScript overview

– Our first application

– Conclusions

Note: As of the 7.4.0 release PHP 7 is available through MapServer’s SWIG API . MapServer users are encouraged to
use the SWIG API to connect to PHP 7 through MapScript. This document only covers the legacy MapScript support;
for recent examples of PHP 7 mapscript, see the MS4W wiki as users have been contributing PHP 7 mapscript scripts
there.

Introduction

The purpose of this document is to be a step by step explanation of the PHP MapScript API with practical examples for
each of them. It is assumed a basic knowledge of MAP and MapServer, and familiarity with the PHP (scripting) and
HTML (markup) languages . This document was originally created for MapServer v4.0, but the examples still apply
to more recent versions.

Let’s Begin. . .
Hello, kind reader. I am Tut, thank you for downloading me. I am sorry, but I am just a technical manual so I cannot
answer any questions. The maintainer, a handsome, very nice and lazy guy according to what I saw from the other side
of the screen, maybe will be able to answer your question(s). I am currently here to tell you about MapScript in its PHP
incarnation. At my current age, I will be more useful to beginners than advanced users, even though I hope that some
day I will be sufficiently old to be useful to advanced MapScript programmers.

Let’s hope I live long enough. . . sigh.

But enough with my personal problems, let myself begin. My duty is to familiarize you with MapScript, and in par-
ticular with PHP MapScript. When I end, you are expected to understand what MapScript is, and to be able to write
applications to display and navigate that is, zooming and panning over shapefiles via a web browser.

What follows are the questions you must answer affirmatively before accompanying me through the rest of this journey
(I apologize for my maintainer’s lack of literary taste).
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Do you have running somewhere. . .

• a web server capable of running PHP as a CGI (Apache will do)?

• the PHP language configured as a CGI, version 4.1.2 or higher? I recommend 4.3 onwards.

• PHP MapScript, version 4.0 or later? PHP MapScript Installation

Can you. . .

• code PHP or are willing to learn how to?

• write and understand HTML documents? (Note that Javascript is a plus)

• tell somebody what on earth is a shapefile [or a PostGIS table]?

Outline of this Document

• A general overview of MapScript, in a language independent way

• A trivial example

• A simple example

• Conclusion

You can also go to each part directly through my table of contents located at the top, if you wish to skip some sections.

MapScript overview

Ok, now I’m at last arriving at a point I will enjoy. This overview intends to clear some common misconceptions
beginners encounter when first facing MapScript and to give a general overview about MapScript’s internals. For now,
just look at the following diagram (I apologize again for the maintainer’s lack of graphic design taste).
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It all starts as everything on the Web. A browser requests a certain URL through HTTP. The request arrives at the web
server, which, in turn, delivers a file or executes a program and then delivers its output back to the browser. Yes, I know
you knew that, but I have been told to be as complete as possible, and I will try to.

In MapScript’s case, the server executes a certain script, which contains standard language functionality, that is, the
same functionality you would have in that language without MapScript, plus access to almost all of the MapServer C
API, the level of completeness of MapServer API support varies a bit with the language you choose, but I think it is my
duty to tell you almost every available flavor of MapScript is usable. This API, exposed now in your scripting language
through the MapScript module, allows you to do many GIS-like operations on spatial data, including read-write access
to shapefiles, reprojection of data, and many others. For more information on the API, click over the link above. For
other flavors, you can check their own documentation, you will see there is not much difference.

The CGI version of MapServer is not required to run MapScript applications, just as you don’t need a particular Map-
Script module to run the CGI. The CGI version has many features out-of-the-box, MapScript is just an API, so with
MapScript you must start from scratch or with some of the examples available. Think of the CGI as of a MapScript ap-
plication written directly in C, with direct access to the MapServer C API. Sometimes the out-of-the-box functionality
has some limits which can be surpassed by MapScript, but not embedded within the CGI. In other words, the CGI is
not scriptable, but you can program all the CGI and more with MapScript. This may seem a strange thing to clarify,
but is a common misconception, just check the list archives if you are not inclined to believe me.

As with MapServer itself, MapScript can be configured using only map files, but, unlike the CGI, also includes the pos-
sibility of dynamically create maps or modify existing ones and to (and here is the key to the flexibility that MapScript
has) mix this information with other sources of non GIS data, such as user input, non spatial and spatial databases, text
files, etc. and that you can use every single module your language provides. The power of this approach is tremendous,
and the most restrictive limit is your imagination. As always, flexibility comes with a price, performance. It’s generally
slower to use a scripting language instead of C, but nowadays this shouldn’t be a big worry. And you can still program
directly in C (there are not much documents about how to do it, though you might want to check the mapserver-dev
list) if you would like to.

The input and output formats MapScript can handle are exactly the same as the ones configured when you build
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MapServer/MapScript. But one of the most important things to remember is that, basically, you feed geographic data
and relevant user input (for instance clicks over the map image) to MapScript and as a result get one or more file(s),
typically standard image files such as a PNG or JPEG. So you can apply anything you’ve seen in any server side scripted
web application, DHTML, Java applets, CSS, HTML templates, sessions, you name it.

Our first application

In this first example, I will tell you how to display a shapefile on a web page using a map file.

The Map File

Here’s the map file:

1 NAME "Europe in purple"
2 SIZE 400 400
3 STATUS ON
4 SYMBOLSET "/var/www/html/maps/symbols/symbols.sym"
5 EXTENT -5696501 1923039 5696501 11022882
6 UNITS METERS
7 SHAPEPATH "/var/www/html/maps/data"
8

9 WEB
10 IMAGEPATH "/var/www/html/maps/tmp/"
11 IMAGEURL "/tmp/"
12 END
13

14 LAYER
15 NAME "Europe"
16 TYPE POLYGON
17 STATUS ON
18 DATA "europe.shp"
19 CLASS
20 STYLE
21 COLOR 110 50 100
22 OUTLINECOLOR 200 200 200
23 SYMBOL 0
24 END
25 END
26 END
27

28 END

Here I have shown a map with a single layer, where the europe.shp, europe.shx and europe.dbf files must be located in
the subdirectory called data. The symbols are located in the symbols subdirectory. All this locations are relative from
the place the map file is, but better safe than sorry, I guess. The web section is used to define where will the images be
saved and in what URL will they be available.
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Displaying the map with MapScript

To display a map the following MapScript objects and methods will be used:

• MapObj object

• imageObj object

MapObj methods:

• The constructor method: MapObj ms_newMapObj(string map_file_name[,string new_map_path])

• The draw method: imageObj draw()

imageObj methods:

• The saveWebImage method: string saveWebImage()

The code looks like this:

1 <?php
2

3 dl('php_mapscript.so');
4

5 $map_path="/var/www/html/ms/map_files/";
6

7 $map = ms_newMapObj($map_path."europe.map");
8 $image=$map->draw();
9 $image_url=$image->saveWebImage();

10

11 ?>
12

13 <HTML>
14 <HEAD>
15 <TITLE>Example 1: Displaying a map</TITLE>
16 </HEAD>
17 <BODY>
18 <IMG SRC=<?php echo $image_url; ?> >
19 </BODY>
20 </HTML>

The code I will present through the rest of this document will follow the following rule:

• Every non empty line is numbered

This code will render an image corresponding to the shapefile europe and display it on a HTML page.

Code Explanation

• In line 2 it is loaded the MapScript extension (you may not need it if your php.ini file is configured to automatically
load it).

• Line 3 declares a variable that holds the absolute path for the mapfile.

• Line 4 creates an instance of the MapObj object using the constructor. As you can see, the constructor receives
the location of the map file as its only required parameter, and the map file received the europe.map name.

• Afterwards the draw method of the map object is called to render the image defined by the map file (line 5). The
result (an imageObj) is saved in the $image variable.
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• Line 6 calls the saveWebImage method to generate the image file, it returns a string which represents the URL
as defined in the mapfile (in this case, /tmp/filename.png).

• The rest of the lines are pure HTML, except line 13, that defines the source URL of the image will be the value
stored in $image_url.

You should test the application on your system, to check that it really works and to solve the problems that may arise
on your particular configuration before moving on to the more complex examples.

Output

The output (using the europe shapefile) should look like this:

Zooming and Panning

Now I will tell you how to add zoom and pan capabilities to the code.

Here goes the list of new methods and objects called.

New Objects:

• pointObj

• rectObj

New Methods and Members called:

• The zoompoint method of the map object: void zoompoint(int nZoomFactor, pointObj oPixelPos, int nIm-
ageWidth, int nImageHeight, rectObj oGeorefExt).
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• The setextent method of the map object: $map->setextent(double minx, double miny, double maxx, double
maxy);.

• The extent, width and height members of the map object.

• The constructors of RectObj and PointObj: $point = ms_newPointObj(); $rect = ms_newRectObj();

• The setXY method of the point object: $point->setXY(double x_coord, double y_coord);

• The setextent method of the rectangle object: $rect->setextent(double minx, double miny, double maxx, double
maxy);

The .map file remains the same as the one presented in the previous example.

PHP/MapScript Code

Here I present the new code.

1 <?php
2

3 dl('php_mapscript.so');
4

5 // Default values and configuration
6

7 $val_zsize=3;
8 $check_pan="CHECKED";
9 $map_path="/var/www/html/ms/map_files/";

10 $map_file="europe.map";
11

12 $map = ms_newMapObj($map_path.$map_file);
13

14

15 if ( isset($_POST["mapa_x"]) && isset($_POST["mapa_y"])
16 && !isset($_POST["full"]) ) {
17

18 $extent_to_set = explode(" ",$_POST["extent"]);
19

20 $map->setextent($extent_to_set[0],$extent_to_set[1],
21 $extent_to_set[2],$extent_to_set[3]);
22

23 $my_point = ms_newpointObj();
24 $my_point->setXY($_POST["mapa_x"],$_POST["mapa_y"]);
25

26 $my_extent = ms_newrectObj();
27

28 $my_extent->setextent($extent_to_set[0],$extent_to_set[1],
29 $extent_to_set[2],$extent_to_set[3]);
30

31 $zoom_factor = $_POST["zoom"]*$_POST["zsize"];
32 if ($zoom_factor == 0) {
33 $zoom_factor = 1;
34 $check_pan = "CHECKED";
35 $check_zout = "";
36 $check_zin = "";
37 } else if ($zoom_factor < 0) {

(continues on next page)
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(continued from previous page)

38 $check_pan = "";
39 $check_zout = "CHECKED";
40 $check_zin = "";
41 } else {
42 $check_pan = "";
43 $check_zout = "";
44 $check_zin = "CHECKED";
45 }
46

47 $val_zsize = abs($zoom_factor);
48

49 $map->zoompoint($zoom_factor,$my_point,$map->width,$map->height,
50 $my_extent);
51

52 }
53

54

55 $image=$map->draw();
56 $image_url=$image->saveWebImage();
57

58 $extent_to_html = $map->extent->minx." ".$map->extent->miny." "
59 .$map->extent->maxx." ".$map->extent->maxy;
60

61 ?>
62 <HTML>
63 <HEAD>
64 <TITLE>Map 2</TITLE>
65 </HEAD>
66 <BODY>
67 <CENTER>
68 <FORM METHOD=POST ACTION=<?php echo $HTTP_SERVER_VARS['PHP_SELF']?>>
69 <TABLE>
70 <TR>
71 <TD>
72 <INPUT TYPE=IMAGE NAME="mapa" SRC="<?php echo $image_url?>">
73 </TD>
74 </TR>
75 <TR>
76 <TD>
77 Pan
78 </TD>
79 <TD>
80 <INPUT TYPE=RADIO NAME="zoom" VALUE=0 <?php echo $check_pan?>>
81 </TD>
82 </TR>
83 <TR>
84 <TD>
85 Zoom In
86 </TD>
87 <TD>
88 <INPUT TYPE=RADIO NAME="zoom" VALUE=1 <?php echo $check_zin?>>
89 </TD>

(continues on next page)
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(continued from previous page)

90 </TR>
91 <TR>
92 <TD>
93 Zoom Out
94 </TD>
95 <TD>
96 <INPUT TYPE=RADIO NAME="zoom" VALUE=-1 <?php echo $check_zout?>>
97 </TD>
98 </TR>
99 <TR>

100 <TD>
101 Zoom Size
102 </TD>
103 <TD>
104 <INPUT TYPE=TEXT NAME="zsize" VALUE="<?php echo $val_zsize?>"
105 SIZE=2>
106 </TD>
107 </TR>
108 <TR>
109 <TD>
110 Full Extent
111 </TD>
112 <TD>
113 <INPUT TYPE=SUBMIT NAME="full" VALUE="Go"
114 SIZE=2>
115 </TD>
116 </TABLE>
117 <INPUT TYPE=HIDDEN NAME="extent" VALUE="<?php echo $extent_to_html?>">
118 </FORM>
119 </CENTER>
120 </BODY>
121 </HMTL>

This code will zoom out, zoom in, pan, and restore to full extent the image displayed in the previous example.

It looks much more complicated than it really is, much of the lines are the HTML code, and much of the remaining
PHP code is just to deal with the forms and such.

You should try it and look at how it works first. Try it in your own server by copying and pasting the code.

Now it’s time for you to play with it a little and look at the source in your browser to check how it changes.

Done?, now let’s start the explanation with the HTML part.

Code Explanation - HTML

Line 49 declares a form, and line 53 declares the image generated by MapScript to be part of that form, so when you
click on it, the X and Y coordinates of the click (in pixels) will be sent along with the other data for the PHP code to
process.

If you are familiar with HTML and PHP, the rest of the HTML code should be straightforward for you to understand
with the exception of line 98, that will be explained in due time.
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Code Explanation - PHP

Now look at the PHP code, it’s almost the same code used in example 1, with the addition of lines 9 to 37. What do
these lines do?

Line 9 checks the relevant variables from the form have been set. ‘mapa_x’ and ‘mapa_y’ represent the X and Y
coordinates of the click over the image, and ‘full’ represents the click on the ‘Full Extent’ button.

The first time the page is displayed the code between the if statement doesn’t get executed, but the rest of the code does.
Lines 40 and 41 set the ‘$extent_to_html’ variable with the values of the extent defined in the map file separated by
spaces; that value will be put in the HTML variable ‘extent’ in line 98.

Now look at line 11 and 12. We are inside the if statement, that means the form has been submitted at least once. We
grab the extent stored in the previous execution (the ‘extent’ HTML variable) of the code and set the extent of the map
to be that last extent. This allows to zoom or pan with respect of the previous extent, not the extent that is set in the
map file.

From that last paragraph you can deduce that all the default values are set in the map file, and anything that you change
through MapScript and would like to remain in your code, must be stored somehow. In this case it is done through
hidden variables in a form. For more advanced applications you could use session variables or a database.

Now you should be able to see why the ‘Full Extent’ button works. If you check line 10, it says that if you haven’t
pressed the button, skip the code in the if statement, so the extent is reset to the value that the map file has. You should
also see that it isn’t necessarily a full extent (in case the extent in the map file is not full extent).

Lines 14 and 15 declare a new point object and initialize it with the values the user clicked on. You should not forget
that those values are in pixels, not in georeferenced coordinates.

Lines 16 through 18 create a new rectangle object and set it with the extent of the previous image, just like it is done
on line 12. In fact this would work too: $my_extent = $map->extent;.

To do all the zooming and panning, the zoompoint function in called on line 35, but first the arguments it receives must
be prepared. You can determine the point the user clicked on, and the extent of the image ($my_point and $my_extent,
respectively), but now you have to determine the zoom factor. That’s what lines 19 to 33 do. If you wondered why the
values of the radio buttons where 0, -1, and 1 for pan, zoom in and zoom out, now you will know the reason.

A zoom factor of 1 tells zoompoint that the operation is pan, a negative value indicates zoom out and a positive value
indicates zoom in. So, by means of multiplying the value received for the radio buttons (HTML variable ‘zoom’) by
the size of the zoom the user entered the zoom factor is calculated. If that value is 0, that means the user selected the
pan operation, so ‘$zoom_factor’ is set to 1, otherwise the result of the multiplication is the zoom factor zoompoint
needs to receive. The other lines are to preserve the button the user clicked on the next time. Line 34 tries to preserve
the value of the zoom size the user entered (It doesn’t do that all the time, when and why that line fails? That’s for you
to find out).

And finally, line 34 calls the zoompoint method with the zoom factor obtained, the point built from the pixel coordinates
(I insist on that issue because zoompoint is almost the only method that receives the coordinates in pixels, for the other
methods you must convert pixels to georeferenced coordinates on your own), the height and width of the image, and
the extent.

After calling zoompoint, the extent of the image is changed accordingly to the operation performed (or, better put, the
zoom factor). So then the image is drawn and the current extent saved (after the zooming) for use in the next iteration.
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Conclusions

Well, it’s time for me to go recharge my batteries. So I will use this last energy to share some final words. The examples I
have managed to present here are very basic but you should now be able to devise ways to improve them and suit things
to your needs. Keep in mind that you can preprocess, store, read, write data from any source you can usually read
through PHP, plus all the sources MapServer can handle for GIS data. You can even process some GIS data with PHP
only if the need would arise (SQL sources are a good example of this). You can also do hybrid approaches where
some script prepares data which is then shown through the CGI interface to MapServer, or create data on the fly based
on input from a GPS, etc, etc. The possibilities are just too many to enumerate completely. As I already said your
imagination is the limit. The next version of this document will include examples that include more than one layer,
with different datasources (not just shapefiles) and creation of dynamic layers and classes. If you have a better idea or
would like to see some other thing here first, please drop a note to my maintainer.

In the meantime, if you need bigger examples you can refer to the original “GMap demo” (you can download the source
here), or the MapTools site (for the older MapLab, Chameleon applications, which were built on PHPMapScript).
Goodbye, and thanks for reading this far.

Note: As of the 7.4.0 release PHP 7 is available through MapServer’s SWIG API .

5.1.4 Python MapScript Appendix

Author
Sean Gillies

Contents

• Python MapScript Appendix

– Introduction

– Classes

– Exception Handling

Introduction

The Python MapScript module contains some class extension methods that have not yet been implemented for other
languages.

Classes

References to sections below will be added here as the documentation grows.

5.1. MapScript 417

http://dl.maptools.org/dl/
http://www.maptools.org/


MapServer Documentation, Release 7.6.6

imageObj

The Python Imaging Library, http://www.pythonware.com/products/pil/, is an indispensable tool for image manipula-
tion. The extensions to imageObj are all geared towards better integration of PIL in MapScript applications.

imageObj Methods

imageObj( PyObject arg1, PyObject arg2 [, PyObject arg3 ] )
[imageObj] Create a new instance which is either empty or read from a Python file-like object that refers to a GD
format image.

The constructor has 2 different modes. In the blank image mode, arg1 and arg2 should be the desired width and
height in pixels, and the optional arg3 should be either an instance of outputFormatObj or a GD driver name as a
shortcut to a format. In the image file mode, arg1 should be a filename or a Python file or file-like object. If the
file-like object does not have a “seek” attribute (such as a urllib resource handle), then a GD driver name must
be provided as arg2.

Here’s an example of creating a 320 pixel wide by 240 pixel high JPEG using the constructor’s blank image
mode:

image = mapscript.imageObj(320, 240, 'GD/JPEG')

In image file mode, interesting values of arg1 to try are instances of StringIO:

s = StringIO()
pil_image.save(s) # Save an image manipulated with PIL
ms_image = imageObj(s)

Or the file-like object returned from urlopen

url = urllib.urlopen('http://mapserver.gis.umn.edu/bugs/ant.jpg')
ms_image = imageObj(url, 'GD/JPEG')

write( [ PyObject file ] )
[void] Write image data to a Python file-like object. Default is stdout.

pointObj

pointObj Methods

__str__()
[string] Return a string formatted like

{ 'x': %f , 'y': %f }

with the coordinate values substituted appropriately. Usage example:

>>> p = mapscript.pointObj(1, 1)
>>> str(p)
{ 'x': 1.000000 , 'y': 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:
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>>> p_dict = eval(str(p))
>>> p_dict['x']
1.000000

rectObj

rectObj Methods

__contains__( pointObj point )
[boolean] Returns True if point is inside the rectangle, otherwise returns False.

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> p = mapscript.pointObj(2, 0) # outside
>>> p in r
False
>>> p not in r
True

__str__()
[string] Return a string formatted like

{ 'minx': %f , 'miny': %f , 'maxx': %f , 'maxy': %f }

with the bounding values substituted appropriately. Usage example:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ 'minx': 0.000000 , 'miny': 0.000000 , 'maxx': 1.000000 , 'maxy': 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> r_dict = eval(str(r))
>>> r_dict['minx']
0.000000

Exception Handling

The Python MapScript module maps a few MapServer errors into Python exceptions. Attempting to load a non-existent
mapfile raises an ‘IOError’, for example

>>> import mapscript
>>> mapfile = '/no/such/file.map'
>>> m = mapscript.mapObj(mapfile)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/lib/python2.3/site-packages/mapscript.py", line 799, in __init__
newobj = _mapscript.new_mapObj(*args)

IOError: msLoadMap(): Unable to access file. (/no/such/file.map)
>>>

The message of the error is written by ‘msSetError’ and so is the same message that CGI mapserv users see in error
logs.
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5.1.5 Python MapScript Image Generation

Author
Sean Gillies

Last Updated
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• Python MapScript Image Generation
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– The imageObj Class

– Image Output

– Images and Symbols

Introduction

The MapScript HOWTO docs are intended to complement the API reference with examples of usage for specific
subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and
found under mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Imagery Overview

The most common use of MapServer and MapScript is to create map imagery using the built-in GD format drivers:
GD/GIF, GD/PNG, GD/PNG24, and GD/JPEG. This imagery might be saved to a file on disk or be streamed directly
to another device.

The imageObj Class

Imagery is represented in MapScript by the imageObj class. Please see the API Reference (MapScript.txt) for class
attribute and method details.
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Creating imageObj from a mapObj

The mapObj class has two methods that return instances of imageObj: ‘draw’, and ‘prepareImage’. The first returns a
full-fledged map image just as one would obtain from the mapserv CGI program

test_map = MapScript.mapObj('tests/test.map')
map_image = test_map.draw()

A properly sized and formatted blank image, without any layers, symbols, or labels, will be generated by ‘prepareImage’

blank_image = test_map.prepareImage()

Creating a new imageObj

The imageObj class constructor creates new instances without need of a map

format = MapScript.outputFormatObj('GD/JPEG')
image = MapScript.imageObj(300, 200, format) # 300 wide, 200 high JPEG

and can even initialize from a file on disk

# First three args are overridden by attributes of the disk image file
disk_image = MapScript.imageObj(-1, -1, NULL, 'tests/test.png')

Image Output

Creating files on disk

Imagery is saved to disk by using the ‘save’ method. By accessing the ‘extension’ attribute of an image’s format, the
proper file extension can be used without making any assumptions

filename = 'test.' + map_image.format.extension
map_image.save(filename)

If the image is using a GDAL/GTiff-based format, a GeoTIFF file can be created on disk by adding a mapObj as a
second optional argument to ‘save’

map_image.save(filename, test_map)

Direct Output

An image can be dumped to an open filehandle using the ‘write’ method. By default, the filehandle is ‘stdout’

# Send an image to a web browser
print "Content-type: " + map_image.format.mimetype + "\n\n"
map_image.write()

This method is not fully functional for all SWIG MapScript languages. See the API Reference (MapScript.txt) for
details. The ‘write’ method is new in 4.4.
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Images and Symbols

The symbolObj::getImage() method will return an instance of imageObj for pixmap symbols

symbol = test_map.symbolset.getSymbolByName('home-png')
image = symbol.getImage()

There is a symmetric ‘setImage’ method which loads imagery into a symbol, allowing pixmap symbols to be created
dynamically

new_symbol = MapScript.symbolObj('from_image')
new_symbol.type = MapScript.MS_SYMBOL_PIXMAP
new_symbol.setImage(image)
index = test_map.symbolset.appendSymbol(new_symbol)

The get/setImage methods are new in MapServer 4.4.

5.1.6 Mapfile Manipulation

Author
Sean Gillies

Contents

• Mapfile Manipulation

– Introduction

– Mapfile Overview

– The mapObj Class

– Children of mapObj

– Metadata

Introduction

The MapScript HowTo docs are intended to complement the API reference with examples of usage for specific subjects.
All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found under
mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.
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Mapfile Overview

By “Mapfile” here, I mean all the elements that can occur in (nearly) arbitrary numbers within a MapScript mapObj:
Layers, Classes, and Styles. MapServer 4.4 has greatly improved capability to manipulate these objects.

The mapObj Class

An instance of mapObj is a parent for zero to many layerObj children.

New instances

The mapfile path argument to the mapscript.mapObj constructor is now optional

empty_map = new mapscript.mapObj

generates a default mapObj with no layers. A mapObj is initialized from a mapfile on disk in the usual manner:

test_map = new mapscript.mapObj('tests/test.map')

Cloning

An independent copy, less result and label caches, of a mapObj can be produced by the new mapObj.clone() method:

clone_map = test_map.clone()

Note: the Java MapScript module implements a “cloneMap” method to avoid conflict with the clone method of Java’s
Object class.

Saving

A mapObj can be saved to disk using the save method:

clone_map.save('clone.map')

Frankly, the msSaveMap() function which is the foundation for mapObj::save is incomplete. Your mileage may vary.

Children of mapObj

There is a common parent/child object API for Layers, Classes, and Styles in MapServer 4.4.
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Referencing a Child

References to Layer, Class, and Style children are obtained by “getChild”-like methods of their parent:

layer_i = test_map.getLayer(i)
class_ij = layer_i.getClass(j)
style_ijk = class_ij.getStyle(k)

These references are for convenience only. MapScript doesn’t have any reference counting, and you are certain to run
into trouble if you try to use these references after the parent mapObj has been deleted and freed from memory.

Cloning a Child

A completely independent Layer, Class, or Style can be created using the clone method of layerObj, classObj, and
styleObj:

clone_layer = layer_i.clone()

This instance has no parent, and is self-owned.

New Children

Uninitialized instances of layerObj, classObj, or styleObj can be created with the new constructors:

new_layer = new mapscript.layerObj
new_class = new mapscript.classObj
new_style = new mapscript.styleObj

and are added to a parent object using “insertChild”-like methods of the parent which returns the index at which the
child was inserted:

li = test_map.insertLayer(new_layer)
ci = test_map.getLayer(li).insertClass(new_class)
si = test_map.getLayer(li).getClass(ci).insertStyle(new_style)

The insert* methods create a completely new copy of the object and store it in the parent with all ownership taken on
by the parent.

see the API reference for more details.

Backwards Compatibility

The old style child object constructors with the parent object as a single argument:

new_layer = new mapscript.layerObj(test_map)
new_class = new mapscript.classObj(new_layer)
new_style = new mapscript.styleObj(new_class)

remain in MapServer 4.4.

5.1. MapScript 424



MapServer Documentation, Release 7.6.6

Removing Children

Child objects can be removed with “removeChild”-like methods of parents, which return independent copies of the
removed object:

# following from the insertion example ...
# remove the inserted style, returns a copy of the original new_style
removed_style = test_map.getLayer(li).getClass(ci).removeStyle(si)
removed_class = test_map.getLayer(li).removeClass(ci)
removed_layer = test_map.removeLayer(li)

Metadata

Map, Layer, and Class metadata are the other arbitrarily numbered elements (well, up to the built-in limit of 41) of a
mapfile.

New API

In MapServer 4.4, the metadata attributes of mapObj.web, layerObj, and classObj are instances of hashTableObj, a
class which functions like a limited dictionary

layer.metadata.set('wms_name', 'foo')
name = layer.metadata.get('wms_name') # returns 'foo'

You can iterate over all keys in a hashTableObj like

key = NULL
while (1):

key = layer.metadata.nextKey(key)
if key == NULL:

break
value = layer.metadata.get(key)
...

See the API Reference (mapscript.txt) for more details.

Backwards Compatibility for Metadata

The old getMetaData and setMetaData methods of mapObj, layerObj, and classObj remain for use by older programs.

5.1.7 Querying

Author
Sean Gillies

Contents

• Querying
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– Introduction

– Querying Overview

– Attribute Queries

– Spatial Queries

Introduction

All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found under
mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Querying Overview

The Query Result Set

Map layers can be queried to select features using spatial query methods or the attribute query method. Ignoring for
the moment whether we are executing a spatial or attribute query, results are obtained like so:

layer.query() # not an actual method!
results = layer.getResults()

In the case of a failed query or query with zero results, ‘getResults’ returns NULL.

Result Set Members

Individual members of the query results are obtained like:

... # continued

if results:
for i in range(results.numresults): # iterate over results

result = results.getResult(i)

This result object is a handle, of sorts, for a feature of the layer, having ‘shapeindex’ and ‘tileindex’ attributes that can
be used as arguments to ‘getFeature’.
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Resulting Features

The previous example code can now be extended to the case of obtaining all queried features:

layer.query()
results = layer.getResults()
if results:

# open layer in preparation of reading shapes
layer.open()

for i in range(results.numresults):
result = results.getResult(i)

layer.getFeature(result)

... # do something with this feature

# Close when done
layer.close()

Backwards Compatibility

The API changed substantially with version 6.0 and backward compatibility was broken. Scripts will have to be updated
to work with the new API.

Attribute Queries

By Attributes

queryByAttributes()

Spatial Queries

By Rectangle

queryByRect()

By Point

queryByRect()
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By Shape

queryByShape()

By Selection

queryByFeatures()
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Getting the Source

The MapCache project is located at https://github.com/MapServer/mapcache, and can be checked out with either:

# readonly
git clone https://github.com/MapServer/mapcache.git
# ssh authenticated
git clone git@github.com:MapServer/mapcache.git
# tarball
wget https://github.com/MapServer/mapcache/zipball/main

Linux Instructions

These instructions target a Debian/Ubuntu setup, but should apply with few modifications to any Linux installation.

MapCache requires a number of library headers in order to compile correctly:

• apache / apr / apr-util / apx2: these are included in the apache2-prefork-dev or apache2-threaded-dev packages,
depending on which Apache MPM you are running. This package will pull in the necessary APR headers that
you would have to manually install if you are not buidling an Apache module (libaprutil1-dev and libapr1-dev)

• png: libpng12-dev

• jpeg: libjpeg62-dev

• curl: libcurl4-gnutls-dev

6.1. MapCache 1.12.1 430

https://github.com/MapServer/mapcache


MapServer Documentation, Release 7.6.6

The following libraries are not required, but recommended:

• pcre: libpcre3-dev. This will give you more powerful regular expression syntax when creating validation ex-
pressions for dimensions

• pixman: libpixman-1-dev. The pixel manipulation library is used for scaling and alpha-compositing images.
MapCache ships with some code to perform these tasks, but Pixman is generally faster as it includes code opti-
mized for modern CPUs (SSE2, MMX, etc. . . )

The following libraries are not required, but needed to enable additional functionalities:

• fcgi: libfcgi-dev. Needed to build a FastCGI program if you don’t want to run MapCache as an Apache module

• gdal / geos: libgdal1-dev libgeos-dev. Needed to enable advanced seeding options (for only seeding tiles that
intersect a given geographical feature)

• sqlite: libsqlite3-dev. For enabling the SQLite backend storages

• tiff : libtiff4-dev. For enabling the TIFF backend storages

• berkeley db libdb4.8-dev : For enabling the Berkeley DB backend storages

Note: MapCache now builds with CMake.

For Unix users installing all packages to the default locations, the compilation process should continue with:

$ cd mapcache
$ mkdir build
$ cd build
$ cmake ..
$ # follow instructions below if missing a dependency
$ make
$ sudo make install

Note: If you receive a CMake error such as “Could NOT find APACHE (missing: APACHE_INCLUDE_DIR)”,
CMake needs to locate the httpd.h header file, and apxs or apxs2 executables, so you may need to install those specific
packages (such as on Ubuntu with the command apt-get install apache2-dev) and re-run the cmake command.

Apache Module Specific Instructions

The make install above installs the Apache module, but if you specifically need to install only the Apache module you
can do the following:

$ sudo make install-module
$ sudo ldconfig

The installation script takes care of putting the built module in the Apache module directory. The process for activating
a module is usually distro specific, but can be resumed by the following snippet that should be present in the Apache
configuration file ( e.g. /usr/local/httpd/conf/httpd.conf or /etc/apache2/sites-available/default ):

LoadModule mapcache_module modules/mod_mapcache.so

Next, a MapCache configuration is mapped to the server URL with the following snippet:

For Apache < 2.4:
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<IfModule mapcache_module>
<Directory /path/to/directory>

Order Allow,Deny
Allow from all

</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"

</IfModule>

For Apache >= 2.4:

<IfModule mapcache_module>
<Directory /path/to/directory>

Require all granted
</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"

</IfModule>

Before you restart, copy the example mapcache.xml file to the location specified in your Apache configuration:

$ cp mapcache.xml /path/to/directory/mapcache.xml

Finally, restart Apache to take the modified configuration into account

$ sudo apachectl restart

If you have not disabled the demo service, you should now have access to it on http://myserver/mapcache/demo

nginx Specific Instructions

Warning: Working with nginx is still somewhat experimental. The following workflow has only been tested on
the development version, i.e. nginx-1.1.x

For nginx support you need to build MapCache’s nginx module against the nginx source. Download the nginx source
code:

$ cd /usr/local/src
$ mkdir nginx
$ cd nginx
$ wget http://nginx.org/download/nginx-1.1.19.tar.gz
$ tar -xzvf nginx-1.1.19.tar.gz
$ cd nginx-1.1.19/

Run the configure command with the flag –add-module. This flag must point to MapCache’s nginx child directory.
Assuming that MapServer source was cloned or un tarred into to /usr/local/src, an example configure command for
nginx would look like this:

$ ./configure --add-module=/usr/local/src/mapcache/nginx

Then build nginx:

$ make
$ sudo make install
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Due to nginx’s non-blocking architecture, the MapCache nginx module does not perform any operations that may lead
to a worker process being blocked by a long computation (i.e.: requesting a (meta)tile to be rendered if not in the cache,
proxying a request to an upstream WMS server, or waiting for a tile to be rendered by another worker): It will instead
issue a 404 error. This behavior is essential so as not to occupy all nginx worker threads, thereby preventing it from
responding to all other incoming requests. While this isn’t an issue for completely seeded tilesets, it implies that these
kinds of requests need to be proxied to another MapCache instance that does not suffer from these starvation issues (i.e.
either a FastCGI MapCache, or an internal proxied Apache server). In this scenario, both the nginx MapCache instance
and the Apache/FastCGI MapCache instance should be running with the same mapcache.xml configuration file.

MapCache supplies an nginx.conf in its nginx child directory. The conf contains an example configuration to load
MapCache. The most relevant part of the configuration is the location directive that points the ^/mapcache URI to the
mapcache.xml path. You will need to change this path to point to your own mapcache.xml in the MapCache source.

The basic configuration without any proxying (which will return 404 errors on unseeded tile requests) is:

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;

}

If proxying unseeded tile requests to a MapCache instance running on an Apache server, we will proxy all 404 Map-
Cache errors to a mapcache.apache.tld server listening on port 8080, configured to respond to MapCache requests on
the /mapcache location.

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = @apache_mapcache;

}

location @apache_mapcache {
proxy_pass http://mapcache.apache.tld:8080;

}

If using FastCGI instances of MapCache, spawned with e.g. spawn-fcgi or supervisord on port 9001 (make sure to
enable FastCGI when building MapCache, and to set the MAPCACHE_CONFIG_FILE environment variable before
spawning):

location ~ ^/mapcache(?<path_info>/.*|$) {
set $url_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = @fastcgi_mapcache;

}

location @fastcgi_mapcache {
fastcgi_pass localhost:9001;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param PATH_INFO $path_info;
fastcgi_param SERVER_NAME $server_name;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SCRIPT_NAME "/mapcache";

}
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Copy the relevant sections of nginx.conf from MapCache’s nginx directory into nginx’s conf file (in this case
/usr/local/nginx/conf/nginx.conf ). You should now have access to the demo at http://myserver/mapcache/demo

CGI/FastCGI Specific Instructions

A binary CGI/FastCGI is located in the mapcache/ subfolder, and is named “mapcache”. Activating FastCGI for the
MapCache program on your web server is not part of these instructions; more details may be found on the FastCGI
page or on more general pages across the web.

The MapCache FastCGI program looks for its configuration file in the environment variable called MAP-
CACHE_CONFIG_FILE, which must be set by the web server before spawning the MapCache processes.

See also:
Configuration File

Apache with mod_cgi

SetEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml"

For Apache with mod_fcgid:

FcgidInitialEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml

If you have not disabled the demo service, you should now have access to it on http://myserver/fcgi-bin/mapcache/
demo, assuming your fcgi processes are accessed under the fcgi-bin alias.

With a working mod_fcgid Apache instance, the full httpd.conf snippet to activate MapCache could be:

<IfModule mod_fcgid.c>
IPCCommTimeout 120
MaxProcessCount 10
FcgidInitialEnv "MAPCACHE_CONFIG_FILE" "/path/to/mapcache/mapcache.xml"
<Location /map.fcgi>

Order Allow,Deny
Allow from all
SetHandler fcgid-script

</Location>
ScriptAlias /map.fcgi "/path/to/mapcache/src/mapcache"

</IfModule>

The MapCache service would then be accessible at http://myserver/map.fcgi{[}/demo]

IIS and FastCGI

First ensure FastCGI has been installed - see the notes on configuring MapServer in IIS. MapCache relies on the
MAPCACHE_CONFIG_FILE environment variable to be set in IIS. See the MapServer further configuration on how to
set this.

To create the variable from the command line you can use the following (which requires administrator privileges):

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapcache.fcgi.exe'].environmentVariables.[name='MAPCACHE_
→˓CONFIG_FILE',value='C:\MapServer\apps\cache1.xml']" /commit:apphost
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Often you will want to use different MapCache configuration files for different web applications on the same server. To
set these up you need to set a unique argument that will be passed to mapcache.fcgi.exe.

%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapcache.fcgi.exe',arguments='cache2']" /commit:apphost
%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+
→˓"[fullPath='C:\Mapserver\bin\mapcache.fcgi.exe',arguments='cache2'].
→˓environmentVariables.[name='MAPCACHE_CONFIG_FILE',value='C:\MapServer\apps\cache2.xml']
→˓" /commit:apphost

Note: It appears the command has to be run in two parts or the following error is returned ERROR ( message:Cannot
find requested collection element. ).

FastCGI configurations are stored in C:\Windows\System32\inetsrv\config\applicationHost.config. The
commands creates the following XML:

<application fullPath="C:\Mapserver\bin\mapcache.fcgi.exe" arguments="cache2">
<environmentVariables>

<environmentVariable name="MAPCACHE_CONFIG_FILE" value="C:\MapServer\apps\cache2.
→˓xml" />
</environmentVariables>

</application>

Now we have set MAPCACHE_CONFIG_FILE we can configure a web application to use MapCache. This can all be done
through the web application’s web.config file. Below is a sample configuration:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<system.webServer>
<handlers>

<add name="mapcache"
path="/*" verb="*" modules="FastCgiModule"
scriptProcessor="C:\MapServer\bin\mapcache.fcgi.exe|cache2"
resourceType="Unspecified"
requireAccess="Script"
allowPathInfo="true" />

</handlers>
</system.webServer>

</configuration>

Key points to note are:

• allowPathInfo must be set to true so IIS handles the PATH_INFO in the same way as other web servers
(otherwise IIS duplicates the SCRIPT_NAME in PATH_INFO breaking how MapCache handles URLs).

• scriptProcessor should be set to match the fullPath set when creating the FastCGI configuration. The
|cache2 should match the argument for the FastCGI application, separated from the path with a pipe (|) character.

• If you have a FastCGI application without any arguments (when running a single instance of MapCache) you do
not need to add the pipe and argument to scriptProcessor.

The MapCache service should then be accessible at http://localhost/mapcache/demo/
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Customizing the Build, Or If Something Went Wrong

Depending on which packages are available in the default locations of your system, the “cmake ..” step will most
probably have failed with messages indicating missing dependencies (by default, MapCache has some of those). The
error message that CMake prints out should give you a rather good idea of what steps you should take next, depending
on whether the failed dependency is a feature you require in your build.

mod_mapcache requires Apache, libcurl, libjpeg and libpng development headers. The CMake script will try to locate
them in default system locations, but these locations can be overridden or specified with -D switches. For example,
if you get a message such as ‘Could NOT find APR ‘, you can use a command such as (assuming that APR is at
/usr/local/apr) :

$ cmake -DCMAKE_PREFIX_PATH="/usr/local/apr;" ..

If you don’t want e.g. fcgi, you can disable the dependency by re-running CMake with -DWITH_DEPENDENCY=0,
e.g.

$ cmake .. -DWITH_FCGI=0

Options Supported By the MapCache CMake Builder

Here is a list of supported options that can be enabled/disabled at build.

option(WITH_PIXMAN "Use Pixman for SSE optimized image manipulations" ON)
option(WITH_SQLITE "Use SQLite as a cache backend" ON)
option(WITH_BERKELEY_DB "Use Berkeley DB as a cache backend" OFF)
option(WITH_MEMCACHE "Use memcache as a cache backend (requires recent apr-
→˓util)" OFF)
option(WITH_TIFF "Use TIFFs as a cache backend" OFF)
option(WITH_TIFF_WRITE_SUPPORT "Enable (experimental) support for writable␣
→˓TIFF cache backends" OFF)
option(WITH_GEOTIFF "Allow GeoTIFF metadata creation for TIFF cache backends"␣
→˓OFF)
option(WITH_PCRE "Use PCRE for regex tests" OFF)
option(WITH_MAPSERVER "Enable (experimental) support for the MapServer library
→˓" OFF)
option(WITH_POSTGRESQL "Use PostgreSQL as a dimension backend" OFF)
option(WITH_RIAK "Use Riak as a cache backend" OFF)
option(WITH_GDAL "Choose if GDAL raster support should be built in" ON)
option(WITH_MAPCACHE_DETAIL "Build coverage analysis tool for SQLite caches"␣
→˓ON)
option(WITH_GEOS "Choose whether GEOS geometry operations support should be␣
→˓built in" ON)
option(WITH_OGR "Choose whether OGR/GDAL input vector support should be built␣
→˓in" ON)
option(WITH_CGI "Choose whether CGI executable should be built" ON)
option(WITH_FCGI "Choose whether CGI executable should support FastCGI" ON)
option(WITH_VERSION_STRING "Show MapCache in server version string" ON)
option(WITH_APACHE "Build Apache Module" ON)

• Pixman (recommended, from 0.5 onwards)
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-DWITH_PIXMAN=[0|1]

Pixman is a pixel manipulation library used to assemble image tiles when responding to non-tiled
WMS requests. Pixman support is recommended as it is highly optimized and will take advantage of
recent processor extensions (MMX, SSE2, etc.) to speed up blending and resampling operations. If
the Pixman library is not found, MapCache will fall back to internal pixel operations that are slower.

• SQLite (optional, from 0.5 onwards)

-DWITH_SQLITE=[0|1]

SQLite is used to enable the SQLite and MBTiles cache backend. Version 3.5.0 or newer is required.

• GDAL (optional, from 0.4 onwards, also requires geos)

-DWITH_OGR=[0|1]

GDAL (actually OGR) is used by the seeding utility to allow the seeding of tiles only intersecting a
given polygon, e.g. to preseed all the tiles of a given country.

• GEOS (optional, from 0.5 onwards)

-DWITH_GEOS=[0|1]

Along with GDAL/OGR, GEOS is needed by the seeder to test for the intersection of tiles with
geographical features. A sufficiently recent version of GEOS (with support for prepared geometries)
is required (but not enforced by the configure script, so you’ll end up with compilation errors if a too
old GEOS version is used).

• PCRE (optional)

-DWITH_PCRE=[0|1]

PCRE (Perl Compatible Regular Expressions) can be used instead of POSIX regular expressions for
validating WMS dimensions. They are more powerful than POSIX REs (and might be slower). You
don’t need this if you aren’t planning on using WMS dimension support with regex validation, or if
your validation needs are covered by posix REs.

See also:
Tileset Dimensions

• FastCGI Support (optional)

-DWITH_FCGI=[0|1]

MapCache can run as a FastCGI executable. Note that the overhead of FastCGI is non-negligible
with respect to the throughput you may obtain with a native Apache module. The FastCGI build is
less tested, and may lag behind the Apache module version on some minor details. YMMV.

• TIFF read/write Cache Support (optional)

Use TIFFs as a cache backend (READONLY) :

-DWITH_TIFF=[0|1]

TIFF write support (for creating new TIFF files and adding tiles to existing TIFF files) is still ex-
perimental and disabled by default. There is a risk of ending up with corrupt TIFF files if they are
placed on a filesystem that does not honor file locking, as in that case multiple processes might end
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up writing to the same file. File locking across concurrent threads is also problematic, although Map-
Cache tries to detect this situation and apply sufficient locking workarounds. To stay on the safe side,
write support should for now only be enabled on local filesystems, with a prefork MPM or FastCGI
MapCache install.

-DWITH_TIFF_WRITE_SUPPORT=[0|1]

When writing TIFF files, MapCache can also optionally add georeferencing information if compiled
with libtiff support. GeoTiff writing does not produce the full tags needed for defining which preo-
jection the grid is in, but will only produce those defining the pixel scale and the tiepoints (i.e. the
equivalent information found in the accompanying .tfw files).

-DWITH_GEOTIFF=[0|1]

See also:
(Geo)TIFF Caches

• Memcached Cache Support (optional)

-DWITH_MEMCACHE=[0|1]

The memcached cache backend is disabled by default. You can optionally enable it as it does not
depend on other external libraries (support is obtained through apr-util).

See also:
Memcache Caches

• Apache Module Options
You can disable the Apache module building if you only plan on using the FastCGI executable or the
seeder.

-DWITH_APACHE=[0|1]

MapCache adds itself to the version string reported by the Apache server. This can be disabled with:

-DWITH_VERSION_STRING=[0|1]

• Native MapServer Mode (experimental options)

MapCache is by default not linked to MapServer in any way, and communicates through the WMS
protocol only. For improved performance, it is possible to directly use the MapServer C library and
avoid an HTTP request and an image compression/decompression. This integration is still experi-
mental and should be used cautiously.

-DWITH_MAPSERVER=[0|1]

This will use the libmapserver.so from MapServer’s install directory. MapServer itself should be
compiled with thread-safety enabled, unless you plan to use the prefork MPM or FastCGI, and you
do not plan to use the seeder. For thread safety on the MapServer side, you might want to have a look
at tickets #4041 and #4044.

• Debug Mode (work in progress)

Note: Since the CMake migration, this has to be done.
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It enables some extra tests inside the code, and prints out many more debugging messages to the
server logs. you should probably not enable this unless you want to track down a problem happening
inside MapCache.

Windows Instructions

Warning: The following instructions are outdated. Windows builds are now handled identically to the Unix ones
with CMake.

These instructions target a Windows 7 setup with an Apache httpd compiled from source. The Apache MapCache
module has been successfully built with with Microsoft Visual Studio C++ versions 2003, 2008 and 2010.

Dependencies

Required:

• Apache / APR / APR-UTIL: included with Apache httpd installation

These can be installed manually, or using the appropriate Windows SDK from: http://www.gisinternals.com/sdk/

• PNG
• JPEG
• CURL

Recommended:

• PCRE: ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

Optional:

• FCGI: Needed to build a FastCGI program if you don’t want to run MapCache as an Apache module

• GDAL / GEOS: Needed to enable advanced seeding options (for only seeding tiles that intersect a given geo-
graphical feature)

• SQLITE: For enabling the SQLite backend storages

• TIFF: For enabling the TIFF backend storages

Configure Your Makefile

Open nmake.opt and modify the paths to point to the various libraries.

Compilation

$ nmake /f Makefile.vc

If successful, the resulting libraries and executables will be generated in their associated directories:

apache/
Apache module (mod_mapcache.dll)
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cgi/
FastCGI MapCache executable (mapcache.exe)

util/
MapCache utilities (mapcache_seed.exe)

Move the Module Into the Apache Directory

Copy the mod_mapcache.dll file into one of your Apache subdirectories.

Note: Although other modules are installed into /Apache/modules/, you should place mod_mapcache.dll wherever its
required dll files (libcurl.dll, zlib.dll, etc.) live, to avoid any loading issues later on.

Configure Your Installed Apache

• Modify your httpd.conf file to load the module:

LoadModule mapcache_module "D:/ms4w/Apache/cgi-bin/mod_mapcache.dll"

• Next, configure your MapCache directory with the following snippet:

<IfModule mapcache_module>
<Directory "D:/ms4w/apps/mapcache/">

Order Allow,Deny
Allow from all

</Directory>
MapCacheAlias /mapcache "D:/ms4w/apps/mapcache/mapcache.xml"

</IfModule>

• Configure your mapcache.xml file (see the Configuration section for help).

Warning: If you receive an error such as “cache disk: host system does not support file symbolic linking”
you should comment out the line “<symlink_blank/>” in your mapcache.xml file, such as the following:

<cache name="disk" type="disk">
<base>D:/ms4w/tmp/ms_tmp/cache</base>
<!--<symlink_blank/>-->

</cache>

• Finally, restart your Apache. You should see a message in Apache’s error.log with a message similar to:

[notice] Apache/2.2.21 (Win32) mod-mapcache/0.5-dev configured -- resuming normal␣
→˓operations
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Test Your MapCache Module

• In your web browser, visit the local MapCache demo page: http://127.0.0.1/mapcache/demo/. You should see a
clickable list of demo links:

tms
wmts
gmaps
kml
ve
wms

• Click on one of the demos (such as http://127.0.0.1/mapcache/demo/wmts). A map viewer should load, similar
to the image below.

• Zoom in a few times. Your configured cache location should be generating tiles (in this case inside
D:/ms4w/tmp/ms_tmp/cache/).
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6.1.2 Configuration File

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

The configuration file determines how mod-mapcache will serve incoming requests. It is an XML file comprising a list
of entries, as outlined here:

<mapcache>
<grid>....</grid>
<source>....</source>
<cache>...</cache>
<format>...</format>
<tileset>...</tileset>
<service>...</service>
<metadata>....</metadata>

</mapcache>

Note: The MapCache configuration file is only read when the Apache web server starts and the MapCache module is
loaded. If you modify this file you will have to restart Apache for the changes to take effect.
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Source

A source is a service mod-mapcache can query to obtain image data. This is typically a WMS server accessible by a
URL. (There are currently only WMS, WMTS and mapfile as sources, though others may be added later if the need
arises, see Data Sources).

<source name="vmap0" type="wms">

<!--
Extra parameters that will be added to the GetMap request. You can
specify any parameter here, e.g. VERSION if you want to override the
version of the WMS request.

The LAYERS parameter is mandatory.

Usual parameters here are FORMAT, or MAP if using MapServer.
-->
<getmap>
<params>
<FORMAT>image/png</FORMAT>
<LAYERS>basic</LAYERS>

</params>
</getmap>

<!-- HTTP URL and parameters to be used when making WMS requests -->
<http>

<!-- URL of the WMS service, without any parameters -->
<url>http://vmap0.tiles.osgeo.org/wms/vmap0</url>

<!--
HTTP headers added to the request. Make sure you know what you are
doing when adding headers here, as they take precedence over any
default headers curl will be adding to the request.

Typical headers that can be added here are User-Agent and Referer.

When adding a <key>value</key> element here, the request to the WMS
source will contain the

key: value\r\n

HTTP header.

You may also forward a header from the incoming client request using
the <MyHeader>{X-Header-To-Forward}<MyHeader> syntax.

-->
<headers>
<User-Agent>mod-mapcache/r175</User-Agent>
<Referer>http://www.mysite.com?param=2&amp;par=4</Referer>

</headers>

<!-- Timeout in seconds before bailing out from a request -->
(continues on next page)
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<connection_timeout>30</connection_timeout>
</http>

</source>

The name and type attributes are straightforward: type is “wms”, and name is the key by which this source will be ref-
erenced; <url> is the HTTP location where the service can be accessed; and <wmsparams> is a list of parameters that
will be added to the WMS request. You should probably at the very least add the FORMAT and LAYERS parameters.
By convention(?), WMS parameters are uppercase, and you should respect this convention in your configuration file.

This is where you can also override some default WMS parameters if needed. By default, the parameters that will
be used are: <REQUEST>GetMap</REQUEST> <SERVICE>WMS</SERVICE> <STYLES></STYLES> <VER-
SION>1.1.0</VERSION>

Cache

A cache is a location where received tiles will be stored.

<cache name="disk" type="disk">

<!-- base

Absolute filesystem path where the tile structure will be stored.

This directory needs to be readable and writable by the user running
Apache.

-->
<base>/tmp</base>

<!-- symlink_blank

Enable blank (i.e. uniform color) tile detection. Blank tiles will be
detected at creation time and linked to a single blank tile on disk
to preserve disk space.

-->
<symlink_blank/>

</cache>

<cache name="tmpl" type="disk" layout="template">
<!-- template

String template that will be used to map a tile (by tileset, grid
name, dimension, format, x, y, and z) to a filename on the filesystem.

The following replacements are performed:

- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : string concatenating the tile's dimension
- {ext} : tile's image-format filename extension
- {x},{y},{z} : tile's x,y,z values
- {inv_x},{inv_y},{inv_z} : inverted x,y,z values

(continues on next page)
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(For inverted x,y,z values, (inv_x = level->maxx - x - 1). This is
mainly used to support grids where one axis is inverted (e.g. the
Google schema) and you want to create on offline cache.)

* Note that this type of cache does not support blank-tile detection
and symlinking.

* Warning: It is up to you to make sure that the template you choose
creates a unique filename for your given tilesets (e.g. do not omit
the {grid} parameter if your tilesets reference multiple grids.)
Failure to do so will result in filename collisions!

-->
<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>

</cache>

<!-- memcache cache

Entry accepts multiple <server> entries.

Requires a fairly recent apr-util library and headers.
-->
<cache name="memcache" type="memcache">
<server>
<host>localhost</host>
<port>11211</port>

</server>
</cache>

<!-- sqlite cache

Requires building with "with-sqlite".
-->
<cache name="sqlite" type="sqlite3">
<!-- dbfile

Absolute filename path of the SQLite database file to use.

This file needs to be readable and writable by the user running the
MapCache instance.

-->
</cache>

<cache name="mbtiles" type="mbtiles">
<dbfile>/path/to/MapBox/tiles/natural-earth-1.mbtiles</dbfile>

</cache>
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Format

A format is an image format that will be used to return tile data to clients, and to store tile data on disk.

<format name="PNGQ_FAST" type ="PNG">

<!-- compression

PNG compression: best or fast

Note that "best" compression is CPU intensive for little gain over
the default default compression obtained by leaving out this tag.

-->
<compression>fast</compression>

<!-- colors

If supplied, this enables PNG quantization which reduces the number
of colors in an image to attain higher compression. This operation is
destructive, and can cause artifacts in the stored image.

The number of colors can be between 2 and 256.
-->
<colors>256</colors>

</format>
<format name="myjpeg" type ="JPEG">

<!-- quality

JPEG compression quality, ranging from 0 to 100.

95 produces high quality images with few visual artifacts. Values
under around 80 produce small images but with visible artifacts.
YMMV.

-->
<quality>75</quality>

<!-- photometric

Photometric interpretation of the bands created in the JPEG image.

Default is "ycbcr", which produces the smallest images. Can also be
"rgb", which usually results in x2 or x3 image sizes.

-->
<photometric>ycbcr</photometric>

</format>

<format name="PNG_BEST" type ="PNG">
<compression>best</compression>

</format>

<format name="mixed" type="MIXED">
(continues on next page)
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<transparent>PNG_BEST</transparent>
<opaque>JPEG</opaque>

</format>

Grid

A grid is the matrix that maps tiles onto an area, and consists of a spatial reference, a geographic extent, resolutions,
and tile sizes.

Mandatory Configuration Options

• <size>: The width and height of an individual tile, in pixels. Must be specified as positive integers separated by
a space character. The most common tile size is:

<size>256 256</size>

• <extent>: The geographical extent covered by the grid, in ground units (e.g. meters, degrees, feet, etc.). Must
be specified as 4 floating point numbers separated by spaces, ordered as minx, miny, maxx, maxy.

MapCache expects all of its extents to be given in lonlat, and does the translation to latlon at request time if
needed.

The (minx,miny) point defines the origin of the grid, i.e. the pixel at the bottom left of the bottom-left most tile
is always placed on the (minx,miny) geographical point.

The (maxx,maxy) point is used to determine how many tiles there are for each zoom level.

<extent>-180 -90 180 90</extent>

• <srs>: The projection of the grid, usually given by it EPSG identifier. This value isn’t used directly by MapCache
to compute reprojections; it is only used to look up which grid to use when receiving WMS requests.

<srs>epsg:4326</srs>

Note: This is the value that is passed on to the source when requesting a tile that is not already cached for the
current grid. You must make sure that the source that is queried is capable of returning image data for this SRS.

• <units>: The ground units used by the grid’s projection. This entry is not used directly by MapCache aside from
calculating scales for the WMTS capabilities document. Allowed values are:

– m : meters

– dd : decimal degrees

– ft : feet

<units>dd</units>

• <resolutions>: This is a list of resolutions for each of the zoom levels defined by the grid. This must be supplied
as a list of positive floating point values, separated by spaces and ordered from largest to smallest. The largest
value will correspond to the grid’s zoom level 0. Resolutions are expressed in “units-per-pixel”, depending on
the unit used by the grid (e.g. resolutions are in meters per pixel for most grids used in webmapping).
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<resolutions>0.703125000000000 0.351562500000000 0.175781250000000 8.
→˓78906250000000e-2 4.39453125000000e-2 2.19726562500000e-2 1.09863281250000e-2 5.
→˓49316406250000e-3 2.74658203125000e-3 1.37329101562500e-3 6.86645507812500e-4 3.
→˓43322753906250e-4 1.71661376953125e-4 8.58306884765625e-5 4.29153442382812e-5 2.
→˓14576721191406e-5 1.07288360595703e-5 5.36441802978516e-6</resolutions>

Optional Configuration Options

• <srsalias>: This tag can be specified multiple times, and allows the user to add multiple SRS entries for a given
grid. This is especially useful if the EPSG id for a given projection has evolved over time, or to support catalogs
other than the EPSG one (which is the only catalog supported by the WMS specification).

<srs>EPSG:310024802</srs>
<srsalias>IGNF:GEOPORTALFXX</srsalias>
<srsalias>EPSG:310024001</srsalias>

• <metadata>:

– <title>: The name of the grid, in human readable form. Appears in the capabilities documents.

<title>This grid covers the area blah blah blah</title>

– <WellKnownScaleSet>: See the WMTS keyword. This will add a WellKnownScaleSet entry to the WMTS
capabilities document. It is up to the user to make sure that the supplied resolutions for the grid actually
match the pre-defined WellKnownScaleSet.

<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleCRS84Quad</WellKnownScaleSet>

• <origin>: Specifies the origin of the grid. Valid values are top-left, bottom-left, top-right and bottom-right.

If not used, the grid will have the bottom-left corner as reference point.

<origin>top-left</origin>

Preconfigured Grids

There are three predefined grids you can use without defining them in the mapcache.xml file:

• The “WGS84” grid corresponds to a grid where the whole world is rendered on two 256x256-pixel tiles at level
0 (i.e. the (-180,-90,180,90) extent fits on a 512x256 image). It goes down to zoom level 17.

<grid name="WGS84">
<metadata>
<title>GoogleCRS84Quad</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleCRS84Quad</

→˓WellKnownScaleSet>
</metadata>
<extent>-180 -90 180 90</extent>
<srs>EPSG:4326</srs>
<units>dd</units>
<size>256 256</size>
<resolutions>0.703125000000000 0.351562500000000 0.175781250000000 8.

(continues on next page)
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→˓78906250000000e-2 4.39453125000000e-2 2.19726562500000e-2 1.09863281250000e-2 5.
→˓49316406250000e-3 2.74658203125000e-3 1.37329101562500e-3 6.86645507812500e-4 3.
→˓43322753906250e-4 1.71661376953125e-4 8.58306884765625e-5 4.29153442382812e-5 2.
→˓14576721191406e-5 1.07288360595703e-5 5.36441802978516e-6</resolutions>
</grid>

• The “g” grid may be used to overlay tiles on top of GoogleMaps, and is the default tiling scheme used in webmap-
ping applications. This grid goes down to zoom level 18. Level 0 is a single 256x256 tile. This grid’s default
SRS is EPSG:900913, which is non-standard but in wider use than than its official EPSG:3857 entry.

<grid name="g">
<metadata>
<title>GoogleMapsCompatible</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible</

→˓WellKnownScaleSet>
</metadata>
<extent>-20037508.3427892480 -20037508.3427892480 20037508.3427892480 20037508.

→˓3427892480</extent>
<srs>EPSG:900913</srs>
<srsalias>EPSG:3857</srsalias>
<units>m</units>
<size>256 256</size>
<resolutions>156543.0339280410 78271.51696402048 39135.75848201023 19567.

→˓87924100512 9783.939620502561 4891.969810251280 2445.984905125640 1222.
→˓992452562820 611.4962262814100 305.7481131407048 152.8740565703525 76.
→˓43702828517624 38.21851414258813 19.10925707129406 9.554628535647032 4.
→˓777314267823516 2.388657133911758 1.194328566955879 0.5971642834779395</
→˓resolutions>
</grid>

• The “GoogleMapsCompatible” grid is nearly identical to the “g” grid, except that its default SRS is EPSG:3857
instead of EPSG:900913.

<grid name="GoogleMapsCompatible">
<metadata>
<title>GoogleMapsCompatible</title>
<WellKnownScaleSet>urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatible</

→˓WellKnownScaleSet>
</metadata>
<extent>-20037508.3427892480 -20037508.3427892480 20037508.3427892480 20037508.

→˓3427892480</extent>
<srs>EPSG:3857</srs>
<srsalias>EPSG:900913</srsalias>
<units>m</units>
<size>256 256</size>
<resolutions>156543.0339280410 78271.51696402048 39135.75848201023 19567.

→˓87924100512 9783.939620502561 4891.969810251280 2445.984905125640 1222.
→˓992452562820 611.4962262814100 305.7481131407048 152.8740565703525 76.
→˓43702828517624 38.21851414258813 19.10925707129406 9.554628535647032 4.
→˓777314267823516 2.388657133911758 1.194328566955879 0.5971642834779395</
→˓resolutions>
</grid>
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Tileset

A tileset is the essential configuration item for mod-mapcache, and corresponds to a set of tiles coming from a source,
stored in a cache, and returned to the client in a given format.

<tileset name="test">

<!-- source

The "name" attribute of a preconfigured <source>.

If the tileset does not contain a <source> element, then it is
considered read-only and its cache will never be updated. In this
case, your seeder and webserver would have slightly different
mapcache.xml files.

Blank tiles may be dealt with by setting the <errors> directive to
"empty_img".

-->
<source>vmap0</source>

<!-- cache

The "name" attribute of a preconfigured <cache>
-->
<cache>sqlite</cache>

<!-- grid

The "name" attribute of a preconfigured <grid>.

You can also use the following notation to limit the area that will
be cached and served to clients:

<grid restricted_extent="-10 40 10 50">WGS84</grid>

This is better than using a grid with a limited extent, as in this
way the tiles that are already cached are not invalidated should you
want to modify the restricted extent in the future. When using the
restricted_extent attribute, you should give the corresponding
information to the client that will be using the service.

You can also limit the zoom levels that are cached/accessible by
using the `minzoom` and `maxzoom` attributes.

Moreover, a tolerance of five tiles is added by default to the
specified restricted_extent. This tolerance can be manually set with
`tolerance` attribute.

A grid may reference a ruleset to impose certain behaviour:

<grid ruleset="rules">4326</grid>

(continues on next page)

6.1. MapCache 1.12.1 450



MapServer Documentation, Release 7.6.6

(continued from previous page)

NOTE: When adding a <grid> element, you *MUST* make sure that the
source you have selected is able to return images in the grid's SRS.

-->
<grid restricted_extent="-10 40 10 50" minzoom="4" maxzoom="17">WGS84</grid>
<grid ruleset="rules">4326</grid>
<grid>g</grid>

<!-- You may store hidden intermediate levels of tiles to enable higher
quality output when reassembling tiles. This may be needed when
caching maps containing labels to avoid the text from becoming too
small or too blurry when requesting resolutions that are far away
from the native grid resolutions.

Supposing grid "mygrid" consists of 256x256 pixel tiles, with
resolutions r1,r2,r3,r4,...rn, MapCache will populate a hidden grid
called "mygrid_intermediate_0.5" containing tiles of size
256+256*0.5=384 with resolutions r1+(r2-r1)*0.5, r2+(r3-r2)*0.5, ...
r(n-1)+(r(n)-r(n-1)*0.5. That is, a tile with a given extent will be
stored once in a 256x256 tile, and once in a 384x384 one.

This intermediate grid is private to MapCache and will not be exposed
to tiled requests. It will only be used for WMS requests that require
horizontal assembling.

-->
<grid use_wms_intermediate_resolutions="true">mygrid</grid>

<!-- metadata

Optional metadata tags used for responding to GetCapabilities
requests. You can put anything here, but only the title, abstract and
keywords tags are currently used to populate the GetCapabilities
document.

-->
<metadata>
<title>vmap0 map</title>
<abstract>blabla</abstract>
<keywords>
<keyword>foo</keyword>
<keyword>bar</keyword>

</keywords>
</metadata>

<!-- watermark

Optional tag to add a watermark to the tiles *before* storing them to
cache. The supplied image MUST be exactly the same size as the size
as the tiles configured in the <grid>.

The supplied image is read when the configuration is loaded. If you
make changes to the image, they will NOT be reflected in tiles
already stored in the cache, nor on newly stored tiles, until the
server is restarted.

(continues on next page)
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-->
<watermark>/path/to/static/watermark.png</watermark>

<!-- format

(Optional) format to use when storing a tile. This should be a format
with high compression, e.g. PNG with compression "best", as the
compression operation is only done once at tile creation time. If
omitted, no recompression is applied to the image and mod-mapcache
will store the exact image received from the <source>.

Note that the <format> tag is mandatory if <metatile>, <metabuffer> or
<watermark> are supplied, as in those cases recompression must be
done.

-->
<format>PNG</format>

<!-- metatile

Number of columns and rows to use for metatiling. See
http://geowebcache.org/docs/current/concepts/metatiles.html

-->
<metatile>5 5</metatile>

<!-- metabuffer

Area around the tile or metatile that will be cut off to prevent some
edge artifacts. If this is specified, the configured source must be
instructed not to put any labels inside this area, as otherwise
labels will be truncated. (For MapServer, use the
"labelcache_map_edge_buffer" "-10" metadata entry, along with label
PARTIALS FALSE.)

-->
<metabuffer>10</metabuffer>

<!-- expires

Optional tile expiration value in seconds. This is expressed as
number of seconds after creation date of the tile. This is the value
that will be set in the HTTP Expires and Cache-Control headers, and
has no effect on the actual expiration of tiles in the caches (see
<auto_expire> for that). Defaults to 300 if unset.

-->
<expires>3600</expires>

<!-- auto_expire

Tiles older (in seconds) than this value will be re-requested and
updated in the cache. Note that this will only delete tiles from the
cache when they are accessed: You cannot use this configuration to
limit the size of the created cache. Note that, if set, this value
overrides the value given by <expires>. By default tiles don't expire.

(continues on next page)
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-->
<auto_expire>86400</auto_expire>

<!-- dimensions

Optional dimensions that should be cached.

The order of the <dimension> tags inside the <dimensions> block is
important, as it is used to create the directory structure for the
disk cache. That is, if you change the order of these values, any
tiles that have been previously cached are invalidated: They are not
removed from the cache, but they no longer exist for mod-mapcache.

-->
<dimensions>
<!-- values dimension

The example here creates a DIM1 dimension.

* WMS and WMTS clients can now add a &DIM1=value to their request
string. If they don't specify this key/value, the default will
be to use DIM1=foobar.

* The allowed values for DIM1= are foobar (it is important to add
the default value to the allowed values entry), foobarbaz, foo
and bar.

* The value specified for DIM1 will be forwarded to the WMS
source.

* The produced tile will be stored in the file
base/gridname/DIM1/value/xx/xx/xx/xx/xx/xx.png. That is, there
are as many different caches created as there are values in the
<values> tag.

-->
<dimension type="values" name="DIM1" default="foobar">foobar,foobarbaz,foo,bar</

→˓dimension>

<!-- regex dimension

The following creates a MAPFILE dimension, for using the same
mod-mapcache tileset with different MapServer mapfiles. The name
of the mapfiles need not be known to mod-mapcache, and can
therefore be created even after mod-mapcache has been started.

When a user passes a MAPFILE=/path/to/mapfile, the string
"/path/to/mapfile" is validated against the supplied (PCRE)
regular expression. The one in this example allows a name composed
of aphanumeric characters separated by slashes (/) and ending in
".map" ( [a-zA-Z0-9\./]*\.map$ ), but will fail if there are two
consecutive dots (..) in the path, to prevent filesystem traversal
( (?!.*\.\.) ).

-->
<dimension type="regex" name="MAPFILE" default="/path/to/mapfile.map">^(?!.*\.\.

→˓)[a-zA-Z0-9\./]*\.map$</dimension>

(continues on next page)
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<!-- intervals dimension

The syntax is the same as common-ows, i.e. a comma-separated list
of "min/max/resolution" entries, e.g:

* 0/5000/1000 allows the values 0,1000,2000,3000,4000 and 5000.
* 0/100/0 allows any values between 0 and 100.
* Both values can be combined: 0/5000/1000,0/100/0.

-->
<dimension name="ELEVATION" type="intervals" default="0">0/5000/1000</dimension>

<!-- Coming in a future version: support for ISO8601 date/time dimensions -->

</dimensions>
</tileset>

Services

Services are the type of request that mod-mapcache will respond to. You should, of course, enable at least one.

<service type="wms" enabled="true">
<!--

This service should actually be called "ogc". It is different from
the other services as it does not listen on the /wms endpoint, but
directly on /. It will intercept WMS GetMap requests that can be
satisfied from configured tilesets, and can optionally forward all
the rest to (an)other server(s).

TODO: This needs way more documenting.

<forwarding_rule name="foo rule">
<append_pathinfo>true</append_pathinfo>
<http>
<url>http://localhost/mapcacheproxy</url>

</http>
</forwarding_rule>
-->

<!-- full_wms

Configure response to WMS requests that are not aligned to a
tileset's grids. Responding to requests that are not in the SRS of a
configured grid is not supported, but this should never happen as
only the supported SRSs are publicized in the capabilities document.

Allowed values are:

- error : Return a 404 error (default).
- assemble : Build the full image by assembling cached tiles.
- forward : Forward the request to the configured source.

-->
(continues on next page)
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<full_wms>assemble</full_wms>

<!-- resample mode

Filter applied when resampling tiles for full WMS requests. Can be
either:

- nearest : Fastest, poor quality.
- bilinear : Slower, higher qulity.

-->
<resample_mode>bilinear</resample_mode>

<!-- format

Image format to use when assembling tiles.
-->
<format allow_client_override="true">myjpeg</format>

</service>
<service type="wmts" enabled="true"/>
<service type="tms" enabled="true"/>
<service type="kml" enabled="true"/>
<service type="gmaps" enabled="true"/>
<service type="ve" enabled="true"/>
<service type="demo" enabled="true"/>

Ruleset

A ruleset contains a set of rules to impose certain behaviour on zoom levels. It is referenced from a grid element inside
a tileset. See tileset for more information.

It is possible to define rules that:

• Puts limits on the visible extent of zoom levels.

<ruleset name="rules">

<!-- rule

A rule impose certain behaviour on one or more zoom levels.
There is no limit on the number of rules.

zoom_level attribute contains the levels affected by this rule.
A zoom level can not be referenced by multiple rules.

-->
<rule zoom_level="4 5 6 7">

<!-- visibility

Contains a collection of visible extents.

Tiles inside these extents will be fetched from the cache.
(continues on next page)
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Tiles outside will be created on the fly using configured
color and returned to the client in declared format,
but not stored in the cache.
This does not affect the extent announced to the client,
but will limit the potentially large number of blank tiles
stored in the cache when data only covers small subsets of
the total extent.

hidden_color attribute is the (hex) color (ARGB or RGB) of tiles
outside the visible extents. Default is a fully transparent tile.

-->
<visibility hidden_color="ff000000">

<!-- extent

One or more extents.

Extent must be given in the srs of the referencing grid.
-->
<extent>228355 6085026 953704 7686970</extent>

</visibility>
</rule>

<rule zoom_level="8 9 10">
<visibility>
<extent>335972 6099021 495792 6166722</extent>
<extent>309336 6166722 644513 6273268</extent>

</visibility>
</rule>

</ruleset>

Miscellaneous

<!-- default_format

Format to use when a client asks for an image that is dynamically
created from multiple cached tiles. Note that using a PNG format with
"best" compression is not recommended here as it is computationally
expensive. It is better to use a PNG format with "fast"compression here,
unless you have plenty of server CPU power and/or limited bandwidth.

-->
<default_format>JPEG</default_format>

<!-- services

Services that mod-mapcache will respond to. Each service is accessible
at the URL http://host/path/to/mapcache/{service}, e.g.
http://myhost/mapcache/wms for OGC WMS.

-->

(continues on next page)
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<!-- errors

Configure how errors will be reported back to a client:

- log : No error is reported back, except an HTTP error code.
- report : Return the error message to the client in textual format.
- empty_img : Return an empty image to the client. The actual error

code is in the X-Mapcache-Error HTTP header.
- report_img : Return an image with the error text included inside. (Not

implemented yet.)

The default setting is to report the error message back to the user. In
production, you might want to set this to "log" if you're paranoid, or
to "empty_img" if you want to play nice with non-conforming clients.

-->
<errors>report</errors>

<locker type="disk"> <!-- this is the default -->
<!--

Where to put lockfiles (to block other clients while a metatile is being
rendered). Defaults to /tmp. This location should be writable by the
Apache user.

-->
<directory>/tmp</directory>
<retry>0.01</retry> <!-- check back every .01 seconds -->
<timeout>60</timeout> <!-- Consider a lock stale after this many seconds.

May cause issues if WMS rendering time exceeds
this value. -->

</locker>

For specific information about locking, read this.

<!-- log_level

For CGI/FastCGI only; For the Apache module use the httpd.conf LogLevel
key.

Defines the verbosity of logged information. Valid values are:

- debug
- info
- notice
- warn (default)
- error
- crit
- alert
- emerg

-->
<log_level>warn</log_level>

<!-- auto_reload

(continues on next page)
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For FastCGI only. If set to true, the configuration will be
automatically reloaded if the configuration file has changed. Default is
false.

-->
<auto_reload>true</auto_reload>

<!-- use multiple threads when fetching multiple tiles (used for wms tile assembling -->
<threaded_fetching>true</threaded_fetching>

Metadata

The MapCache metadata section contains source contact information for the MapCache WMTS service. This informa-
tion maps to specific attributes in the WMTS GetCapabilities response returned by the server. See OGC WMTS Docs
for more on WMTS. The entire MapCache metadata section is optional.

• <metadata>:

Note: The first set of elements is for metadata about this specific server. These elements will appear in the
<ows:ServiceIdentification> section of the WMTS GetCapabilities response. Elements in this group include:
title, abstract, keyword, fees, and accessconstraints.

– <title>: Title of this resource, normally used for display to humans.

<title>World example Web Map Tile Services</title>

– <abstract>: Brief narrative description of this resource, normally used for display to humans.

<abstract>Example service that contains tiles of some world layers</abstract>

– <keyword>: Commonly used or formalised word(s) or phrase(s) used to describe the subject. Multiple
allowed, will appear under <ows:Keywords>.

<keyword>Administrative Boundaries</keyword>
<keyword>Geography</keyword>

– <fees>: Statement of fess required to use this service.

<fees>No fees for this service</fees>

– <accessconstraints>: Statement of fees required to use this service.

<accessconstraints>No fees for this service</accessconstraints>

Note: The second set of elements is for metadata about the organization operating this server. These ele-
ments will appear in the <ows:ServiceProvider> section of the WMTS GetCapabilities response. Elements in
this group include: providername, providerurl, contactcity, contactstateorprovince, contactpostcode, contact-
country, contactelectronicmailaddres, contactname, contactposition, contactphone, and contactfacsimile.

– <providername>: A unique identifier for the service provider organization.
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<providername>Facultat de Ciències - UAB - CREAF-MiraMon</providername>

– <providerurl>: Reference to the most relevant web site of the service provider.

<providerurl>https://www.creaf.uab.cat/miramon</providerurl>

– <contactorganization>: Address line for the location. FYI: This MapCache metadata element is very
poorly named, and maps to <ows:DeliveryPoint>.

<contactorganization>Av. de Can Domènech - Edifici F</contactorganization>

– <contactcity>: City of the location of the service provider.

<contactcity>Bellaterra</contactcity>

– <contactstateorprovince>: State or Province of the location of the service provider.

<contactstateorprovince>Barcelona</contactstateorprovince>

– <contactpostcode>: Zip or other postal code of the service provider.

<contactpostcode>08193</contactpostcode>

– <contactcountry>: Country of the physical address of the service provider.

<contactcountry>Spain</contactcountry>

– <contactelectronicmailaddres>: Address of the electronic mailbox of the responsible organization or
individual.

<contactelectronicmailaddres>joan.maso@uab.cat</contactelectronicmailaddres>

– <contactname>: Name of the responsible person.

<contactname>Joan Maso Pau</contactname>

– <contactposition>: Role or position of the responsible person.

<contactposition>Senior Software Engineer</contactposition>

– <contactphone>: Telephone number by which individuals can speak to the responsible organization or
individual.

<contactphone>+34 93 581 1312</contactphone>

– <contactfacsimile>: Telephone number of a facsimile machine for the responsible organization or individ-
ual.

<contactfacsimile>+34 93 581 4151</contactfacsimile>

Note: The next set of elements is specific to metadata for INSPIRE. Elements in this group include: in-
spire_profile, inspire_metadataurl, defaultlanguage.

– <inspire_profile>: Enables INSPIRE extended capabilities. Required for other INSPIRE elements to work.
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<inspire_profile/>

– <inspire_metadataurl>: External XML document or service that provides such an XML document con-
taining metadata for the service.

<inspire_metadataurl>http://www.creaf.uab.cat/miramon/pycsw?SERVICE=CSW</
→˓inspire_metadataurl>

– <defaultlanguage>: The default language of the service.

<defaultlanguage>eng</defaultlanguage>

6.1.3 Supported Tile Services

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

Author
Stephen Woodbridge

MapCache has the ability to serve tiles using a variety of different request protocols and tile-naming conventions. This
document describes these. The various services must be turned on in the mapcache.xml file for MapCache to respond
to these specific requests.

All services are available on the demo interface, from which you are highly encouraged to copy/paste the JavaScript
code to get started when creating your own pages accessing the MapCache tiles.

The following notation is used on this page and refers to object names in the mapcache.xml configuration file.

• <tileset_name> - name of a configured tileset

• <grid_name> - name of explicitly or implicitly defined grid

• <quadkey> - specific to the Virtual Earth tile service

• <z> - zoom level in zxy naming scheme

• <y> - row number in zxy naming scheme

• <x> - column number in zxy naming scheme

TMS Service

The TMS service uses a z/x/y tile naming scheme where:

• z is the zoom level

• x is the column number

• y is the row number

To activate the TMS service, add these lines to the mapcache.xml configuration file:

<service type="tms" enabled="true"/>

A “capabilities” document can be fetched via:
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http://myhost.com/mapcache/tms/1.0.0/

Tiles are requested using this scheme:

http://myhost.com/mapcache/tms/1.0.0/<tileset_name>@<grid_name>/<z>/<x>/<y>.png

For EPSG:3857, EPSG:900913, or GoogleMapsCompatible grids, with cell = [z/x/y]:

z0:

[0/0/0]

z1:

[1/0/0][1/1/0]
[1/0/1][1/1/1]

z2:

[2/0/0][2/1/0][2/2/0][2/3/0]
[2/0/1][2/1/1][2/2/1][2/3/1]
[2/0/2]...
[2/0/3]...

etc. . .

For EPSG:4326 or WGS84 grids:

Note: The OGC WMTS specification rather absurdly requires the GoogleCRS84Quad WellKnownScaleset to have a
level 0 whose extent is -180,-180,180,180. The default “WGS84” MapCache grid honors this, which may cause some
incompatibilities with software that expects level 0 to be 2x1 tiles with extent -180,-90,180,90

z0:

[0/0/0]

z1:

[1/0/0][1/1/0]

z2:

[2/0/0][2/1/0][2/2/0][2/3/0]
[2/0/1][2/1/1][2/2/1][2/3/1]

etc.
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KML Service

The KML service produces Super-Overlays for tilesets that are aligned to the WGS84 / EPSG:4326 grids. A Super-
Overlay is a KML file that links to an image URL, and to a set of other KML URLs corresponding to neighboring
resolutions. The KML service uses a z/x/y tile naming scheme where:

• z is the zoom level

• x is the column number

• y is the row number

Note: For the KML service to be functional, the TMS service must also be activated, as the KML super-overlays link
to images using this spec.

To activate the KML service, add these lines to the mapcache.xml configuration file:

<service type="tms" enabled="true"/>
<service type="kml" enabled="true"/>

Tiles are requested using this scheme:

http://myhost.com/mapcache/kml/<tileset_name>@<grid_name>/<z>/<x>/<y>.kml

OGC WMTS Service

To activate the WMTS service, add these lines to the mapcache.xml configuration file:

<service type="wmts" enabled="true"/>

This service follows the standard OGC WMTS requests and supports both the classical OGC-style key-value-pair
encoded and REST-style requests.

http://myhost.com/mapcache/wmts?SERVICE=WMTS&VERSION=1.0.0&...
http://myhost.com/mapcache/wmts/1.0.0/....

The capabilities are obtained through:

http://myhost.com/mapcache/wmts?service=wmts&request=getcapabilities&version=1.0.0
http://myhost.com/mapcache/wmts/1.0.0/WMTSCapabilities.xml

See also:
FeatureInfo Requests

See also:
Tileset Dimensions
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OGC WMS Service

MapCache responds to WMS version 1.1.1 requests, and has limited support for version 1.3.0 ones.

<service type="wms" enabled="true"/>

Note: Note that the WMS service is a little different than the other MapCache services, as it listens on the root of the
configured instance instead of on an additional endpoint (i.e. the service replies on http://server/mapcache/? and not
on http://server/mapcache/wms?). This behavior is required in order to enable proxying of unsupported requests while
offering a single endpoint for all OGC services.

Note: MapCache primarily supports version 1.1.1 WMS requests, but has limited support for the newer version 1.3.0
ones. For 1.3.0 requests, MapCache will determine which grid to use by using the CRS= parameter instead of the
SRS= one, and will correctly honor axis ordering for the EPSG reference systems that switch the usual x/y ordering of
the BBOX parameter.

See also:
FeatureInfo Requests

See also:
Tileset Dimensions

See also:
Tile Assembling

WMS requests follow the classical key-value-pair encoded style:

http://myhost.com/mapcache?SERVICE=WMS&VERSION=1.1.1&REQUEST=....

The capabilities document is returned by:

http://myhost.com/mapcache?service=wms&request=getcapabilities

Optional WMS Configuration Options

Untiled GetMap Support

Support for untiled (non WMS-C) GetMap requests can be enabled or disabled:

<service type="wms" enabled="true">
<!-- full_wms

Configure response to WMS requests that are not aligned to a tileset's grids.
Responding to requests that are not in the SRS of a configured grid is not␣

→˓supported, but
this should never happen as only the supported SRSs are publicized in the␣

→˓capabilities
document.

Allowed values are:
(continues on next page)
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- error: return a 404 error (default)
- assemble: build the full image by assembling the tiles from the cache
- forward: forward the request to the configured source.

-->
<full_wms>assemble</full_wms>

</service>

GetMap Image Format

You may explicitly set which image format should be returned to the client for an untiled WMS request (i.e. whenever
the tile data cannot be served directly from the caches but needs to go through a decompression/recompression phase).

<service type="wms" enabled="true">
<format allow_client_override="true/false">myjpegformat</format>

</service>

If the allow_client_override attribute is set to true, then MapCache will honor the FORMAT=. . . parameter sent by the
client. By default MapCache ignores this parameter and uses its configured image format.

Image Resampling Quality

<service type="wms" enabled="true">
<!-- resample mode
Filter applied when resampling tiles for full WMS requests.
Can be either:
- nearest : fastest, poor quality
- bilinear: slower, higher qulity
-->
<resample_mode>bilinear</resample_mode>

</service>

GoogleMaps XYZ Service

<service type="gmaps" enabled="true"/>

Prerequisites: Your WMS should be capable of producing images in the EPSG:900913 or EPSG:3857 SRS, i.e. it
should reference the “g” or “GoogleMapsCompatible” grid.

This is the minimal HTML page that should get you going. The important bits are in the urlTemplate (for V2) and
getTileURL (for V3) variables:

• /mapcache is the Apache path where MapCache handles requests.

• test@g is the tileset and grid name to use, joined by a ‘@’ - the {Z}/{X}/{Y} should be left alone.

• The final extension should be changed to “jpg” if you are using a JPEG format with your tileset.
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V2 API

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google/MapServer Tile Example</title>
<script src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAAnfs7bKE82qgb3Zc2YyS-
→˓oBT2yXp_ZAY8_ufC3CFXhHIE1NvwkxSySz_REpPq-4WZA27OwgbtyR3VcA"

type="text/javascript"></script>
<script type="text/javascript">

function load() {
if (GBrowserIsCompatible()) {
var urlTemplate = '/mapcache/gmaps/test@g/{Z}/{X}/{Y}.png';
var myLayer = new GTileLayer(null,0,18,{

tileUrlTemplate:urlTemplate,
isPng:true,
opacity:0.8 });

var map = new GMap2(document.getElementById("map"));
map.addControl(new GLargeMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(0, 0), 1);
map.addOverlay(new GTileLayerOverlay(myLayer));

}
}

</script>
</head>
<body onload="load()" onunload="GUnload()">

<div id="map" style="width: 500px; height: 500px"></div>
</body>
</html>

V3 API

The previous JavaScript for the V2 example should be slightly changed to:

var map = new google.maps.Map("<element-id>", { /*options*/ });
var layerOptions = {
getTileUrl: function(coord, zoom) {
return "/mapcache/gmaps/test@g/" + zoom + "/" + coord.x + "/" + coord.y + ".png";

},
tileSize: new google.maps.Size(256,256) // or whatever

};
map.overlayMapTypes.insertAt(0, new google.maps.ImageMapType(layerOptions));
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Virtual Earth tile service

Tiles are organized in one of two different layouts depending on whether they are using a Spherical Mercator projection,
like EPSG:3857 or EPSG:900913, or if they are using a geographical projection, like EPSG:4326.

Tiles are requested using this scheme:

http://myhost.com/mapcache/ve?LAYER=<tileset_name>@<grid_name>&tile=<quadkey>

For EPSG:3857, EPSG:900913, or GoogleMapsCompatible grids, <quadkey> are arranged:

z0:

[0]

http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=0

z1:

[00][01]
[02][03]

http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=00
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=01
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=02
http://myhost.com/mapcache/ve?LAYER=osm@GoogleMapsCompatible&tile=03

etc.

For EPSG:4326 or WGS84 grids, <quadkey> are arranged:

z1:

[0][1]

http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=0
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=1

z2:

[00][01][10][11]
[02][03][12][13]

http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=00
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=01
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=02
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=03
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=10
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=11
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=12
http://myhost.com/mapcache/ve?LAYER=osm@WGS84&tile=13

etc.
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6.1.4 Seeder

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

Author
Mathieu Coudert

Contact
mathieu.coudert at gmail.com

Mod-mapcache ships with an advanced seeding tool, whose main features are:
• configurable number of seeding threads, to speed up the rendering

• ability to reseed tiles older than a certain timestamp

• ability to seed tiles given a shapefile/OGR datasource

Usage

The seeding utility is named mapcache_seed, and is located under your install directory (default is /usr/local/bin).

Commandline Options

Options are available in short and long versions (e.g. -c or –config).

-b | –non-interactive: (added in MapCache 1.12.0) print progress messages on new lines.

-c | –config [file]: path to the mapcache.xml configuration file that contains the tilesets that need to be seeded.

-C | –cache [override]: Override cache used by selected tileset (useful for selectively seeding fallback/multitier caches).

-D | –dimension “DIMENSION=VALUE”: used to specify which dimension to use if the tileset supports dimensions.
Can be used multiple times to set multiple dimensions, e.g. -D “DIM1=VAL1” -D “DIM2=VAL2”.

-e | –extent minx,miny,maxx,maxy: bounding box of the area to seed.

-f | –force: force recreation of existing tiles.

-g | –grid [grid]: name of the grid that must be seeded (the selected tileset must reference the given grid).

-h | –help: show help.

-H | –header “HEADER=VALUE”: (added in MapCache 1.12.0) used to specify a key-value pair to set an HTTP
header in a forwarding rule or HTTP request. Can be used multiple times to set multiple headers, e.g. -H “CUSTOM-
HEADER1=VAL1” -H “CUSTOM-HEADER2=VAL2”.

-i | –iteration-mode: either “drill-down” or “scanline”. Default is to use drill-down for g, WGS84 and GoogleMap-
sCompatible grids, and scanline for others. Use this flag to override. (scanline was formerly referred to as “level-by-
level”)

-L | –log-failed [file]: Log failed tiles to file.

-m | –mode: the mode to use the seeder: “seed”, “delete” or “transfer”. Default is seed (mode: seed).

-M | –metasize: override metatile size while seeding, e.g. 8,8.
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-n | –nthreads: number of parallel threads that should be used to request tiles from the WMS source. The default is
1, but can be set higher if the WMS server can withstand parallel requests. (As a rule of thumb, the value chosen here
should never be much higher than the number of CPUs on the WMS server.)

Note: This option is incompatible with the -p | –nprocesses option.

-o | –older [timestamp|now]: only seed tiles that are older than the given value. The value can either be the string
“now”, or a date formatted like year/month/day hour:minute, e.g. “2011/01/31 20:45”.

Note: A full timestamp should be quoted.

-p | –nprocesses: number of parallel processes that should be used to request tiles from the WMS source.

Note: This option is incompatible with the -n | –nthreads option.

Warning: When working with multiple processes (-p switch) and SQLite cache backends, some errors may
appear under high concurrency when writing to the SQLite database (error: SQL logic error or missing database
(1)). Upgrading to SQLite >= 3.7.15 seems to resolve this issue.

-P | –percent [number]: Percent of failed requests allowed from the last 1000 before we abort (default: 1%, set to 0
to abort on first error).

-q | –quiet: don’t print progress messages to the standard output.

-R | –retry-failed [file]: Retry failed requests logged to file by –log-failed.

-t | –tileset [tileset]: name of the tileset that must be seeded.

-v | –verbose: print verbose debugging info (if compiled in).

-x | –transfer: the tileset to transfer when seeder is run in transfer mode.

-z | –zoom minzoom,maxzoom: start and end zoom levels that must be seeded.

Optional Commandline Options When Using OGR/GEOS

At compile time, if OGR and GEOS are found on the system, the seeder tool will support additional options to seed
only the tiles that cover an arbitrary geographical area. Important: Note that, for the time being, the OGR datasource
should be in the same projection as the grid you are seeding, as there is no automatic reprojection from the datasource
projection to the grid projection.

-d | –ogr-datasource [ogr_datasource]: OGR connection to the spatial source. Consult the OGR documentation for
all that is supported. In the simplest case (e.g. a Shapefile), this is just the full filename of the shapefile.

-l | –ogr-layer [ogr_layer]: for datasources that contain multiple layers (e.g. PostGIS, with multiple tables), determines
which layer will be used.

-s | –ogr-sql [ogr_sql]: OGR SQL expression that can be applied (see OGR SQL).

-w | –ogr-where [ogr_where]: SQL “where” expression to filter out returned values. This would typically be used to
select only the geometry of a given country if the datasource contains all the world contours.
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Important Note

The seeding utility must be run under the same user account as the user running the webserver. This is required so
the permissions on the tiles created by the seeder are accessible by the webserver, and conversely so the seeder has the
rights to write files to directories created by the webserver.

A sample seeding session goes like this:

[user@host]$ sudo www-data
[www-data@host]$ /path/to/mapcache/src/mapcache_seed -c /path/to/www/conf/mapcache.xml␣
→˓[[options]]
[www-data@host]$ logout
[user@host]$

Examples

Seed the “osm” tileset with the “g” (Google / Web Mercator) grid:

./src/mapcache_seed -c mapcache.xml -t osm -g g

Seed levels 0 through 12:

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12

Given a shapefile that contains the world country contours, seed only the areas that are covered by land (i.e. skip the
oceans). Also, use 4 request threads in parallel:

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -n 4 -d /path/to/seed.shp

Same as beforehand, but only seed the USA (notice the quote usage, required to create valid SQL with a single-quoted
‘US’:

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -n 4 -d /path/to/seed.shp -w
→˓"FIPS_A2='US'"

Reseed levels 0 to 12 (this could also be done by deleting the cache for levels 0 to 12 and doing a classic seed, but doing
so this way does not slow down access from web clients):

./src/mapcache_seed -c mapcache.xml -t osm -g g -z 0,12 -o now

6.1.5 Cache Types

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

This document details the different cache backends that can be used to store tiles.
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Disk Caches

The disk based cache is the simplest cache to configure, and the one with the the fastest access to existing tiles. It is
ideal for small tile repositories, but will often cause trouble for sites hosting millions of tiles, as the number of files or
directories may rapidly overcome the capabilities of the underlying filesystem. Additionally, the block size chosen for
the filesystem must closely match the mean size of a stored tile: ideally, any given tile should just fit inside a filesystem
block, so as not to waste storage space inside each block, and not have to use up multiple blocks per tile.

The location of the files/directories has to be readable and writable by the user running the tile server.

Common Configuration

Disk caches are added via

<cache name="disk_cache" type="disk" layout="...">
...
<symlink_blank/>
<creation_retry>3</creation_retry>

</cache>

All caches except the “template” one support the <symlink_blank/> option which (depending on platform availability)
will detect tiles of uniform color and create a symbolic link to a single uniform color tile instead of storing the actual
blank data in the tile’s file.

All caches support the <creation_retry> option, which specifies the number of times MapCache should retry if it failed
to create a tile’s file or symlink. The default is to fail immediately: You may want to set this to a positive value if using
a network mounted filesystem where transient errors are common.

Default Structure

The default disk cache stores tiles in a structure nearly identical to the file/directory hierarchy used by TileCache. The
only change is that a top level directory structure corresponding to the name of the grid and the eventual value of the
tileset’s dimensions is added.

This cache is capable of detecting blank (i.e. uniform color) tiles and using a symbolic link to a single blank tile to
gain disk space.

<cache name="disk" type="disk">
<base>/tmp</base>
<symlink_blank/>

</cache>

The only two configuration keys are the root directory where the tiles will be stored, and a key to activate the symbolic
linking of blank tiles.
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Arcgis Compatible Structure

<cache name="arcgis" type="disk" layout="arcgis">
<base>/tmp</base>
<symlink_blank/>

</cache>

This layout creates a tile structure compatible with an arcgis exploded cache. Tiles will be stored in files that resemble
/tmp/{tileset}/{grid}/{dimension}/L{z}/R{y}/C{x}.{ext}

Worldwind Compatible Structure

<cache name="worldwind" type="disk" layout="worldwind">
<base>/tmp</base>
<symlink_blank/>

</cache>

This layout creates a tile structure compatible with a worldwind cache. Tiles will be stored in files that resemble
/tmp/{tileset}/{grid}/{dimension}/{z}/{y}/{y}_{x}.ext

Template Structure

The template based disk cache allows you to create (or reuse an existing) tile structure that you define in advance. The
<template> parameter takes a string argument where various template entries will be replaced at runtime by the correct
value for each tile to store.

<cache name="tmpl" type="disk" layout="template">
<!-- template

string template that will be used to map a tile (by tileset, grid name, dimension,
format, x, y, and z) to a filename on the filesystem
the following replacements are performed:
- {tileset} : the tileset name
- {grid} : the grid name
- {dim} : a string that concatenates the tile's dimension
- {dim:dimname}: use the dimension value for dimname e.g. {dim:year} for␣

→˓year=2021 would
use the string 2021

- {ext} : the filename extension for the tile's image format
- {x},{y},{z} : the tile x,y,z values
- {inv_x}, {inv_y}, {inv_z} : inverted x,y,z values (inv_x = level->maxx - x - 1).

→˓ This
is mainly used to support grids where one axis is inverted (e.g. the google␣

→˓schema)
and you want to create on offline cache.

* Note that this type of cache does not support blank-tile detection and␣
→˓symlinking.

* Warning: It is up to you to make sure that the template you chose creates a␣
(continues on next page)
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→˓unique
filename for your given tilesets. e.g. do not omit the {grid} parameter if your
tilesets reference multiple grids. Failure to do so will result in filename
collisions !

-->
<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>

</cache>

Berkeley DB Caches

The Berkeley DB cache backend stores tiles in a key-value flat-file database, and therefore does not have the disad-
vantages of disk caches with regards to the number of files stored on the filesystem. As the image blobs are stored
contiguously, the block size chosen for the filesystem has no influence on the storage capacity of the volume.

Note that for a given bdb cache, only a single database file is created, which will store the tiles of its associated tilesets
(i.e. there is not a database file created per tileset, grid, and/or dimension). If you need to store different tilesets to
different files, then use multiple dbd cache entries. It is not possible to use multiple database files for tileset grids or
dimensions.

The Berkeley DB based caches are a bit faster than the disk based caches during reads, but may be a bit slower during
concurrent writes if a high number of threads all try to insert new tiles concurrently.

<cache name="bdb" type="bdb">
<!-- base (required)
absolute filesystem path where the Berkeley DB database file is to be stored.
this directory must exist, and be writable

-->
<base>/tmp/foo/</base>

<!-- key_template (optional)
string template used to create the key for a tile entry in the database.
defaults to the value below. you should include {tileset}, {grid} and {dim} here
unless you know what you are doing, or you will end up with mixed tiles

<key_template>{tileset}-{grid}-{dim}-{z}-{y}-{x}.{ext}</key_template>
-->

</cache>

SQLite Caches

There are two different SQLite caches that vary by the database schema they create and query. SQLite caches have the
advantage that they store tiles as blobs inside a single database file, and therefore do not have the disadvantages of disk
caches with regards to the number of files stored. As the image blobs are stored contiguously, the block size chosen for
the filesystem has no influence on the storage capacity of the volume.

The SQLite based caches are a bit slower than the disk based caches, and may have write-locking issues at seed time if
a high number of threads all try to insert new tiles concurrently.
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Default Schema

Tiles are stored in the configured SQLite file created by MapCache with

create table if not exists tiles(
tileset text,
grid text,
x integer,
y integer,
z integer,
data blob,
dim text,
ctime datetime,
primary key(tileset,grid,x,y,z,dim)

);

<cache name="sqlite" type="sqlite3">
<dbfile>/path/to/dbfile.sqlite3</dbfile>

</cache>

You may also add custom SQLite pragmas that will be executed when first connecting to a SQLite db, e.g. to override
some compiled-in SQLite defaults

<cache name="sqlite" type="sqlite3">
<dbfile>/tmp/sqlitefile.db</dbfile>
<pragma name="max_page_count">10000000</pragma>

</cache>

<pragma> entries will result in a call to

PRAGMA max_page_count = 1000000;

Custom Schema

This cache can use any database schema: It is up to you to supply the SQL that will be executed to select or insert a
new tile.

In order to use such functionality you should supply the SQL queries that will be used against your custom schema. It
is up to you to make sure your queries are correct and will return the correct data for a given tileset, dimension, grid,
x, y and z.

<cache name="sqlitecustom" type="sqlite3">
<dbfile>/tmp/sqlitefile.db</dbfile>
<queries>
<create>create table if not exists tiles(tileset text, grid text, x integer, y␣

→˓integer, z integer, data blob, dim text, ctime datetime, primary key(tileset,grid,x,y,
→˓z,dim))</create>

<exists>select 1 from tiles where x=:x and y=:y and z=:z and dim=:dim and␣
→˓tileset=:tileset and grid=:grid</exists>

<get>select data,strftime("%s",ctime) from tiles where tileset=:tileset and␣
→˓grid=:grid and x=:x and y=:y and z=:z and dim=:dim</get>

<set>insert or replace into tiles(tileset,grid,x,y,z,data,dim,ctime) values␣
(continues on next page)
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→˓(:tileset,:grid,:x,:y,:z,:data,:dim,datetime('now'))</set>
<delete>delete from tiles where x=:x and y=:y and z=:z and dim=:dim and␣

→˓tileset=:tileset and grid=:grid</delete>
</queries>

</cache>

Note that for the <get> query that returns data for a given tile, the first returned argument is considered to be the image
blob, and the second optional one a timestamp representing the creation timestamp for that tile.

Blank Tile Detection

MapCache’s SQLite caches support the detection and storage of blank (i.e. uniform color) tiles, and will store a quadru-
plet of the rgba color component in the data blob instead of the compressed image data itself. That quadruplet will be
transformed on-the-fly to a 1-bit palleted PNG before being returned to the client.

<cache name="sqliteblank" type="sqlite3">
<dbfile>/tmp/sqlitefile.db</dbfile>
<detect_blank/>

</cache>

Note: SQLite files created with this option will only be fully understood by MapCache as each tile blob may contain
a #rgba quadruplet instead of the expected PNG or JPEG data.

Using Multiple SQLite Database Files

You may want to split an SQLite cache into multiple files, for organisational purposes, or to keep the size of each file
to a reasonable limit if caching large amounts of data.

In order to do so you may use a template to determine which file should be used for a given file:

<cache name="sqlite" type="sqlite3">
<dbfile>/path/to/{grid}/{dim}/{tileset}.sqlite3</dbfile>

</cache>

You may also limit the x and y number of tiles to be stored inside a single database file:

<cache name="sqlite" type="sqlite3">
<dbfile>/path/to/{grid}/{dim}/{tileset}/{z}/{x}-{y}.sqlite3</dbfile>
<xcount>1000</xcount>
<ycount>1000</ycount>

</cache>

In this case you should include the {x}, {y} and {z} replacements in the template determining the file to use. In the pre-
vious example, tile (z,x,y)=(15,3024,1534) would be stored in a file named /path/to/g/mytileset/15/3000-1000.sqlite3
and tile (5,2,8) would be stored in a file named /path/to/g/mytileset/5/0-0.sqlite3

The following template keys are available for operating on the given tile’s x,y, and z:

• {z} is replaced by the zoom level.

• {x} is replaced by the x value of the leftmost tile inside the SQLite file containing the requested tile.
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• {inv_x} is replaced by the x value of the rightmost tile.

• {y} is replaced by the y value of the bottommost tile.

• {inv_y} is replaced by the y value of the topmost tile.

• {div_x} is replaced by the index of the SQLite file starting from the left of the grid (i.e. {div_x} = {x}/<xcount>).

• {inv_div_x} same as {div_x} but starting from the right.

• {div_y} is replaced by the index of the SQLite file starting from the bottom of the grid (i.e. {div_y} =
{y}/<ycount>).

• {inv_div_y} same as {div_y} but starting from the top.

Note: {inv_x} and {inv_div_x} will probably be rarely used, whereas {inv_y} and {inv_div_y} will find some usage
by people who prefer to index their dbfiles files from top to bottom rather than bottom to top.

Note: Dimension values, replacing {dim} template, can’t hold multiple directory names (i.e. can’t contain ‘/’ sepa-
rator). This constraint can be bypassed under specific conditions that are further detailled in ../../development/rfc/ms-
rfc-131.

In some cases, it may be desirable to have a precise hand on the filename to use for a given x,y,z tile lookup, e.g. to look
for a file named Z03-R00003-C000009.sqlite3 instead of just Z3-R3-C9.sqlite3. The <dbfile> entry supports formatting
attributes, following the Unix printf syntax ( c.f.: http://linux.die.net/man/3/printf ), by suffixing each template key with
“_fmt”, e.g.:

<cache name="mysqlite" type="sqlite3">
<dbfile

x_fmt="%08d"
inv_y_fmt="%08d"

>/data/{tileset}/{grid}/L{z}/R{inv_y}/C{x}.sqlite</template>
</cache>

Note: If not specified, the default behavior is to use “%d” for formatting.

Using Multiple pyramids in multiple SQLite database files (Z-top)

Another way of structuring SQLite caches consists in organizing them in multiple pyramids: one single pyramid on
lowest zoom levels, then as many pyramids as tiles at a given zoom level, e.g. 8, referred to as top zoom level. Each of
these pyramids starts with one tile at that top zoom level, then four tiles at next zoom level and so on. Of course the
top zoom level value is configurable.

The main advantage of this structure is when a user wants to work offline with only a subset of the World: Only two
(relatively small) SQLite files have to be copied.

Following is a figure illustrating this cache structure.
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From a configuration point of view, a multi-SQLite cache of class ztop is specified with a <top> tag defining the top
zoom level. Templates keys are needed to determine SQLite files to use.

<!-- multi-pyramid, multi-SQLite, starting at zoom level 8 -->
<cache name="z8" type="sqlite3">
<top>8</top>
<dbfile top_fmt="%02d">/path/to/z{top}-{top_x}-{top_y}.sqlite3</dbfile>

</cache>

<!-- single cache from zoom levels 0 to 7 -->
<cache name="z1-7" type="sqlite3">
<dbfile>/path/to/z0-0-0.sqlite3</dbfile>

</cache>

<!-- Composite cache made of all caches to address all zoom levels -->
<cache name="zfull" type="composite">
<cache min-zoom="0" max-zoom="7">z1-7</cache>
<cache min-zoom="8">z8</cache>

</cache>

The following template keys are available:

• {top} is replaced by the top zoom level.

• {top_x} is replaced by the x value of the tile index at top zoom level, starting from left

• {top_y} is replaced by the y value of the tile index at top zoom level, starting from bottom

• {inv_top_x} is replaced by the x value of the tile index at top zoom level, starting from right

• {inv_top_y} is replaced by the y value of the tile index at top zoom level, starting from top

The following formatting attributes are available: top_fmt, top_x_fmt, top_y_fmt, inv_top_x_fmt, inv_top_y_fmt. They
default to “%d”.
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MBTiles Caches

This cache type is a shortcut to the previous custom schema SQLite cache, with pre-populated SQL queries that corre-
spond to the MBTiles specification.

Although the default MBTiles schema is very simple, MapCache uses the same multi- table schema found in most
downloadable MBTiles files, notably to enable storing blank (i.e. uniform) tiles without duplicating the encoded image
data (in the same way the disk cache supports tile symlinking).

The MBTiles schema is created with:

create table if not exists images(
tile_id text,
tile_data blob,
primary key(tile_id));

create table if not exists map (
zoom_level integer,
tile_column integer,
tile_row integer,
tile_id text,
foreign key(tile_id) references images(tile_id),
primary key(tile_row,tile_column,zoom_level));

create table if not exists metadata(
name text,
value text); -- not used or populated yet

create view if not exists tiles
as select
map.zoom_level as zoom_level,
map.tile_column as tile_column,
map.tile_row as tile_row,
images.tile_data as tile_data

from map
join images on images.tile_id = map.tile_id;

<cache name="mbtiles" type="mbtiles">
<dbfile>/Users/XXX/Documents/MapBox/tiles/natural-earth-1.mbtiles</dbfile>

</cache>

Note: Contrarily to the standard SQLite MapCache schema, the MBTiles db file only supports a single tileset per
cache. The behavior if multiple tilesets are associated to the same MBTiles cache is undefined, and will definitely
produce incorrect results.

Warning: When working with multiple processes (-p switch) and SQLite cache backends, some errors may
appear under high concurrency when writing to the SQLite database (error: SQL logic error or missing database
(1)). Upgrading to SQLite >= 3.7.15 seems to resolve this issue.
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Memcache Caches

This cache type stores tiles to an external memcached server running on the local machine or accessible on the network.
This cache type has the advantage that memcached takes care of expiring tiles, so the size of the cache will never exceed
what has been configured in the memcache instance.

Memcache support requires a rather recent version of the apr-util library. Note that under very high loads (usually only
attainable on synthetic benchmarks on localhost), the memcache implementation of apr-util may fail and start dropping
connections for some intervals of time before coming back online afterwards.

You can add multiple <server> entries.

<cache name="memcache" type="memcache">
<server>
<host>localhost</host>
<port>11211</port>

</server>
</cache>

Note: Tiles stored in memcache backends are configured to expire in 1 day by default. This can be overridden at the
tileset level with the <auto_expire> keyword.

To limit the memory used by blank tiles inside the memcache instance, you may enable blank tile detection, in which
case a #rgba quadruplet will be stored to the cache instead of the actual image data. MapCache will convert that
on-the-fly to a 1-bit palleted PNG image before returning it to the client.

<cache name="memcache" type="memcache">
<detect_blank/>
...

</cache>

(Geo)TIFF Caches

TIFF caches are the most recent addition to the family of caches, and use the internal tile structure of the TIFF specifi-
cation to access tile data. Tiles can be stored in JPEG only (TIFF does not support PNG tiles).

As a single TIFF file may contain many tiles, there is a drastic reduction in the number of files that have to be stored on
the filesystem, which solves the major shortcomings of the disk cache. Another advantage is that the same TIFF files
can be used by programs or WMS servers that only understand regular GIS raster formats, and be served up with high
performance for tile access.

The TIFF cache should be considered read-only for the time being. Write access is already possible but should be
considered experimental as there might be some file corruption issues, notably on network filesystems. Note that until
all the tiles in a given TIFF file have been seeded/created, the TIFF file is said to be “sparse” in the sense that it is missing
a number of JPEG tiles. As such, most non-GDAL based programs will have problems opening these incomplete files.

Note that the TIFF tile structure must exactly match the structure of the grid used by the tileset, and the TIFF file names
must follow strict naming rules.
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Defining the TIFF File Sizes

The number of tiles stored in each of the horizontal and vertical directions must be defined:

• <xcount> the number of tiles stored along the x (horizontal) direction of the TIFF file

• <ycount> the number of tiles stored along the y (vertical) direction of the TIFF file

<cache name="tiff" type="tiff">
<xcount>64</xcount>
<ycount>64</ycount>
...

</cache>

Setting Up the File Naming Convention

The <template> tag sets the template to use when looking up a TIFF file name given the x,y,z of the requested tile

<cache name="tiff" type="tiff">
<template>/data/tiffs/{tileset}/{grid}/L{z}/R{inv_y}/C{x}.tif</template>
...

</cache>

The following template keys are available for operating on the given tile’s x,y, and z:

• {x} is replaced by the x value of the leftmost tile inside the TIFF file containing the requested tile.

• {inv_x} is replaced by the x value of the rightmost tile.

• {y} is replaced by the y value of the bottommost tile.

• {inv_y} is replaced by the y value of the topmost tile.

• {div_x} is replaced by the index of the TIFF file starting from the left of the grid (i.e. {div_x} = {x}/<xcount>).

• {inv_div_x} same as {div_x} but starting from the right.

• {div_y} is replaced by the index of the TIFF file starting from the bottom of the grid (i.e. {div_y} =
{y}/<ycount>).

• {inv_div_y} same as {div_y} but starting from the top.

Note: {inv_x} and {inv_div_x} will probably be rarely used, whereas {inv_y} and {inv_div_y} will find some usage
by people who prefer to index their TIFF files from top to bottom rather than bottom to top.

Customizing the Template Keys

In some cases, it may be desirable to have a precise hand on the filename to use for a given x,y,z tile lookup, e.g. to look
for a file named “Z03-R00003-C000009.tif” instead of just “Z3-R3-C9.tif”. The <template> entry supports formatting
attributes, following the Unix printf syntax ( c.f.: http://linux.die.net/man/3/printf ), by suffixing each template key
with “_fmt”, e.g.:
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<cache name="tiff" type="tiff">
<template

x_fmt="%08d"
inv_y_fmt="%08d"

>/data/tiffs/{tileset}/{grid}/L{z}/R{inv_y}/C{x}.tif</template>
</cache>

Note: If not specified, the default behavior is to use “%d” for formatting.

Setting JPEG Compression Options

An additional optional parameter defines which JPEG compression should be applied to the tiles when saved into the
TIFF file:

• <format> the name of the (JPEG) format to use

See also:
JPEG Format

<cache name="tiff" type="tiff">
...
<format>myjpeg</format>

</cache>

In this example, assuming a grid using 256x256 tiles, the files that are read to load the tiles are tiled TIFFs with JPEG
compression, whose size are 16384x16384. The number of files to store on disk is thus reduced 4096 times compared
to the basic disk cache.

Using a Specific Locker

MapCache needs to create a lock when writing inside a TIFF file to ensure that no two instances are updating the same
file concurrently. By default the global MapCache locker will be used; you can, however, configure a different locking
mechanism or behavior by configuring it inside the TIFF cache itself.

See also:
Locking Mechanisms

<cache name="tiff" type="tiff">
...
<locker> .... </locker>

</cache>
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GeoTIFF Support

If compiled with GeoTIFF and write support, MapCache will add referencing information to the TIFF files it creates,
so that the TIFF files can be used in any GeoTIFF-enabled software. Write support does not produce full GeoTIFFs
with the definition of the projection used, but only the pixel scale and tie-points, i.e. what is usually found in .tfw files.

For reference, here is the gdalinfo output on a TIFF file created by MapCache when compiled with GeoTIFF support:

LOCAL_CS["unnamed",
UNIT["metre",1,

AUTHORITY["EPSG","9001"]]]
Origin = (-20037508.342789247632027,20037508.342789247632027)
Pixel Size = (156543.033928040997125,-156543.033928040997125)
Metadata:
AREA_OR_POINT=Area

Image Structure Metadata:
COMPRESSION=YCbCr JPEG
INTERLEAVE=PIXEL
SOURCE_COLOR_SPACE=YCbCr

Corner Coordinates:
Upper Left (-20037508.343,20037508.343)
Lower Left (-20037508.343,-20037508.343)
Upper Right (20037508.343,20037508.343)
Lower Right (20037508.343,-20037508.343)
Center ( 0.0000000, 0.0000000)

REST Caches

The following cache types store and retrieve tiles through standard HTTP GET and PUT operations, and can be used
to store tiles in popular cloud storage providers.

Pure REST Cache

This cache type can be used to store tiles to a WebDAV enabled server. You must provide a template URL that should
be used when accessing a tile with a given x,y,z, etc. . .

<cache name="myrestcache" type="rest">
<url>https://myserver/webdav/{tileset}/{grid}/{z}/{x}/{y}.{ext}</url>

</cache>

Specifying HTTP Headers

You can customize which headers get added to the HTTP request, either globally for every HTTP request, or specifically
for a given type of request (i.e. when getting, setting or deleting a tile):

<cache name="myrestcache" type="rest">
<url>https://myserver/webdav/{tileset}/{grid}/{z}/{x}/{y}.{ext}</url>
<headers>
<Host>my-virtualhost-alias.domain.com</Host>

</headers>
(continues on next page)

6.1. MapCache 1.12.1 481



MapServer Documentation, Release 7.6.6

(continued from previous page)

<operation type="put">
<headers>
<X-my-specific-put-header>foo</X-my-specific-put-header>

</headers>
</operation>
<operation type="get">
<headers>
<X-my-specific-get-header>foo</X-my-specific-get-header>

</headers>
</operation>
<operation type="head">
<headers>
<X-my-specific-head-header>foo</X-my-specific-head-header>

</headers>
</operation>
<operation type="delete">
<headers>
<X-my-specific-delete-header>foo</X-my-specific-delete-header>

</headers>
</operation>

</cache>

Amazon S3 REST Caches

The REST cache has been specialized to enable access to Amazon S3, in order to add the layer of authentica-
tion/authorization needed for that platform.

<cache name="s3" type="s3">
<url>https://foo.s3.amazonaws.com/tiles/{tileset}/{grid}/{z}/{x}/{y}/{ext}</url>
<headers>
<Host>foo.s3.amazonaws.com</Host>

</headers>
<id>AKIE3SDEIT6TUG8DXEQI</id>
<secret>5F+dGsTfsdfkjdsfSDdasf4555d/sSff56sd/RDS</secret>
<region>eu-west-1</region>
<operation type="put">
<headers>
<x-amz-storage-class>REDUCED_REDUNDANCY</x-amz-storage-class>
<x-amz-acl>public-read</x-amz-acl>

</headers>
</operation>

</cache>

The <id> <secret> and <region> tags are required and are obtained and configured through your Amazon management
console. You should read the documentation as to what headers you want to be adding to your requests depending on
your use case (the supplied example hosts tiles on cheaper storage, and allows them to be publicly accessible).
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Microsoft Azure REST Caches

The REST cache has been specialized to enable access to Azure storage, in order to add the layer of authentica-
tion/authorization needed for that platform.

<cache name="azure" type="azure">
<url>https://foo.blob.core.windows.net/tiles/{tileset}/{grid}/{z}/{x}/{y}/{ext}</url>
<headers>
<Host>foo.blob.core.windows.net</Host>

</headers>
<id>foo</id>
<secret>foobarcccccccccccccccccccccyA==</secret>
<container>tiles</container>

</cache>

The <id> <secret> and <container> tags are required and are obtained and configured through your management con-
sole. You should read the documentation as to what headers you want to be adding to your requests depending on your
use case.

Google Cloud Storage REST Caches

The REST cache has been specialized to enable access to Google Cloud Storage, in order to add the layer of authenti-
cation/authorization needed for that platform.

<cache name="google" type="google">
<url>https://storage.googleapis.com/mytiles-mapcache/{tileset}/{grid}/{z}/{x}/{y}.{ext}

→˓</url>
<access>GOOGPGDWFDG345SDFGSD</access>
<secret>sdfgsdSDFwedfwefr2345324dfsGdsfgs</secret>
<operation type="put">
<headers>
<x-amz-acl>public-read</x-amz-acl>

</headers>
</operation>

</cache>

The <access> and <secret> tags are required and are obtained and configured through your management console. You
should read the documentation as to what headers you want to be adding to your requests depending on your use case.
Note that support for Google Cloud Storage uses its Amazon compatibility layer.

Meta Caches

These cache types do not store tiles themselves, but rather delegate the storage of a tile to a number of child caches
based on a set of rules or behaviors. These caches are mostly useful for large MapCache deployments across multiple
instances, with shared cache backends (i.e. dedicated memcache servers, and network mounted filer filesystems).
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Composite Caches

This cache uses different child caches depending on the tile’s zoom level, and can be used for example to store low
zoom-level tiles to permanent storage, and higher zoom-level tiles to a temporary (i.e. memcache) cache.

<cache name="mydisk" ...> ... </cache>
<cache name="mymemcache" ...> ... </cache>
<cache name="composite" type="composite">

<cache grids="mygrid,g">mycache</cache>
<cache min-zoom="0" max-zoom="8">mydisk</cache>
<cache min-zoom="9">mymemcache</cache>

</cache>
<tileset ...>

<cache>composite</cache>
...

</tileset>

For each tile, the caches are tested in the order in which they have been defined in the configuration file, and the first one
to satisfy the min/max zoom and grids constraints is used. It’s up to the user to make sure the succession of min/max
zoom values and grids makes sense, e.g.:

<cache name="composite" type="composite">
<cache min-zoom="0">cache1</cache>
<cache min-zoom="9">this_cache_will_never_be_used</cache>

</cache>

Fallback Caches

These cache types will return tiles from the first configured subcache that does not return an error. They can be used
when one of the caches is prone to error conditions (e.g. remote REST caches, memcache)

<cache name="fallback" type="fallback">
<cache>mymemcache</cache>
<cache>mysqlitecache</cache>

</cache>

When writing a tile to such a cache, it will be written to all the child caches.

Multitier Caches

These cache types can be used to combine fast/expensive caches with slow/cheap ones.

<cache name="multitier" type="multitier">
<cache>fast</cache>
<cache>cheap</cache>

</cache>

If a given tile isn’t found in the first child cache, it will be read from the second child cache and copied into the first
child cache for subsequent accesses. This cache type is meant to be used when the first cache does automatic pruning
of the least recently used tiles (i.e. a memcache one).

When writing a tile to such a cache, it will be written to the last child.
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Cache Combinations

All these meta caches can be combined together to fine tune the availability and performance depending on storage
costs, time to recreate missing tiles, etc. . .

<cache name="slow_and_permanent" type="sqlite">...</cache>
<cache name="fast_and_transient" type="memcache">...</cache>
<cache name="low_zooms" type="multitier">
<cache>fast_and_transient</cache>
<cache>slow_and_permanent</cache>

<cache>
<cache name="mycache" type="composite">
<cache maxzoom="12">low_zooms</cache>
<cache>fast_and_transient</cache>

<cache>
<tileset>
<cache>mycache</cache>
...

</tileset>

In the previous example, all tiles are primarily accessed from a memcache instance, however the lower zoom level tiles
are backed up to a permanent SQLite cache which will be used to populate the fast memcache cache e.g. on restarts.

Riak Caches

requires https://github.com/trifork/riack

<cache name="myriak" type="riak">
<server>
<host>riakhost</host>
<port>12345</port>
<bucket>mytiles</bucket>

</server>
</cache>

6.1.6 Image Formats

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

MapCache allows you to configure how the image should be saved to a cache once it has been requested from a source.
The JPEG format should mostly be used for raster imagery, whereas the PNG format is most useful for vector based
imagery where there are large uniform areas.
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JPEG Format

The JPEG format saves tiles to JPEG. You can configure the JPEG compression level (from 1 to 100) and the colorspace
that should be used (RGB or YCbCr)

<format name="myjpeg" type="JPEG">
<quality>85</quality>
<photometric>ycbcr</photometric>

</format>

• quality: This is the typical JPEG quality setting. Values under 50 produce lighter images but with notable
compression artifacts. 100 should be avoided as it produces very heavy images.

• photometric: By default the YCbCr colorspace is used as it produces images that tend to be 2 to 3 times lighter.
Use RGB if you don’t want the default.

PNG Format

The PNG format creates PNG images, with optional quantization (reduction of the number of colors to create an 8-bit
palleted PNG).

<format name="mypng" type="PNG">
<compression>fast</compression>
<colors>256</colors>

</format>

• compression: Choose which zlib compression to apply to the image data. Recognized values are “fast” and
“best”. Omit the key to use the default zlib compression.

• colors: Number of colors to use for quantization. Omit this key to produce 24 or 32 bit RGB/RGBA PNGs, or
set to a value between 2 and 256 to create an 8-bit palleted PNG. The quantization step is destructive: There is
no guarantee that pixels will not have a noticeable shift in color in the case when the tile contains many colors.

Mixed Format

There is a third special format which mixes JPEG and PNG compression depending on the contents of the image.
This format allows creation of caches for raster imagery using JPEG compression (which is more efficient) on zones
with imagery data, and PNG compression (which supports transparency) on zones with no imagery or on a boundary
between imagery and emptiness.

<format name="mymixed" type="MIXED">
<opaque>myjpeg</opaque>
<transparent>mypng</transparent>

</format>

• opaque: The format to use when the image has only fully opaque pixels

• transparent: The format to use when the image has some transparent or semi-opaque pixels.
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6.1.7 Tileset Dimensions
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Introduction

WMS layers in MapServer can support dimensions, see WMS Dimension for details. MapCache also supports dimen-
sions for tilesets.

Storing separate tile caches for different dimensions has several practical use cases such as creating caches for different
spatial boundaries, elevations, or time periods. It also provides a mechanism for dynamically switching Mapfiles based
on a dimension value.

MapCache uses Dimensions to:

• create the directory structure of disk and SQLite caches, using the template structure with {dim} replacement
entry, see Template Structure in Disk Caches and Using Multiple SQLite Database Files in SQLite Caches.

• create the database structure of SQLite caches, using custom schema with :dim replacement entry, see Custom
Schema in SQLite Caches.

• build requests to WMS sources: any dimensions specified for a tileset will be forwarded on to their WMS source
whenever a cache miss occurs.
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Enabling Dimension Support in MapCache

Dimensions are enabled in the configuration file at the Tileset level. Each tileset may define its own dimensions with a
<dimensions> section which includes one or several <dimension> elements.

Dimension Attributes

Several attributes are defined for the <dimension> element.

• name (required): The name by which the dimension is referred to in a WMS request (minus the dim_ prefix as
specified in WMS 1.1.1 Specification).

• default (required): The default value for the dimension if none is explicitly provided in the WMS request.

• type (required): MapCache defines several ways for specifying a dimension: values, regex, sqlite, postgresql,
elasticsearch and time. They are described in the following sections.

• unit (optional): dimension unit. This information is used only in the GetCapabilities response.

Dimension Types

Several types of dimensions are supported by MapCache: Values, Regex, SQLite, PostgreSQL, ElasticSearch and Time.
They can be classified into two groups depending on how dimension values are defined:

• First level dimension types: Values and Regex. Dimensions values are statically specified in the configuration
file.

• Second level dimensions types: SQLite, PostgreSQL, ElasticSearch and Time. Dimensions values are stored in
a dynamic backend (SQLite file, PostgreSQL database or ElasticSearch index) so that an update in the dimension
values does not involve a server restart.

First Level Dimensions

First level dimensions define values in the configuration file.

Values Dimensions

A Values type dimension lists all possible dimension values. The name of the dimension is used as the key in a query
string when accessing through a WMS or WMTS service, for example &DIM1=foobarbaz.

If a client does not provide the dimension as a key value pair the default will be used (in this example foobar).

<tileset name="LayerName">
<source>LayerSource</source>
<cache>sqlite</cache>
<grid>GoogleMapsCompatible</grid>
<format>PNG</format>
<metatile>5 5</metatile>
<metabuffer>10</metabuffer>
<dimensions>

<dimension type="values" name="DIM1" default="foobar">
<value>foobar</value>
<value>foobarbaz</value>

(continues on next page)
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<value>foo</value>
<value>bar</value>

</dimension>
</dimensions>

</tileset>

Regex Dimensions

An alternative to the hard-coded list of values is to use regular expressions.

The following example creates a MAPFILE dimension, for using the same MapCache tileset with different MapServer
Mapfiles. The name of the Mapfiles need not be known to MapCache, and can therefore be created even after MapCache
has been started.

When a user passes a MAPFILE=/path/to/mapfile, the string /path/to/mapfile is validated against the supplied (PCRE)
regular expression. The one in this example allows a name composed of alphanumeric characters separated by slashes
(/) and finishing with “.map” ( [a-zA-Z0-9./]*.map$ ) , but will fail if there are two consecutive dots (..) in the path, to
prevent file-system traversal.

<dimension type="regex" name="MAPFILE" default="/path/to/mapfile.map">
<regex>^(?!.*\.\.)[a-zA-Z0-9\./]*\.map$</regex>

</dimension>

Second Level Dimensions

Second level dimensions store values in a dynamic back-end, a SQLite file, a PostgreSQL database or an ElasticSearch
index. This allows for adding new dimension values without modifying MapCache configuration file, which otherwise
would need to restart the server.

SQLite Dimensions

In a SQLite dimension, dimension values are stored in a SQLite file. Moreover, each value references a list of internal,
or sub-dimension values which are used to query cache.

For example, let’s define a “sensor” dimension whose allowed values represent various Earth observation spacecrafts.
A WMS request with that dimension may contain, e.g.: . . .&dim_sensor=spot&. . . In this example, each sensor refer-
ences several data along an internal “product” sub-dimension. An example of the “sensor” dimension back-end contents
is represented in the following table:

Sensor dimension Product sub-dimension
spot spot-img1
spot spot-img2
phr phr-img1
phr phr-img2
phr phr-img3

The WMS request occurs at the “sensor” dimension level. The cache query is performed at the “product” sub-dimension
level. In case of a cache miss, the “product” sub-dimension values are used to query the data source.
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Querying the back-end may then result in returning multiple sub-dimension values, each of which referencing distinct
tiles. Assembling these tiles is described in Tile Assembly Policies section below.

A SQLite dimension is configured by specifying three elements:

• <dbfile>: Location of the SQLite file implementing the dimension

• <list_query>: SQL query returning all sub-dimension values for the dimension, e.g. spot-img1, spot-img2,
phr-img1, phr-img2 and phr-img3 in the “sensor” dimension example.

• <validate_query>: SQL query returning the list of sub-dimension values for a given dimension value, e.g. spot-
img1 and spot-img2 for the spot dimension value in the “sensor” dimension example.

<!-- "sqlite" dimension

This example defines a "sensor" dimension whose possible values are
stored in the /data/sensor.sqlite SQLite file. The default value is
"phr".

A WMS request with that dimension may contain, e.g.
"... &dim_sensor=spot& ..."

-->
<dimension type="sqlite" name="sensor" default="phr">

<!-- Access Point -->
<dbfile>/data/sensor.sqlite</dbfile>

<!-- All-values Query -->
<list_query>

SELECT distinct(product) FROM dim
</list_query>

<!-- Selected-values Query -->
<validate_query>

SELECT product FROM dim
WHERE sensor=:dim

</validate_query>

</dimension>

As illustrated in this example with :dim placeholder, queries can contain template entries. See Templating dimension
queries section below.

PostgreSQL Dimensions

PostgreSQL dimensions are very similar to SQLite dimensions. In particular, the sub-dimension feature described in
the section above is also available with PostgreSQL dimensions. They differ only in the back-end implementation which
is a PostgreSQL database, and in the way they are configured. A PostgreSQL dimension is configured by specifying
three elements:

• <connection>: Connection information of the PostgreSQL database implementing the dimension, as expected
by the PQconnectdb() function of the libpq - C library.

• <list_query>: SQL query returning all sub-dimension values for the dimension, e.g. spot-img1, spot-img2,
phr-img1, phr-img2 and phr-img3 in the “sensor” dimension example.
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• <validate_query>: SQL query returning the list of sub-dimension values for a given dimension value, e.g. spot-
img1 and spot-img2 for the spot dimension value in the “sensor” dimension example.

<!-- "postgresql" dimension

This example defines a "sensor" dimension whose possible values are
stored in the postgresql://mapcache:mapcache@localhost:5433/mapcache
PostgreSQL database. The default value is "phr".

A WMS request with that dimension may contain, e.g.
"... &dim_sensor=spot& ..."

-->
<dimension type="postgresql" name="sensor" default="phr">

<!-- Access Point -->
<connection>
host=localhost user=mapcache password=mapcache dbname=mapcache port=5433

</connection>

<!-- All-values Query -->
<list_query>SELECT distinct(product) FROM dim</list_query>

<!-- Selected-values Query -->
<validate_query>SELECT product FROM dim WHERE sensor=:dim</validate_query>

</dimension>

As illustrated in this example with :dim placeholder, queries can contain template entries. See Templating dimension
queries section below.

ElasticSearch Dimensions

ElasticSearch dimensions are similar to SQLite or PostgreSQL dimensions. In particular, the sub-dimension feature de-
scribed in the section above is also available with ElasticSearch dimensions. ElasticSearch main difference with SQLite
and PostgreSQL is its query language, Query-DSL, based on JSON instead of SQL. Therefore, <list_query> and <val-
idate_query> elements shall contain queries expressed in that language. Inserting JSON data in XML configuration
may need to encapsulate it in a <![CDATA[ . . . ]]> element.

In addition, the complex structure of ElasticSearch responses, also expressed in JSON, raises the need for extraction
instructions to get sub-dimension values from query responses.

For example, let’s assume that this ElasticSearch query:

{ "size": 0,
"aggs": { "distinct_product": { "terms": { "field": "product/keyword" } } },
"query": { "term": { "sensor": "phr" } }

}

returns this response:

{ "took": 0,
"timed_out": false,
"_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 },
"hits": { "total": 5, "max_score": 0, "hits": [] },

(continues on next page)
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"aggregations": {
"distinct_product": {

"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [

{ "key": "phr_img1", "doc_count": 1 },
{ "key": "phr_img2", "doc_count": 1 },
{ "key": "phr_img3", "doc_count": 1 }

]
}

}
}

The expected sub-dimension values are then:

[ "phr_img1", "phr_img2", "phr_img3" ]

This list is obtained by extracting the aggregations item from the outer dictionary, then distinct_product , then buckets.
Finally the key item is to be extracted from each dictionary of the bucket list. The extraction instructions take the form of
a path-like list of keywords to be used to extract sub-dimension values from JSON response provided by ElasticSearch:

[ "aggregations", "distinct_product", "buckets", "key" ]

This is specified in the MapCache configuration file by way of new XML elements, namely <list_response> and
<validate_response>, containing extraction instructions respectively for <list_query> and <validate_query> queries.

An ElasticSearch dimensions is defined by specifying five elements:

• <http>: Connection information of the ElasticSearch index implementing the dimension. This element contains
two sub-elements:

– <url>: Search URL of the ElasticSearch index

– <headers>: HTTP headers needed to access the ElasticSearch index. It must contain the tag: <Content-
Type>application/json</Content-Type>.

• <list_query>: Query DSL query for getting all sub-dimension values for the dimension. This query is expressed
in JSON format and may need to be escaped in a <![CDATA[ . . . ]]> tag.

• <validate_query>: Query DSL query for getting the list of sub-dimension values for a given dimension value.
This query is expressed in JSON format and may need to be escaped in a <![CDATA[ . . . ]]> tag.

• <list_response>: List of successive keywords needed to extract actual sub-dimension values from the raw Elas-
ticSearch response to the <list_query> query.

• <validate_response>: List of successive keywords needed to extract actual sub-dimension values from the raw
ElasticSearch response to the <validate_query> query.

<!-- "elasticsearch" dimension

This example defines a "sensor" dimension whose possible values are
stored in the http://localhost:9200/sensor ElasticSearch index. The
default value is "phr".

A WMS request with that dimension may contain, e.g.
"... &dim_sensor=spot& ..."

-->
(continues on next page)
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(continued from previous page)

<dimension type="elasticsearch" name="sensor" default="phr">

<!-- Access Point -->
<http>
<url>http://localhost:9200/sensor/_search</url>
<headers>
<Content-Type>application/json</Content-Type>

</headers>
</http>

<!-- Selected-values Query -->
<validate_query><![CDATA[
{ "size": 0,
"aggs": {
"products": { "terms": { "field": "product.keyword" } }

},
"query": { "term": { "sensor": ":dim" } }

}
]]></validate_query>

<!-- Selected-values Response Extration Instructions -->
<validate_response><![CDATA[
[ "aggregations", "products", "buckets", "key" ]

]]></validate_response>

<!-- All-values Query -->
<list_query><![CDATA[
{ "size": 0,
"aggs": {
"products": { "terms": { "field": "product.keyword" } }

}
}

]]></list_query>

<!-- All-values Response Extration Instructions -->
<list_response><![CDATA[
[ "aggregations", "products", "buckets", "key" ]

]]></list_response>
</dimension>

As illustrated in this example with :dim placeholder, queries can contain template entries. See Templating dimension
queries section below.
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Time Dimensions

MapCache supports WMTS and WMS requests that include a TIME parameter, for both timestamps and time intervals.
See MS RFC 96: Time Dimension Support in MapCache Tilesets initial proposal for further details.

Up to Mapcache 1.6.1, defining a Time dimension involves a SQLite back-end. Two elements must be provided:

• <dbfile>: Location of the SQLite file implementing the time dimension

• <query>: SQL query returning the list of available timestamp values within a given time interval. In that query,
start time and end time are represented by the respective placeholders :start_timestamp and :end_time_stamp.
Returned values shall be in yyyy-mm-ddThh:mm:ssZ time format, as specified in RFC 3339, but restricted to
UTC.

From MapCache 1.8 on, dynamic back-ends for Time dimensions can be PostgreSQL databases or ElasticSearch indices
in addition to SQLite files. Configuring a Time dimension with a specific back-end is made by setting a time=”true”
attribute within a SQLite, PostgreSQL or ElasticSearch dimension configuration.

Still, MapCache keeps an (almost) backward compatible configuration of Time dimension with an implicit SQLite
back-end. Example in the following section highlights differences.

Time values used to query the dynamic back-end are expressed in Unix time, i.e. the number of seconds that have
elapsed since January 1, 1970 (midnight UTC). Returned times should be MapServer compatible strings (see the WMS
Time documentation for details).

Querying the back-end with an interval may result in returning multiple timestamp values, each of which referencing
distinct tiles. Assembling these tiles is described in Tile Assembly Policies section below.
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Configuring a Time Dimension using a default SQLite back-end

<!-- "time" dimension

This example defines a "time"␣
→˓dimension whose possible values

are stored in the /path/to/mapcache-
→˓time.sqlite SQLite file. The

default value is "2010".

A WMS request with that dimension␣
→˓may contain, e.g. "...

&time=1999-08-11T11:03:07Z/2001-09-
→˓21T08:17:56Z& ..."
-->
<dimension type="time" name="time"␣
→˓default="2010">
<dbfile>/path/to/mapcache-time.sqlite

→˓</dbfile>
<query>

SELECT strftime("%Y-%m-%dT%H:%M:
→˓%SZ",ts) FROM time

WHERE ts &gt;= datetime(:start_
→˓timestamp,"unixepoch")

AND ts &lt;= datetime(:end_
→˓timestamp,"unixepoch")

ORDER BY ts DESC
</query>

</dimension>

<!-- "time" dimension

This example defines a "time"␣
→˓dimension whose possible values

are stored in the /path/to/mapcache-
→˓time.sqlite SQLite file. The

default value is "2010".

A WMS request with that dimension␣
→˓may contain, e.g. "...

&time=1999-08-11T11:03:07Z/2001-09-
→˓21T08:17:56Z& ..."
-->
<dimension type="time" name="time"␣
→˓default="2010">
<dbfile>/path/to/mapcache-time.sqlite

→˓</dbfile>
<validate_query>

SELECT strftime("%Y-%m-%dT%H:%M:
→˓%SZ",ts) FROM time

WHERE ts &gt;= datetime(:start_
→˓timestamp,"unixepoch")

AND ts &lt;= datetime(:end_
→˓timestamp,"unixepoch")

ORDER BY ts DESC
</validate_query>
<list_query>SELECT strftime("%Y-%m-%dT

→˓%H:%M:%SZ", ts) FROM time</list_query>
</dimension>

Up to MapCache 1.6.1 From MapCache 1.8 on

Configuring a Time dimension using an explicit back-end

<!-- "time" dimension, "new-style" definition using a SQLite back-end

This example defines a "time" dimension whose possible values are
stored in the /data/times.sqlite SQLite file. The default value is
"d1".

A WMS request with that dimension may contain, e.g.
"... &time=1999-08-11T11:03:07Z/2001-09-21T08:17:56Z& ..."

-->
<dimension type="sqlite" name="time" default="d1" time="true">
<dbfile>/data/times.sqlite</dbfile>
<list_query>SELECT strftime("%Y-%m-%dT%H:%M:%SZ", ts) FROM timedim</list_query>
<validate_query>

(continues on next page)
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(continued from previous page)

SELECT strftime("%Y-%m-%dT%H:%M:%SZ",ts) FROM timedim
WHERE ts &gt;= datetime(:start_timestamp,"unixepoch")

AND ts &lt;= datetime(:end_timestamp,"unixepoch")
ORDER BY ts DESC

</validate_query>
</dimension>

<!-- "time" dimension, "new-style" definition using a PostgreSQL back-end

This example defines a "time" dimension whose possible values are
stored in the postgresql://mapcache:mapcache@localhost:5433/time
PostgreSQL database. The default value is "d1".

A WMS request with that dimension may contain, e.g.
"... &time=1999-08-11T11:03:07Z/2001-09-21T08:17:56Z& ..."

-->
<dimension type="postgresql" name="time" default="d1" time="true">
<connection>
host=localhost user=mapcache password=mapcache dbname=times port=5433

</connection>
<list_query>SELECT to_char(ts, 'YYYY-MM-DD"T"HH24:MI:SS"Z"') FROM timedim</list_query>
<validate_query>

SELECT to_char(ts,'YYYY-MM-DD"T"HH24:MI:SS"Z"') FROM timedim
WHERE ts &gt;= to_timestamp(:start_timestamp)

AND ts &lt;= to_timestamp(:end_timestamp)
ORDER BY ts DESC

</validate_query>
</dimension>

<!-- "time" dimension, "new-style" definition using an ElasticSearch back-end

This example defines a "time" dimension whose possible values are
stored in the http://localhost:9200/times ElasticSearch index. The
default value is "d1".

A WMS request with that dimension may contain, e.g.
"... &time=1999-08-11T11:03:07Z/2001-09-21T08:17:56Z& ..."

-->
<dimension type="elasticsearch" name="time" default="d1" time="true">
<http>
<url>http://localhost:9200/times/_search</url>
<headers>
<Content-Type>application/json</Content-Type>

</headers>
</http>

<list_query><![CDATA[
{ "query": { "match_all": { } } }

]]></list_query>
<list_response><![CDATA[
[ "hits", "hits", "_source", "ts" ]

(continues on next page)
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(continued from previous page)

]]></list_response>

<validate_query><![CDATA[
{ "query": {

"range": {
"ts": { "gte": :start_timestamp, "lte": :end_timestamp }

}
},
"sort": { "ts": { "order": "desc" } },
"script_fields": {
"iso_ts": {
"lang": "painless",
"source": "SimpleDateFormat f=new SimpleDateFormat(params.fmt); f.

→˓setTimeZone(params.tz); return (f.format(doc.ts.value.getMillis()))",
"params": {
"fmt": "yyyy-MM-dd'T'HH:mm:ss'Z'",
"tz: "UTC"

}
}

}
}

]]></validate_query>
<validate_response><![CDATA[
[ "hits", "hits", "fields", "iso_ts", 0 ]

]]></validate_response>

</dimension>

Templating dimension queries

<validate_query> and <list_query> can contain template entries that will be replaced at runtime by correct values.
Valid template entries are:

• :dim Dimension value as provided in incoming HTTP request

• :tileset Tileset name

• :gridsrs Grid SRS

• :minx, :miny, :maxx, :maxy Parameters for rectangular extent

• :start_timestamp, :end_timestamp Parameters for time interval

Tile Assembly Policies

When several time or sub-dimension values are returned from a dimension back-end query, the resulting tile is an
assembly of all simple tiles matching each value. The way simple tiles are assembled is set with the <assembly_type>
tag of the <dimensions> element. Currently only two values are implemented in MapCache:

• none: No assembly is performed, the resulting tile is the first retrieved simple tile. This is the default value.

• stack: Every pixel of the resulting tile is filled with the first opaque pixel found in all simple tiles in their retrieval
order, e.g.:
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Table 1: Assembly type: stack

Product #1 Product #2 stack assembly of Products #1 & #2

The resulting tile may or may not be cached depending on the value of the <store_assemblies> tag of the <dimensions>
element. The two possible values are true and false. Default is true.

The <subdimensions_read_only> tag of the <dimensions> element indicates whether data source shall be queried in
case of cache miss. The two possible values are true and false. Default is false.

<dimensions>
<assembly_type>stack</assembly_type>
<store_assemblies>true</store_assemblies>
<subdimensions_read_only>false</subdimensions_read_only>
<dimension >...</dimension>

</dimensions>

Tile Fetching Policies

MapCache can be configured to fetch all subtiles to assemble either within a single thread or with as many threads as
subtiles to fetch. This is set with the <assembly_threaded_fetching> tag of the <dimensions> element. This tag has
an optional maxzoom attribute to specify that multi-threaded fetching should be disabled from a given zoom level.

<dimensions>
<assembly_threaded_fetching maxzoom="5">true</assembly_threaded_fetching>
<!-- ... -->
<dimension >...</dimension>

</dimensions>

Querying Dimensions at map level

By default, MapCache runs <validate_query> of second level dimensions for every requested tile of a map. When
this involves slow remote PostgreSQL or ElasticSearch servers, it may be desirable to send the query only once for the
whole map. A configuration option at the <dimension> level exists to enable this behaviour:

<dimension>
<wms_querybymap>true</wms_querybymap>
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Storing Dimensions

When using a disk based cache tiles will be stored in a folder structure similar to
base/gridname/DIM1/value/xx/xx/xx/xx/xx/xx.png (where DIM1 is the dimension value).

The order of the <dimension> tags inside the <dimensions> tag is important as it is used to create the directory structure
for the disk cache. If you change the order of these values, any tiles that have been previously cached are invalidated
(they will be unavailable to MapCache but not deleted).

Templates can be used to change the folder structure for example:

<cache name="tmpl" type="disk">
<template>/tmp/template-test/{tileset}#{grid}#{dim}/{z}/{x}/{y}.{ext}</template>

</cache>

Templates can also be used to change Sqlite database names e.g.

<!-- the following will create databases named TilesetName-#DimensionValue.db -->
<cache name="sqlite" type="sqlite3">
<dbfile>{tileset}-{dim}.db</dbfile>
<detect_blank />

</cache>

Accessing Tile Caches with Dimensions

To retrieve a tile with a specific dimension, add the dimension name and value to the request query string e.g.
&DIM1=value

Only WMS and WMTS clients support passing dimensions to MapCache. Other tile services such as gmaps
(GoogleMaps), tms, and KML do not support dimensions. WMTS however does allow access using a x,y,z addressing
scheme, so by using URL rewriting on the web server tile-based clients (for example an OpenLayers ol.source.XYZ
layer) can load a dimension-based tileset.

# a URL such as the following
http://servername/tiles/13/3914/2687.png
# can be rewritten into a WMTS request - note WMTS uses {z}/{y}/{x} rather than {z}/{x}/
→˓{y}
# so these values need to be swapped
http://servername/mapcache/wmts/1.0.0/layername/default/dimension/GoogleMapsCompatible/
→˓13/2687/3914.png

Seeding Tile Caches with Dimensions

The MapCache seeding tool allows specific dimensions to be seeded with the following syntax:

mapcache_seed -c mapcache_config.xml -t tileset1 -e -1187000,6695000,-605000,7450000 -z␣
→˓7,10 --dimension DIMENSION_NAME=DIMENSION_VALUE
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6.1.8 HTTP Requests

HTTP configuration blocks are used in multiple places in the MapCache configuration.

Specifying the URL

The simplest HTTP configuration block requires a single <url> child element:

<http>
<url>http://server/path?key=value</url>

</http>

Timeouts

You may configure the timeouts after which an HTTP request is abandoned:

<http>
<url>http://server/path?key=value</url>

<!-- timeout in seconds to wait while establishing a connection. This may be needed for
firewalled MapCache or HTTP instances -->
<connection_timeout>30</connection_timeout>

<!-- total maximum time allowed for the whole request. Includes the time needed to
transfer data down the wire -->
<timeout>60</timeout>

</http>

Headers

You can insert custom headers in the request, or forward headers received from the client request:

<http>
<url>http://server/path?key=value</url>
<headers>
<User-Agent>My MapCache User-Agent</User-Agent> <!-- hard coded header -->
<X-My-Forwarded-Header>{X-Received-Header}<X-My-Forwarded-Header> <!-- Forwarded␣

→˓from client, optionally changing the header name -->
<X-My-Forwarded-Header-2>foobar-{X-Received-Header}-baz<X-My-Forwarded-Header-2> <!--

→˓ Forwarded and modified from client, optionally changing the header name -->
</headers>

</http>
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6.1.9 FeatureInfo Requests

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

TBD

6.1.10 Proxying Unsupported Requests

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

Note: This page is a work in progress.

MapCache has the ability to forward any incoming request that it cannot natively respond to (either by returning a tile
directly, by merging multiple tiles, etc.).

This setup allows MapCache to be placed transparently in front of an existing OGC-service supplying server to ac-
celerate tiled or GetMap requests for a selected number of grids, while maintaining service compatibility for, e.g.,
unsupported grids, WFS requests, . . .

Note: The proxying of requests is configured inside the WMS MapCache service, which is semantically awkward.

The configuration for this behavior is activated by a succession of entries inside the <forwarding_rule> element of the
wms <service>. Rules are tested for in the order in which they appear in the mapcache.xml configuration file, and the
first one that matches is used. If no rules are defined, or if no rule matches the incoming request, an error is returned
to the user.

<service type="wms" enabled="true">
<forwarding_rule name="first rule">
<!-- rule tests -->
<!-- proxy destination -->

</forwarding_rule>
<forwarding_rule name="second rule">
<!-- rule tests -->
<!-- proxy destination -->

</forwarding_rule>
</service>

A <forwarding_rule> consists of a set of matching rules and an <http> block defining where the request should be
forwarded to.
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Parameter Filtering

The rules apply to the key-value pair parameters received in the incoming request, and are added with the <param>
keyword:

<forwarding_rule name="first rule">
<param name="SERVICE" type="values">
<value>WFS</value>
<value>WCS</value>

</param>
<!-- ... -->

<forwarding_rule>

The “type” attribute is the same as what is allowed for first level dimensions, i.e. allowed values are “values” and
“regex”. In the previous example, the rule would match any incoming request having . . .&SERVICE=WFS&. . . or
. . .&SERVICE=WCS&. . . in its request parameters.

<forwarding_rule name="first rule">
<param name="SERVICE" type="values">
<value>WFS</value>
<value>WCS</value>

</param>
<param name="LAYERS" type="values"><value>somelayername</value></param>
<!-- ... -->

<forwarding_rule>

Multiple rules can be used if the filtering has to be done on multiple parameters. In the previous example, the rule
would match a WFS or WCS request that concerns the “somelayername” layer only.

A <forwarding_rule> that has no <param> child will match any incoming request that could not be serviced by Map-
Cache directly from its cache, and can be used to forward all unsupported request to a full OGC- compliant server so
that an un-cached response can be returned to the client.

See also:
Tileset Dimensions

Proxy Destination

Once a <forwarding_rule> matches, its <http> child will be used to proxy the request to another server.

<forwarding_rule name="first rule">
<!-- ... -->
<http>
<url>http://wmsserver/ogc.cgi?</url>

</http>
<forwarding_rule>

See also:
HTTP Requests
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6.1.11 Data Sources

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

MapCache uses the concept of a “source” as a service that is able to return image data given a set of parameters (namely
an extent, an image size, and a projection). Typically, a source is the third-party WMS server that you want to put a tile
cache in front of.

WMS Sources

A WMS server is the main upstream server type used by MapCache. When processing a given tile, if it is not found
in its cache, MapCache will query a WMS server with a GetMap request, split the returned image data into individual
tiles, and store those tiles in its cache for subsequent requests.

<source name="mywmsserver" type="wms">
<http> .... </http>
<getmap>
<params>
<map>/path/to/mapserver/mapfile.map</map>
<layers>value2</layers>

</params>
</getmap>

</source>

See also:
HTTP Requests to configure how the <http> block should be expressed

Warning: You should usually only supply vendor-specific parameters to the <params> block. Never include any
hardcoded BBOX, WIDTH, HEIGHT, SRS or any parameters related to dimensions inside this block, as these are
calculated by MapCache itself at runtime.

MapFile Sources

Experimental

WMTS Sources

MapCache WMTS source uses GDAL WMTS driver under the hood. Note that GDAL version must be > 2.1 to be able
to enable the driver correctly. GDAL WMTS driver documentation can be found on: http://www.gdal.org/frmt_wmts.
html

GDAL WMTS xml file is needed, example command to construct such a file directly from wmts source equipped with
basic auth & user/pass is: gdal_translate “WMTS:https://<url to capabilities>,layer=<layer id>” gdal_wmts.xml -of
WMTS –config GDAL_HTTP_AUTH BASIC –config GDAL_HTTP_USERPWD <user:pass>

After GDAL WMTS xml file is constructed, it’s validity can be checked with command “gdalinfo <name of xml file>”.

last step is to enable the new WMTS source with following configuration in mapcache.xml.
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<source type="gdal" name="foo">
<data>/path/to/gdal/file (gdal_wmts.xml)</data>

</source>

6.1.12 Tile Assembling

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

TBD

6.1.13 Locking Mechanisms

Author
Thomas Bonfort

Contact
tbonfort at terriscope.fr

MapCache sometimes needs exclusive access to a given resource, and provides some mechanisms to ensure that no
more than one MapCache instance can operate on that resource. This may happen when:

• Sending a request to a source WMS server for a given metatile. Only a single MapCache instance should be
sending that request; other MapCache instances processing a tile from that same metatile should wait for that
request to finish rather than sending the same exact request again (in order not to overload the WMS server).

• Writing a tile inside a TIFF cache. The TIFF library does not handle concurrent writes, so MapCache must
ensure that only a single instance is accessing a given TIFF file for writing.

A locker is configured with:

<locker type="...">
<timeout>60</timeout>
<retry>0.1</retry>
...

</locker>

When a MapCache instance cannot acquire a lock because it has already been acquired by another instance, it will:

• Check back every <retry> seconds to see if the lock has been released by the other instance.

• Consider that after <timeout> seconds the other instance has failed, and delete the lock before acquiring it itself.
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Disk Locks

This locking mechanism places a file somewhere in the filesystem. The filesystem can be a network share in order to
synchronize multiple MapCache instances.

<locker type="disk">
<directory>/path/to/lockdir</directory>

</locker>

The configured directory should be read/write accessible by the MapCache instance.

Memcache Locks

This locking mechanism uses a third-party memcache instance to keep track of the locks.

<locker type="memcache">
<server>
<host>localhost</host>
<port>11211</port>

</server>
<server>
<host>memcache-host</host>
<port>11212</port>

</server>
</locker>

Fallback Locks

This “meta” locker will fall back to its second configured locker if the first one fails (typically used with a memcache
instance if the memcache instance goes down).

<locker type="fallback"
<locker type="memcache">

<server>
<host>localhost</host>
<port>11211</port>

</server>
<server>
<host>memcache-host</host>
<port>11212</port>

</server>
</locker>
<locker type="disk">
<directory>/path/to/lockdir</directory>

</locker>
</locker>
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6.1.14 Coverage Analyzer

Author
Jerome Boue

NAME

mapcache_detail - Coverage analysis of MapCache SQLite Caches

SYNOPSIS

mapcache_detail [ options ]

DESCRIPTION

mapcache_detail main use case is users wanting to use offline a portion of a MapCache cache covering a given geo-
graphical region. For that purpose, they need to identify relevant files from an existing cache, check whether tiles are
missing from these files (possibly seeding missing parts if necessary), and extract these files to build a new cache of
the requested region.

mapcache_detail, helps users with some of these activities. It works with SQLite caches where one single file may
contains thousands of tiles. It is able to:

• Determine which SQLite files from the cache are needed to cover a given geographical region at a given zoom
level range;

• Count how many tiles are needed to cover the region and how many are already present in each file, giving a
coverage ratio on file level, zoom level and global level;

• Estimate data size of missing tiles, which need to be downloaded to entirely cover the requested region, again on
file level, zoom level and global level.

mapcache_detail is able to handle all kinds of SQLite caches that MapCache itself handles, namely:

• Single SQLite caches, where only one SQLite database contains the whole cache;

• Multiple SQLite caches, where cache is split into multiple SQLite databases according to a given template;

• Composite SQLite caches, which are a combination of single and multiple SQLite caches depending on zoom
levels.

mapcache_detail takes the form of an independent CLI executable using MapCache library. It is proposed as a simple
contribution to the MapCache project under a contrib/mapcache_detail/ folder, due to its specific purpose (only SQLite
caches are handled).
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OPTIONS

Some option have the same syntax and meaning as those of mapcache_seeder utility.

Miscellaneous options

-h, –help
Display help message and exit.

-o, –short-output
(Optional) If this option is present, only Existing SQLite files are reported, missing SQLite files are still taken
into account for level and global coverage.

Options for specifying the cache to analyze

-c, –config MapCache configuration file
(Required) Set MapCache configuration file in which cache to analyze is specified.

-t, –tileset tileset name
(Required) Set the tileset to analyze.

-g, –grid grid name
(Required) Set the grid to analyze.

-D, –dimension DIMENSION_NAME=VALUE
(Optional) Set the value of a dimension. This option can be used multiple times for multiple dimensions.

-q, –query <value>
(Optional) Set SQL query for counting tiles in a rectangle. Default value, given below, works with default schema
of SQLite caches.

SELECT count(rowid)
FROM tiles
WHERE (x between :minx and :maxx)
AND (y between :miny and :maxy)
AND (z=:z)
AND tileset=:tileset AND grid=:grid AND dim=:dim;

Options for specifying the region to cover

-z, –zoom minzoom[,maxzoom]
(Optional) Set min and max zoom levels to analyze, separated by a comma, eg: 12,15. If maxzoom is absent,
only zoom level specified by minzoom is analyzed. Default value is 0.
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Rectangular region

-e, –extent minx,miny,maxx,maxy
(Optional) Set the extent to analyze. Default value is the whole grid extent. This option cannot be used with
–ogr-datasource option.

Polygonal region

-d, –ogr-datasource OGR data source
(Optional) Set the OGR data source to get features from. Any OGR Vector Format can be used. If absent, the
region is specified using –extent option, possibly its default value. This option cannot be used with –extent
option.

-l, –ogr-layer layer
(Optional) Select the layer inside OGR data source. This option works only if –ogr-datasource has been speci-
fied. This option cannot be used with –ogr-sql option.

-w, –ogr-where filter
(Optional) Set a filter to apply on OGR layer features. This option works only if –ogr-datasource has been
specified. This option cannot be used with –ogr-sql option.

-s, –ogr-sql SQL query
(Optional) SQL query to filter inside OGR data source. This option works only if –ogr-datasource has been
specified. This option cannot be used with –ogr-layer or –ogr-where.

COUNTING TILES

To illustrate the process, here is an example of a fictional grid. Tiles are represented by the smallest squares on the
grid. Larger squares of 25 tiles each represent SQLite files. Small indices denote tile coordinates whereas large indices
denote databases coordinates. Colored rectangle represents requested region for cache extraction. Darker tiles represent
tiles present in cache.
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Expressed in tiles, region coordinates (xmin, ymin, xmax, ymax) are (11, 7, 27, 20). Expressed in SQLite files, these
coordinates are (2, 1, 5, 4). All files whose coordinates are comprised between (2, 1) and (5, 4) included shall be part of
the cache extraction. All tiles whose coordinates are comprised between (11, 7) and (27, 20) included shall be counted
for the region coverage.

Following table gives tile count and coverage ratio of requested region, according to tool’s process:

SQlite
file

(2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4) (5,1) (5,2) (5,3) (5,4) To-
tal

Tiles
present
in
cache
and
cov-
er-
ing
re-
gion

0 4 3 0 4 9 8 0 4 6 3 0 2 0 0 0 43

Tiles
needed
to
fully
cover
re-
gion

12 20 20 4 15 25 25 5 15 25 25 5 9 15 15 3 238

Cov-
er-
age

0 0.2 0.15 0 0.267 0.36 0.32 0 0.267 0.24 0.12 0 0.222 0 0 0 0.181

OUTPUT REPORT

Tool’s output, in JSON format, provides user with SQLite file list to be extracted from cache. Details are given on the
number of tiles contributing to region coverage. A synthesis is also given for each zoom level and at a global level.

Following is a fictional example describing information present in tool’s output.

{ _______________________________________
"layer": "example", | Report starts with general information
"grid": "local", | on cache and requested region
"unit": "m",
"region": {

"bounding_box": [ 11, 7, 27, 20 ],
"geometry": {

"type": "Polygon",
"coordinates": [[ [11,7], [11,20], [27,20], [27,7], [11,7] ]]

}
},
"zoom-levels": [ {

"level": 1,
"files": [ { _______________________________________

| For each file, output report gives:
(continues on next page)
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(continued from previous page)

| its name, its size, its bounding box
| and intersection of that bounding box
| with requested region

"file_name": "/path/to/cache/example/1/2-1.sqlite",
"file_size": 54632,
"file_bounding_box": [ 10, 5, 14, 9 ],
"region_in_file": {

"bounding_box": [ 11, 7, 14, 9 ],
"geometry": {

"type": "Polygon",
"coordinates":

[[ [11,7], [11,9], [14,9], [14,7], [11,7] ]]
}

},
"nb_tiles_in_region": { ___________________________________

| Measures associated to a SQLite file
| are: number of tiles belonging to
| requested region and present in file,
| number of tiles belonging to region
| present or not in file, and resulting
| coverage ratio

"cached_in_file": 0,
"max_in_file": 12,
"coverage": 0

}
}, {

"file_name": ...
...

} ],
"nb_tiles_in_region": { _______________________________________

| Measures associated to a zoom level
| are the sum of the ones for each SQLite
| file of that level

"cached_in_level": 43,
"max_in_level": 238,
"coverage": 0.1807

}
}, {

"level": 2,
...

} ],
"nb_tiles_in_region": { _______________________________________

"cached_in_cache": 43, | Global measures are the sum of all
"max_in_cache": 238, | zoom level measures
"coverage": 0.1807

},
"sizes": { _______________________________________

| At global level estimations about
| cache size to be extracted for a full

(continues on next page)
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(continued from previous page)

| region coverage are also given. These
| estimations are based on the mean size
| of a tile obtained from all SQLite file
| sizes and how many tiles they contain

"total_size_of_files": 1599442,
"total_nb_tiles_in_files": 60,
"average_tile_size": 26658,
"estimated_max_cache_size": 6344604,
"estimated_cached_cache_size": 1146294,
"estimated_missing_cache_size": 5198310

}
}

EXAMPLES

Analyze tile coverage of tileset osm with the g grid. Default extent is the whole world and default zoom level is 0:

mapcache_detail --config mapcache.xml --tileset osm --grid g

Same as beforehand, with explicit zoom levels 9 to 12 and explicit extent covering Switzerland:

mapcache_detail --config mapcache.xml --tileset osm --grid g --zoom 9,12 --extent 663000,
→˓5751230,1167680,6075050

See also:
MapCache presentation slides at FOSS4G2011

6.1.15 Features

• services WMS, WMTS, TMS, VirtualEarth/Bing and Google Maps requests: Supported Tile Services

• ability to respond to untiled WMS requests by merging tiles from the cache or forwarding them to the WMS
source: Tile Assembling

• responds to WMS/WMTS GetFeatureInfo requests (forwarded to source service)

• KML superoverlay generation

• data provided by WMS backends (GDAL supported sources planned)

• cache types:

– Disk

– SQLite

– Memcached

– Tiled TIFFs

– REST (S3, Azure, Google)

– Riak

– Combined caches
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– Berkeley DB

• configurable metatiling

• on-the-fly tile merging for combining multiple tiles into a single image

• image post-processing (recompression and quantization) when arriving from a backend

• interprets and produces cache control headers: Last-Modified, If-Modified-Since, Expires

• multithreaded seeding utility that can seed specific zoom levels or specific areas (e.g. seed levels 0 to 12 of all
tiles intersecting Colorado)

• ability to add a custom watermark on stored tiles

• produces a CGI/FastCGI executable for use with webservers other than Apache

• configurable symbolic linking of blank tiles to save disk space

• configurable error reporting: plain HTTP error code, textual message, or empty (blank) image

• ability to specify vendor parameters or dimensions to be forwarded to the WMS backend (and to build a cache
that takes these parameters into account): Tileset Dimensions
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7.1.1 MapServer 7.4 to 7.6 Migration

• MapServer now requires at least CMake version 3.0 for compiling

• PointZM data support (X,Y,Z,M coordinates) is now enabled by default

• the PROJ 6 API is now supported. Read about the many changes in PROJ since the PROJ 6.0 release. Note that
older PROJ versions such as 5.2.0 will still work with MapServer.

Tip: Here are the (as of 2021-07-13) optimal combinations of MapServer with GDAL & PROJ:

MapServer 7.6.4 + GDAL 2.4.4 + PROJ 5.2.0 (GDAL 2 series)
MapServer 7.6.4 + GDAL 3.3.1 + PROJ 8.1.0 (GDAL 3 series)
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• CONNECTIONOPTIONS parameter has been added in the mapfile LAYER, to take advantage of GDAL/OGR
driver options. (see RFC 125) such as:

LAYER
NAME "test"
CONNECTIONTYPE OGR
CONNECTION "./data/nested_attrs.geojson"
CONNECTIONOPTIONS
"FLATTEN_NESTED_ATTRIBUTES" "YES"

END
[...]

END

• new processing directive RENDERMODE (added through RFC 124 SLD changes) to enable a ‘painters model’
where all classes for a layer are drawn at once with a ALL_MATCHING_CLASSES setting, such as:

LAYER
NAME "test"
CONNECTIONTYPE OGR
CONNECTION "./data/nested_attrs.geojson"
PROCESSING "RENDERMODE=ALL_MATCHING_CLASSES"
CLASS
...

END
CLASS
...

END
CLASS
...

END
END

More information in issue 5839.

Note: RFC 124 (SLD improvements) has been implemented except PR#5832: SLD: Improve WMS GetStyles
request.

• WMS client layers can be set to essential, with the new wms_essential metadata item, which will cause MapServer
to fail and report an error (normally MapServer would just ignore that layer).

Note: enabling wms_essential means that if there is a problem with the connection, (such as the CONNECTION
url cannot be reached, or an incorrect wms_name or wms_format) an XML error will be returned in the browser.
If you are calling MapServer through commandline, your MAP setting for CONFIG “ON_MISSING_DATA” will
still be leveraged for how that error is handled locally.

Here is an example of the new wms_essential parameter:

LAYER
NAME "country_bounds"
TYPE RASTER
STATUS ON
CONNECTION "https://demo.mapserver.org/cgi-bin/wms?"

(continues on next page)
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(continued from previous page)

CONNECTIONTYPE WMS
METADATA
"wms_srs" "EPSG:4326"
"wms_name" "country_bounds"
"wms_server_version" "1.1.1"
"wms_format" "image/png"
"wms_essential" "1"

END
END

• Windows users can now use umlauts (special characters such as ä ö ü) in their directory paths and filenames,
such as:

LAYER
..
DATA "ä1-test.tif"
..

END #layer

7.1.2 MapServer 7.2 to 7.4 Migration

• PHP 7 MapScript support: users are recommended to switch to MapServer’s new SWIG API support of PHP 7+
(reason for recommendation: as we saw with the breaking PHP 7 changes, managing PHP through SWIG will
be easier on the MapServer maintainers in the long run.) Some important SWIG notes:

– you will require at least SWIG-3.0.11 (but 4.0.0 is recommended).

– if you notice any missing functions that were available in the old native PHP MapScript API, first please
check the SWIG API reference document for an alternative function to use, and if there is nothing similar
available then file a ticket for each function that you require.

– all of your PHP scripts (that leverage MapServer objects and functions) must now always first include the
generated mapscript.php file containing MapServer constants:

// required SWIG include (contains MapServer constants for PHP7)
include("C:/ms4w/apps/phpmapscriptng-swig/include/mapscript.php");

– take note of the change in how to declare your new objects:

// open map
$oMap = new mapObj("C:/ms4w/apps/phpmapscriptng-swig/sample.map");

instead of the former way:

// open map
$oMap = ms_newMapObj("C:/ms4w/apps/phpmapscript/sample.map");
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7.1.3 MapServer 7.0 to 7.2 Migration

• LABEL->PARTIALS now defaults to “FALSE” instead of “TRUE” which implies that by default labels that do
not fully fit in the map image will be discarded.

7.1.4 MapServer 6.4 to 7.0 Migration

• The predefined field names for the union and cluster layers have been changed. Colons in the field names have
been replaced with underscores to avoid producing invalid GetFeatureInfo results. The field names in the mapfiles
should be modified according to this change.

• Layer FILTERs must use MapServer expression syntax only. Drivers will attempt to translate from MapServer
syntax to native syntax (e.g. SQL). Native expressions can still be set either using: 1) sub-selects in the DATA
statement or 2) using the new NATIVE_FILTER processing key.

# OGR Layer Before
LAYER
...
FILTER 'where id=234'

END

# OGR Layer After
LAYER
...
PROCESSING 'NATIVE_FILTER=id=234'

END

• MapServer attribute queries (e.g. mode=item[n]query) must be specified using MapServer expression syntax
(qstring and qitem (opt)). For RDBMS backends you no longer send SQL snippets, rather the underlying driver
will attempt to translate the expression to native systax (e.g. SQL). If translation fails (or the driver doesn’t
support translation) then MapServer will evaluate the expression instead.

• Layer opacity is now deprecated a result of RFC 113 - Layer Compositing. The mapfile parser and MapScript
getter/setter functions will continue to function but unpredictable results will occur if used in conjunction with
COMPOSITE blocks. For more information see http://www.mapserver.org/development/rfc/ms-rfc-113.html.

# Before
LAYER
...
OPACITY 70

END

# After
LAYER
...
COMPOSITE
OPACITY 70

END
END

• Handling of non UTF-8 encoded datasources has changed with RFC103. Mapfiles now must be saved in UTF-8
encoding, and requests returned by MapServer will always be UTF-8 encoded. Various “xxx_encoding” metadata
entries used to hack around non UTF-8 encoded datasources are now obsolete, and have been replaced by a
LAYER-level ENCODING keyword.
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• Native ESRI SDE layers are no longer supported (see https://github.com/MapServer/MapServer/pull/5068).
OGR remains an alternative for those that really need it although the OGR/SDE driver suffers from the same
issues that prompted the removal from MapServer.

• GD graphics library support was removed (http://www.mapserver.org/development/rfc/ms-rfc-99.html) and had
been optional since 6.2.

– GIF output cannot be produced from MapServer although 8-bit PNG output can be be produced using the
AGG/PNG8 driver.

– Bitmap fonts have been replaced with an embedded TrueType font (see http://www.mapserver.org/
development/rfc/ms-rfc-104.html)

• RFC 98 - Label/Text Rendering Overhaul (http://www.mapserver.org/development/rfc/ms-rfc-98.html) may re-
sult in subtle label/character placement changes. Support for negative MAXLENGTH that implied forced line-
breaks is not supported anymore, workaround implies pre-processing such labels to include linebreaks or wrap
characters.

• ExternalGraphics added through SLD must now validate against the “sld_external_graphic” entry of the MAP-
>WEB->VALIDATION block

MAP
WEB
VALIDATION
"sld_external_graphic" "^/path/to/symbols/.*png"
END

END
END

7.1.5 MapServer 6.2 to 6.4 Migration

• The “ows_extent” layer metadata is not used anymore to obtain georeferencing information for unreferenced
raster data. Please use the “extent” layer key instead

LAYER
...
EXTENT -180 90 180 90

END

• Validation patterns cannot be specified in metadata blocks (i.e. using xxx_validation_pattern and default_xxx
metadata entries), use VALIDATION blocks. see #4596 #4604 #4608 or Run-time Substitution

• Build has changed after the switch to cmake. Build instructions are included in the INSTALL.CMAKE file in
the source directory. You will need to have cmake installed on your system. Users of mapscripts (except php)
will also need swig to be installed.

• WFS paging parameter startIndex changed to base on 0 instead of 1 (0 is the first feature). See #4180 for external
references.

• Template substitution tags were case-sensitive, they are now case-insensitive.
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7.1.6 MapServer 6.0 to 6.2 Migration

This section documents the changes that must be made to MapServer applications when migrating from version 6.0.x
(or earlier versions) to 6.2 (i.e. backwards incompatibilities), as well as information on some of the new features.

Build system changes

If you are building MapServer from source, then the following may be of interest to you:

• Use of libtool: In version 6.2, the Unix/Linux build scripts and Makefiles were converted to use libtool. One
impact of this change is that the ‘mapserv’ file in the main source tree is a libtool wrapper script and not the actual
binary. To use ‘mapserv’ you actually have to use ‘make install’ and then point to the installed binary. More info
is available in the Compiling on Unix document at https://mapserver.org/installation/unix.html#installation

• The –with-php configure option has been changed to point directly to the php-config script instead of to the
directory where the PHP headers are located.

CGI Changes

• Changing MIN/MAXSCALE or MIN/MAXSCALEDENOM via URL is no longer supported.

• The syntax for changing a LABEL with CGI commands has changed along with the ability to support mul-
tiple labels The previous syntax . . .&map.layer[0].class[0]=label+color+255+0+0+end&. . . is replaced with
. . .&map.layer[0].class[0].label[0]=color+255+0+0&. . . Note that cgi label modifications are/were broken in
6.2.0 and fixed in 6.2.1

Rendering changes

• STYLE->GAP interpretation Starting in 6.2, STYLE->GAP specifies the gap between the symbols using the
centre to centre distance. In earlier versions of MapServer, GAP was used as the approximate distance between
the symbol boundaries. See ticket #3867 for more information.

In order to get the same effect with 6.2 as with 6.0, STYLE->GAP must be increased with the size of the symbol.

• Removal of one pixel gap between symbols In earlier versions of MapServer, an extra gap of one pixel was added
between the symbols (in addition to the gap specified in STYLE->GAP). This has been discontinued in 6.2. See
ticket #3868 for more information.

In order to get the same effect with 6.2 as with 6.0, STYLE->GAP must be increased with one pixel.

• STYLE->INITIALGAP introduced Support for more powerful line styling has been provided with the introduc-
tion of STYLE->INITIALGAP. See ticket #3879 and the documentation for more information.

• SYMBOL->ANCHORPOINT introduced A symbol anchorpoint has been introduced to facilitate precise posi-
tioning of symbols. See ticket #4066 and the documentation for more information.

• Change in vector symbol size calculation. In 6.2, vector symbol coordinates are shifted to get rid of negative x
and y coordinate values. See ticket #4116 for more information.

In order to get the shifting effect that could be obtained using negative coordinate values, SYMBOL-
>ANCHORPOINT should be used instead.
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7.1.7 MapServer 5.6 to 6.0 Migration

This section documents the changes that must be made to MapServer applications when migrating from version 5.6.x
(or earlier versions) to 6.0 (i.e. backwards incompatibilities), as well as information on some of the new features.

Mapfile Changes - Expression Parsing

Version 6.0 features an extensive reworking of the expression parsing capabilities. While this adds functionality it also
introduces a couple of regressions:

Logical Expressions

• a regex is now delineated as a string (e.g. ‘^a’ rather than /^a/)

• the regex operator is ~ for case sensitive comparisons and ~* for case insensitive

• case insensitive string comparison operator is =*

Class text expressions are true expressions in 6.0. This allows for fancy formatting of numeric data but also means
string operators must be used to concatenate attribute values and string literals.

• Old/bad: TEXT ([area] acres)

• New (option 1)/good: TEXT (‘[area]’ + ‘ acres’)

• New (option 2)/good: TEXT ‘[area] acres’

On the plus side you can now control the number of decimal places, round and even commify the area value for display.

See https://mapserver.org/development/rfc/ms-rfc-64.html and https://github.com/MapServer/MapServer/issues/
3736 for more information.

Mapfile Changes - Label Styles

As the need for more and more control of label drawing increased it became apparent that we couldn’t extend labelObj’s
endlessly. In 6.0 we introduce the idea of label styles, that is, a styleObj inside a labelObj. The styles can be used to
add accompanying markers or bounding box elements to a label- kinda like annotation layers. The big benefit is that
it’s done in one pass. So you can draw complex roadwork and shields all at the same time. Pretty neat huh? Plus you
can do attribute binding for any of the styleObj attributes that support it.

As a result the parameters BACKGROUNDCOLOR, BACKGROUNDSHADOWCOLOR, BACKGROUNDSHAD-
OWSIZE are no more. To draw a label “box” in 6.0 you’d do:

LABEL
...
STYLE # a shadow

GEOMTRANSFORM 'labelpoly'
COLOR 222 222 222
OFFSET 2 2

END
STYLE # bbox

GEOMTRANSFORM 'labelpoly'
COLOR 255 255 255
OUTLINECOLOR 0 0 0

END
END

More verbose but much more flexible in the long run.
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Mapfile Changes - Label MAXOVERLAPANGLE

RFC60 introduced a new MAXOVERLAPANGLE keyword to filter out ANGLE FOLLOW labels in which characters
overlap. This new option is enabled by default in 6.0 with a default value for MAXOVERLAPANGLE of 22.5 degrees.

As per RFC60, it is possible to set MAXOVERLAPANGLE to 0 to fall back on pre-6.0 behavior which was to use
hardcoded maxoverlapangle = 0.4*MS_PI (40% of 180 degrees = 72 degrees).

Core Changes - Rendering Overhaul

The rendering backends for MapServer have been refactored for version 6 to allow us to support all features across all
rendering drivers (GD,AGG,PDF,SVG, etc. . . ).

• PDF support is output through the cairo library. The dependency on the non-free pdflib library has been removed.

• SVG support is output through the cairo library. The native mapserver SVG driver has been removed.

• AGG support is compiled in by default (no external dependency) and is the default renderer for png and jpeg
outputs.

• GD support is limited to PC256 imagemodes, i.e. png or gif. It is the default renderer for gif output.

• SWF (flash) support has been dropped.

• Header files for libpng, libjpeg and giflib are now required for building MapServer. Install the -devel packages
of these libraries.

• All symbols now rotated anticlockwise following the ANGLE parameter. Previous versions rotated vector sym-
bols clockwise.

• Polygon fills with vector symbols will not cleanly join at tile boundaries. For hatching type symbology, use the
HATCH symbol instead of a diagonal vector symbol.

• Some inconsistencies between renderers have been ironed out. People relying on precise symbol placement
should check those, as there may have been some subtle changes in symbol sizes and widths, or spacing between
symbols on lines.

• Style blocks with no associated symbol on point layers will produce no output, as opposed to a single pixel in
previous versions. Use an ellipse symbol instead.

Mapfile Changes - line styling

All line styling must now be specified in class STYLEs in the layer definition.

The following parameters/keywords have been moved from SYMBOL to STYLE:

PATTERN POSITION GAP LINECAP LINEJOIN LINEJOINMAXSIZE

The SYMBOL STYLE parameter/keyword was renamed to PATTERN in version 5.

The SYMBOL TYPE cartoline has been removed.

LINECAP triangle is not supported by AGG or Cairo, and is no longer available. The triangle line end effect can be
achieved using GEOMTRANSFORM start and end with a (filled) vector triangle symbol and ANGLE AUTO. This
will only work for the line ends, and not for dashes.
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CGI Changes

Runtime substitution now requires a validation pattern be present before the substitution will take place (this had been
optional). This can be done via a layer metadata tag as before or within layer or web VALIDATION blocks. See ticket
#3522 for more information.

All of the query map related modes (e.g. NQUERYMAP, ITEMQUERYMAP, etc. . . ) have been removed in favor of
using the “qformat” parameter. That parameter takes an output format name or mime/type as a value and uses that to
process a set of query results. For example:

. . .&mode=nquerymap&. . . would become . . .&mode=nquery&qformat=png24&. . .

OGC Web Services

All OGC Web Services are now disabled by default. If you want to enable them as they were in MapServer 5.6 and
older releases, add the following metadata in the MAP::WEB section:

"ows_enable_request" "*"

See also: https://mapserver.org/development/rfc/ms-rfc-67.html

Mapfile Changes - WCS Metadata

To avoid confusion only “wcs_*” and “ows_*” prefixed metadata entries are evaluated in OGC WCS services. Previous
versions used “wms_*” prefixed entries as fallback which is dropped in version 6.0 in favor of forcing explicit decisions.

Mapfile Changes - OGC requests - DUMP parameter removed

The DUMP LAYER parameter has been removed. To enable output of geometries in WMS getfeatureinfo requests -
GML (INFO_FORMAT=application/vnd.ogc.gml), LAYER METADATA is used instead:

METADATA
gml_geometries "geom"
gml_geom_type "polygon"
...

END

Mapfile Changes - Ability to escape single/double quotes

We can now escape single and double quotes in strings and logical expressions. Examples:

NAME "RO\"AD" # double quote inside a a double quote delimited string
NAME 'RO\'AD' # single quote inside a a single quote delimited string
FILTER ('[CTY_NAME]' = 'Ita\'sca') # logical expression that contains a single quote

NOTE: The escape character (backslash) will only work if the following character is “, ‘ or .

For Windows users: if you have a path string delimited by single/double quotes that ends with , you will have to escape
the last backslash.

SHAPEPATH "C:\ms4w\shapefiles\"
# should be modified to...
SHAPEPATH "C:\ms4w\shapefiles\\"
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PHP MapScript Changes

• PHP 5.2.0 or more recent is required.

• PHP/MapScript now uses exceptions for error report. All errors are catchable.

• Object properties can be set like all other php object. ie. myObj->myProperty = 10;

NOTE: The set/setProperty methods are still available.

• All object constructors throw an exception on failure

• Objects can be created with the php “new” operator. ie. $myShape = ms_newShapeObj(MS_SHAPE_LINE); //
or $myShape = new shapeObj(MS_SHAPE_LINE);

NOTE: “ms_newSymbolObj()” and “new symbolObj” are different:
– ms_newSymbolObj() returns the id of the new/existing symbol.

– new symbolObj() returns the symbolObj. You don’t need to
get it with getSymbolObjectById().

• Cloneable objects should be cloned with the PHP clone keyword. There is no more clone methods.

• Class properties that have been removed

– mapObj: imagetype, imagequality, interlace, scale, transparent

– classObj: maxscale, minscale

– layerObj: labelsizeitem, labelangleitem, labelmaxscale, labelminscale,
maxscale, minscale, symbolscale, transparency

– legendObj: interlace, transparent

– scalebarObj: interlace, transparent

– symbolObj: gap, stylelength

– webObj: minscale, maxscale

• Class methods that have been removed

– projectionObj: free

– lineObj: free

– pointObj: free

– rectObj: free

– shapeObj: free, union_geos

– symbolObj: free, getstylearray

– imageObj: free

– outputFormatObj: getformatoption, setformatoption

– shapefileObj: free

– layerObj: getFilter, getShape

• referenceMapObj has new properties: marker, markername, markersize, maxboxsize, minboxsize

• shapeFileObj is automatically closed/written on destroy. (At the end of the script or with an explicit unset())

• layerObj->clearProcessing() method now returns void.

• mapObj->queryByIndex(): default behavior for the addToQuery parameter was not ok, now it is.
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• Methods that now return MS_SUCCESS/MS_FAILURE:

– symbolObj: setPoints, setPattern

– scalebarObj: setImageColor

– outputFormatObj: validate

– layerObj: setProcessing, addFeature, draw

– mapObj: moveLayerUp, moveLayerDown, zoomRectangle, zoomScale, setProjection,
setWKTProjection, setLayersDrawingOrder

• Methods that now return NULL on failure:

– classObj: clone

– styleObj: clone

– layerObj: nextShape, getExtent

– mapObj: clone, draw, drawQuery getLayerByName, getProjection,

• Methods that now return an empty array

– symbolObj: getPatternArray

– layerObj: getItems, getProcessing, getGridIntersectionCoordinates

– mapObj: getLayersIndexByGroup, getAllGroupNames, getLayersDrawingOrder, getAllLayerNames

MapScript (All Flavors)

The layer query result handing has been re-worked (again) to address some issues introduced in the 5.4/5.6 versions.
Gone are resultsGetShape and getFeature methods. You should now use a refactored getShape method to access layer
shapes. That method takes a resultObj and returns a shapeObj. Typical use would be (in Perl):

$layer->queryByRect($map, $map->{extent}); # layer is still open

for($i=0; $i<$layer->getNumResults(); $i++) {
$shape = $layer->getShape($layer->getResult($i));
print "$i: ". $shape->getValue(1) ."\n";

}

$layer->close();

A resultObj encapsulates the data used to manage a result set.

To access shapes independently of a query use the new resultObj class:

$layer->open(); $shape = $layer->getShape(new mapscript::resultObj(1)); $layer->close();

See https://mapserver.org/development/rfc/ms-rfc-65.html for more information.

7.1. MapServer Migration Guide 523

https://mapserver.org/development/rfc/ms-rfc-65.html


MapServer Documentation, Release 7.6.6

OUTPUTFORMAT

The OUTPUTFORMAT parameter validation when reading from the mapfile will now trigger an error on some prob-
lems that in the past were silently fixed up. For instance using RGBA IMAGEMODE with JPEG format now triggers
an error instead of switching to IMAGEMODE RGB silently.

The default outputformats names, drivers and mimetypes have been significantly reorganized:

• png : AGG/PNG (image/png)

• jpeg : AGG/JPEG (image/jpeg)

• gif : GD/GIF (image/gif)

• png8 : AGG/PNG8 (same as AGG/PNG, but with 256 color quantization applied) (image/png; mode=8bit)

• png24 : AGG/PNG (for backwards compatibility) (image/png; mode=24bit)

• pdf : CAIRO/PDF (application/x-pdf)

• svg : CAIRO/SVG (image/svg+xml)

• GTiff : GDAL/GTiff (image/tiff)

• kml : KML (application/vnd.google-earth.kml++xml)

• kmz : KMZ (application/vnd.google-earth.kmz)

Rasters

• The support for rendering rasters without GDAL has been removed. Now RASTER layers (or WMS layers)
require that MapServer be built against the GDAL library.

• The above change also means there is no longer support for EPPL raster layers.

Deprecated features

• Support for Flash/SWF output has been removed as part of the rendering overhaul because it was no longer
compatible with the new architecture. Support for Flash/SWF could be reintroduced but would require a non
trivial amount of work (i.e. would require funding).

• Support for “CONNECTIONTYPE MyGIS” has been dropped since it was no longer being maintained and there
are better ways to use MySQL data sources theses days, going through OGR for instance.

7.1.8 MapServer 5.4 to 5.6 Migration

This section documents the changes that must be made to MapServer applications when migrating from version 5.4.x
(or earlier versions) to 5.6 (i.e. backwards incompatibilities), as well as information on some of the new features.
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MapScript changes related to single pass queries

In RFC-52, MapServer was modified to perform queries using a single pass on the data instead of two passes. This
is transparent for CGI applications, but MapScript scripts must be modified to use the layer.resultsGetShape() method
instead of layer.getShape().

See also: https://mapserver.org/development/rfc/ms-rfc-52.html

(Note: the new resultsGetShape() method is not yet available for PHP MapScript in 5.6.0-beta1)

WFS 1.1 axis orientation

The axis order in previous versions of the WFS specifications was to always use easting (x or lon ) and northing (y or
lat). WFS 1.1 specifies that, depending on the particular SRS, the x axis may or may not be oriented West-to-East, and
the y axis may or may not be oriented South-to-North. The WFS portrayal operation shall account for axis order. This
affects some of the EPSG codes that were commonly used such as ESPG:4326. The current implementation makes
sure that coordinates returned to the server for the GetFeature request reflect the inverse axis orders for EPSG codes
between 4000 and 5000.

Change of mime-type for the imagemap outputformat

RFC 36 added support for templated outptformats, but this new feature was not available for WMS GetFeatureInfo
output (see ticket #3024). In MapServer 5.6 this has been resolved by implementing lookup of output formats for query
templates by mime-type. However this caused a conflict for the text/html mime-type between the actual text/html query
templates and the preconfigured imagemap outputformat which also used the text/html mime-type.

In order to resolve this conflict, the mime-type of the imagemap outputformat has been changed to “text/html;
driver=imagemap”. This is unlikely to cause much side-effects to existing applications, but the change is documented
here just in case.

7.1.9 MapServer 5.2 to 5.4 Migration

This section documents the changes that must be made to MapServer applications when migrating from version 5.2.
(or earlier versions) to 5.4 (i.e. backwards incompatibilities), as well as information on some of the new features.

New requirements for mapfiles, symbolsets and templates

Due to some potential security vulnerabilities that were uncovered in previous versions of MapServer, RFC-56 intro-
duced a number of changes to tighten access control on mapfiles and templates and limit the risk of leaking arbitrary
file contents. These changes were introduced in version 5.4.0, and were also backported to v5.2.2 and 4.10.4.

The new requirements are as follows:

• The MAP and SYMBOLSET keywords must be added to any mapfile and symbolset that did not contain them
already.

• All MapServer templates must be updated to contain the “MapServer Template” magic string on the first line.
This string can be embedded in a comment depending on the template formet and the whole line will be skipped
in the output generation. e.g.

– In HTML: <!– MapServer Template –>

– In JavaScript: // MapServer Template

See also: https://mapserver.org/development/rfc/ms-rfc-56.html
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7.1.10 MapServer 4.10 to 5.0 Migration

This section documents the changes that must be made to MapServer applications when migrating from version 4.10.x
(or earlier versions) to 5.x (i.e. backwards incompatibilities), as well as information on some of the new features.

Mapfile changes

Attribute Bindings: In an effort to stem the tide of keyword overload and add functionality MapServer 5.0 supports a
new method of binding feature attributes to STYLE and LABEL properties. In the past keywords like ANGLEITEM or
LABELSIZEITEM were used, now you denote the attribute in the context of the property being bound. For example,
to bind an attribute to a label size you’d do:

LABEL
...
SIZE [mySizeItem]

END

The []’s denote a binding (as with logical expressions). The following keywords are no longer supported and their
presence will throw an error:

• Layer: LABELANGLEITEM, LABELSIZEITEM

• Style: ANGLEITEM, SIZEITEM

The following properties can accept bindings:

• Style: angle, color, outlinecolor, size, symbol

• Label: angle, color, outlinecolor, size, font, priority

Colors may be given as a hex value (e.g. #FFFFFF) or an RGB triplet (e.g. 255 255 255).

Layer Transparency: The values for the TRANSPARENCY parameter have always been backwards and in an effort to
resolve that the parameter has been renamed OPACITY. TRANSPARENCY is still recognized by the mapfile parser
but is deprecated and should be avoided.

Scale Parameters: MapServer’s handling of scale has long been a source for confusion. The values use in a layer
MINSCALE are really the denominators from a representative fraction (e.g. 1:24000). To help clarify this all scale
parameters are now end with DENOM. So MINSCALE => MINSCALEDENOM, SYMBOLSCALE => SYMBOL-
SCALEDENOM, and so on. The mapfile parser still recognizes the older keywords but they are deprecated and should
be avoided.

Symbol file changes

Symbol Style: STYLEs are used within a symbol definition to store dash patterns for line symbolization. However, there
is potential confusion with the style object that is used within class definitions. To resolve that confusion the symbol
STYLE parameter has been renamed PATTERN. The symbol file parser will still recognize the STYLE keyword but it
is deprecated and should be avoided.
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Styling/Symbolgy changes

Prior to MapsServer 5.0, if a pixmap symbol was used in style on a Line Layer, the symbol was used as a brush to draw
the line. In MapServer 5.0, it is possible to draw the pixmap symbol along the line (Note that this was available using a
true type symbol). To achieve this, the user needs to use the parameter GAP with it’s pixmap symbol definition in the
symbol file. The GAP represents the distance between the symbols. If the GAP is not given, the pixmap symbol will
be used as a brush.

AGG rendering changes

see the AGG rendering specifics for the changes relating to the addition of the Antigrain Geometry rendering engine.

URL configuration changes

Previous versions of the MapServer CGI program allowed certain parameters to be changed via a URL using a cum-
bersome syntax such as map_layer_0_class_0_color=255+0+0 which changes the color in one classObj. Not only was
this cumbersome for users but also from a code maintenance perspective since we had to maintain separate loaders for
URL-based config and file-based config. RFC-31 attempts to streamline both by migrating to a single object loading
function that can be used with strings (either in MapScript or via URL) or with files.

So, in the past you have to change parameters one-at-a-time. Now you can pass chunks of mapfiles (with security
restrictions) to the CGI interface. The map_object notation is still necessary to identify which object you want to
modify but you can change multiple properties at one time. Note that you can use either a ‘_’ or a ‘.’ to separate
identifiers.

Example 1, changing a scalebar object:

...&map.scalebar=UNITS+MILES+COLOR+121+121+121+SIZE+300+2&...

Example 2, changing a presentation style:

...&map.layer[lakes].class[0].style[0]=SYMBOL+crosshatch+COLOR+151+51+151+SIZE+15&...

Example 3, creating a new feature

...&map_layer[3]=FEATURE+POINTS+500000+1000000+END+TEXT+'A+test+point'+END&...

The variable identifies an object uniquely (by name or index in the case of layerObj’s and classObj’s). The value is a
snippet of a mapfile. You cannot create new objects other than inline features at this point.

Validation patterns for mapserv attribute queries

Attribute queries (qstring) done via the mapserv CGI could theoretically be used for SQL injection.

No exploit has been reported, but in order to mitigate the risk, a new validation pattern mechanism has been added in
5.0.

In the case of qstring attribute queries, the qstring_validation_pattern layer-level metadata is required for qstring queries
to work. The metadata value is a regular expression that the qstring value must match otherwise mapserv produces a
fatal error. A fatal error is also produced if qstring is used but qstring_validation_pattern is not provided.

Note that similar validation pattern mechanism has been available for %variable% substitutions since version 4.10, but
in this case it is optional. The pattern for %myvar% is provided via a metadata called myvar_validation_pattern.
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SWIG MapScript (Python, Perl, CSharp, Java) changes

Layer Transparency: The layerObj transparency parameter is now called opacity. Scripts setting that value in code must
be updated.

Symbol Style: the symbolObj style parameter is now called pattern. MapScript does not allow direct modification of
that parameter. In Swig-based languages the symbolObj method setStyle is now called setPattern. In PHP/MapScript,
the methods setStyle and getStyle are now called setPattern and getPattern.

A new msGetVersionInt() function returning the current MapServer version in integer format has been added to facilitate
version checks in the future. Given version x.y.z, it returns (x*0x10000 + y*0x100 + z). For instance, for v5.0.0 it will
return 0x050000 (note the hexadecimal notation).

CSharp related changes

The MapScript C# classes are now placed into the OSGeo.MapServer namespace The scripts should use the fully
qualified names of the classes or apply the

using OSGeo.MapServer;

or the corresponding language equivalent.

PHP/MapScript changes

Layer Transparency: The layerObj transparency parameter is now called opacity. The old “transparency” name is
deprecated and will be removed in a future release. Scripts getting/setting that value in code must be updated.

All occurrences of scale, minscale, maxscale, etc. . . parameters have been deprecated and renamed with a “denom”
suffix (e.g. minscale becomes minscaledenom, etc.). The deprecated parameters will be removed in a future release.
Scripts getting/setting them must be updated.

SymbolObj style has been renamed pattern. The old “stylelength” parameter and setStyle() and getStyleArray() methods
have been deprecated and “patternlength”, setPattern() and getPatternArray() should be used instead. They will be
removed in a future release.

layer.getShape(int tileindex, int shapeindex)) has been deprecated and renamed to layer.getFeature(int shapeindex [,
int tileindex = -1]) to match the SWIG MapScript equivalent. Note that the order of the arguments is reversed since
tileindex is optional in getFeature().

class.getExpression() and layer.getFilter() have been deprecated and renamed to class.getExpressionString() and
layer.getFilterString() to match what we have in SWIG MapScript. The String suffix in the function name also more
clearly indicates that the return value is not an object but a string representation of it.

A new ms_GetVersionInt() function returning the current MapServer version in integer format has been added to facil-
itate version checks in the future. Given version x.y.z, it returns (x*0x10000 + y*0x100 + z). For instance, for v5.0.0
it will return 0x050000 (note the hexadecimal notation).
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OGC Web Map Service (WMS)

Required Parameters for GetMap and GetFeatureInfo: previously, MapServer did not check for the following parameters
when responding to an OGC:WMS GetMap or GetFeatureInfo request:

• SRS

• FORMAT

• WIDTH

• HEIGHT

• STYLES or SLD / SLD_BODY

• BBOX

That is, a GetMap request would process without error if these were not passed by the WMS client.

A compliant OGC:WMS 1.1.0 and 1.1.1 REQUIRES these parameters. This may affect OGC:WMS client requests
who were not passing these values. Ticket 1088 fully documents this issue. In addition to WMS compliance, this was
also decided that by adding this constraint, if an OGC client request (as described earlier) breaks something, people
should fix their client anyway since if they change WMS vendor, they will have problems as well.

OGC Web Feature Service (WFS)

OGC Sensor Observation Service (SOS)

• The format of MAP/LAYER/METADATA/sos_describesensor_url has been changed such that users now must
format the value per:

“sos_describesensor_url” “http://example.org/sml/%procedure%.xml”

This change has been made to clarify and unify the meaning of procedure within SOS Server’s context of
a DescribeSensor request.

• Metadata associated with an observedProperty element’s swe:component value have been changed to support a
URN scheme, instead of the previous “sos_componenturl” metadata. The “sos_componenturl” metadata is no
longer supported. Instead, “sos_observedproperty_authority” and “sos_observedproperty_version” should be
used to format the swe:component value.

Build Changes

MapServer’s main include file has been renamed from “map.h” to “mapserver.h”.

A new mapserver-config script has been created with the following options:

Usage: mapserver-config [OPTIONS]
Options:
[--libs]
[--dep-libs]
[--cflags]
[--defines]
[--includes]
[--version]

The shared and static link libraries for MapSserver have been renamed libmapserver.x.y.so and libmapserver.a respec-
tively.
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The –enable-coverage configure option has been renamed to –enable-gcov since the former name led users to think it
might be related to enabling support for WCS or Arc/Info coverages:

--enable-gcov Enable source code coverage testing using gcov

Features Heading for Deprecation

Some features present in MapServer are likely to be removed in a future release. Features might be headed for depre-
cation because:

• they have been replaced by a superior or more capable solution

• they have stopped being maintained

Users of these features should be prepared for these upcoming changes and start adapting their mapfiles in consequence.
If you have strong and motivated objections as to the removal of one or more of these features please open a discussion
in the usual MapServer communication channels.

Cartoline symbols: these were a hack to overcome GD weaknesses, and their functionality is now supported by the
AGG renderer. They have become poorly supported in current MapServer versions. Keywords allowing for setting the
style of line joins and caps will be moved to the STYLE block.

RGB/RGBA output with GD: support for RGB and RGBA image types will likely not be maintained anymore. PC256
will continue to be supported with GD, while RGB and RGBA will likely only be supported with AGG
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What is vector data? This quote from is a good description of what vector data is:

Vector: “An abstraction of the real world where positional data is represented in the form of coordinates.
In vector data, the basic units of spatial information are points, lines and polygons. Each of these units
is composed simply as a series of one or more coordinate points. For example, a line is a collection of
related points, and a polygon is a collection of related lines. Vector images are defined mathematically
as a series of points joined by lines. Vector-based drawings are resolution independent. This means that
they appear at the maximum resolution of the output device, such as a printer or monitor. Each object is
self-contained, with properties such as color, shape, outline, size, and position on the screen.”

From: https://www.coris.noaa.gov/glossary/#!/

The rest of this document is the data format guide. This guide is structured to show the fundamentals of each MapServer
supported data format. Each section discusses one format, ranging from one to several pages in length. The sections
typically start with a summary of the most important information about the format, followed by examples of file listings,
connection methods, ogrinfo usage and MapServer map file syntax examples.

Each section has been designed to stand alone, so you may notice that certain warnings and comments are repeated
or redundant. This is intentional. Each format is presented in rough order of popular use, based on a survey of the
MapServer community.

The following formats are included:
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Data Format Types

Each type of data is made up of a data source and (one or more) layers. These two definitions apply to MapServer and
OGR.

Data Source - a group of layers stored in a common repository. This may be a file that handles several layers within it,
or a folder that has several files.

Layer - a sub-set of a data source often containing information in one type of vector format (point, line, polygon).

There are three types of data mapping and GIS data formats. Each type is handled differently. Below are the types and
some example formats:

• File-based- Shapefiles, Microstation Design Files (DGN), GeoTIFF images

• Directory-based - ESRI ArcInfo Coverages, US Census TIGER

• Database connections - PostGIS, ESRI ArcSDE, MySQL

File-based Data

File-based data consists of one or more files stored in any arbitrary folder. In many cases a single file is used (e.g.
DGN) but ESRI Shapefiles, for example, consist of at least 3 files each with a different filename extension: SHP, DBF,
SHX. In this case all 3 files are required because they each perform a different task internally.

Filenames usually serve as the data source name and contain layers that may or may not be obvious from the filename.
In Shapefiles, for example, there is one data source per shapefile and one layer which has the same name as that of the
file.

Directory-based Data

Directory-based data consists of one or more files stored in a particular way within a parent folder. In some cases
(e.g. Coverages) they may also require additional folders in other locations in the file tree in order to be accessed. The
directory itself may be the data source. Different files within the directory often represent the layers of data available.

For example, ESRI ArcInfo Coverages consist of more than one file with an ADF file extension, within a folder. The
PAL.ADF file represents the Polygon data. ARC.ADF holds the arc or line string data. The folder holds the data source
and each ADF file is a layer.

Database Connections

Database Connections are very similar to file and directory-based structures in one respect: they provide geographic
coordinate data for MapServer to interpret. That may be oversimplifying what is happening inside MapServer, but in
essence all you need is access to the coordinates making up the vector datasets.

Database connections provide a stream of coordinate data that is temporarily stored (e.g. in memory) and read by
MapServer to create the map. Other attribute or tabular data may also be required, but the focus of this guide is
coordinate data.

One important distinction between databases must be made. The databases discuss here are spatial databases, those
which can hold geographic data in its own data type. This is opposed to strictly tabular databases which cannot hold
geographic coordinates in the same way. It is possible to store some very simple coordinate data in regular tables, but for
anything but the most simple use a spatial database is required. There are spatial extensions to many databases (Open
Source and commercial). One of the most robust is the PostGIS extension to the PostgreSQL database. This database
not only allows the storage of geographic data, but also allows the manipulation of that data using SQL commands.
The other Open Source database with spatial capabilities is MySQL.
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Connections to databases usually consist of the following pieces of connection information:

Host - Directions to the server or computer hosting the database.

Database name - The name of the database you wish to access that is running on the host.

User name / passwords - Access privileges are usually restricted by user.

Note: Some databases (e.g. Oracle) use a name service identifier that includes both the host and database names.

Access to specific pieces of coordinate data usually require:

Table/View name - The name of the table or view holding the coordinate data.

Geographic column name - Where the geometry or coordinates are stored.

ArcInfo

ESRI ArcInfo Coverage Files are also known as simply as Coverages and less commonly as ADF files.

File listing

Coverages are made up of a set of files within a folder. The folder itself is the coverage name. The files roughly represent
different layers, usually representing different types of topology or feature types.

> ls /data/coverage/brazil
aat.adf arc.adf arx.adf bnd.adf lab.adf prj.adf tic.adf tol.adf

A folder with the name INFO is also part of the coverage. It sits at the same hierarchical level as the coverage folder
itself. Therefore, to copy a coverage (using regular file system tools) the coverage folder and the INFO folder must both
be copied. The INFO folder holds some catalogue information about the coverage.

> ls /data/coverage/info

arc0000.dat arc0001.dat arc0002.dat arc.dir
arc0000.nit arc0001.nit arc0002.nit

Data Access / Connection Method

• CONNECTIONTYPE OGR must be used. The ability to use coverages is not built into MapServer.

• The path to the coverage folder name is required.

• The layer name (feature type) is specified in the DATA parameter
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OGRINFO Examples

The directory is the data source. Layers are found within the directory. Using ogrinfo on a coverage directory:

> ogrinfo /data/coverage/brazil -summary

INFO: Open of `brazil'
using driver `AVCBin' successful.
1: ARC (Line String)
2: CNT (Point)
3: LAB (Point)
4: PAL (Polygon)

Using ogrinfo to examine the structure of a layer:

> ogrinfo /data/coverage/brazil PAL -summary

Had to open data source read-only.
INFO: Open of `brazil'
using driver `AVCBin' successful.

Layer name: PAL
Geometry: Polygon
Feature Count: 1
Extent: (1272793.274958, 795381.617050) - (1287078.382785, 807302.747284)
Layer SRS WKT:
(unknown)
ArcIds: IntegerList (0.0)
AREA: Real (18.5)
PERIMETER: Real (18.5)
F_OPER#: Integer (5.0)
F_OPER-ID: Integer (5.0)
OPER: String (2.0)
FCODE: String (10.0)

Map File Example:

LAYER
NAME Brazil_bounds
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/data/coverage/brazil"
DATA "PAL"
CLASS
NAME "Brazil Admin Areas"
STYLE
OUTLINECOLOR 153 102 0
SIZE 2

END
END

END
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ArcSDE

Warning: MapServer’s native SDE driver was removed for the MapServer 7.0 release (see discussion). GDAL’s
ArcSDE drivers were removed in the GDAL 3.2.0 release.

Spatial Database Engine (SDE) is one of ESRI’s products which enables spatial data to be stored, managed, and quickly
retrieved from leading commercial database management systems like Oracle, Microsoft SQL Server, Sybase, IBM
DB2, and Informix.

Supported ArcSDE Operations

• Versioned queries (query geometry and attributes from a specified version)

• queryByAttributes (select geometry and attributes based on the values of an attribute)

• Limited join support for within-database tables</li>

• queryByRect (select geometry based on an extent)

• Projection on the fly

• SDE for Coverages (a read-only type of SDE for coverage, shapefile, and ArcStorm/ArcLibrarian repositories)

• SDE 8.1, 8.2, 8.3, 9.0, 9.1, and 9.2

• Linux, Windows, and Solaris (platforms that have SDE C API support)

Unsupported ArcSDE Operations

• queryByShape (pass in a shape with MapScript and use it for queries)

• Direct Connect (bypass SDE to connect directly to the database with the SDE C API)

How to make a connection to SDE:

• Install the SDE C API client libraries for your platform (preferably matched to the server version you are using,
ie 8.2 client -> 8.2 server, 8.3 client -> 8.3 server)

• Compile MapServer with SDE support MapServer Unix Compilation Howto for specific details)

• Define a LAYER block in a MapFile that uses SDE as the CONNECTIONTYPE

LAYER
NAME states
TYPE POLYGON
CONNECTION "sdemachine.iastate.edu,port:5151,sde,username,password"
CONNECTIONTYPE SDE
DATA "HOBU.STATES_LAYER,SHAPE,SDE.DEFAULT"
FILTER "where MYCOLUMN is not NULL"
PROCESSING "QUERYORDER=ATTRIBUTE" # <-- MapServer 4.10 and above

# Within database one-to-one join support

# MapServer 5.0 and above
(continues on next page)
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(continued from previous page)

PROCESSING "JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE"

# MapServer 5.0 and above
CLASSITEM "SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL"

# MapServer 5.0 and above
FILTER "SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.

→˓AQ_TAG"

# ObjectID column manipulation
# MapServer 5.0 and above
PROCESSING "OBJECTID=OBJECTID"

TEMPLATE '/where/the/template/file/is/located'
CLASS

STYLE
SYMBOL 'circle'
SIZE 3
COLOR -1 -1 -1
OUTLINECOLOR 0 0 0

END
END

END

CONNECTION - Order is important!

• sdemachine.iastate.edu - The name of the machine you are connecting to. In some instances, this may need
to be the IP address of the machine rather than the name if the server running MapServer is not configured to
cascade DNS lookups

• port:5151 - The port number of SDE. The port: is important as SDE expects you to define the service in this slot,
and it can be other names like sde:oracle (for direct connect) or esri_sde (for systems with port 5151 defined as
esri_sde in /etc/services)

• sde - The database username that the SDE server is using to connect to your database. It is often only important
for SDE setups that are connecting to Oracle (and even then, not so important). Just leave it as sde if you don’t
know what it should be.

• username - The username that will be connecting to SDE. This user must have been granted rights to select
the layer that you will be specifying in the DATA directive. You can use ArcCatalog or the SDE command-line
utilities to grant the appropriate rights to layers.

• password - Password of the user connecting to SDE. Case Sensitive.
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DATA - Order is important!

• HOBU.STATES_LAYER - The layer name you are querying. This the full name of the table in which the layer
resides. If you are using Oracle or Microsoft SQL Server as the DB for SDE, the schema name must also be
supplied.

• SHAPE - The column that contains the geometry. SDE technically allows for storage of multiple geometry types
in the same layer, but in practice this isn’t desirable. Also, expect to have problems if there are invalid or null
geometries in the layer (or versions of the layer).

• SDE.DEFAULT - As of MapServer 4.2, you can query against a specific version of the layer. SDE supports
multi-user editing with versions. If a layer has been Registered with the GeoDatabase and Registered as Versioned
(ArcGIS terms), MapServer can query against specified versions of those edits. If not specified, SDE.DEFAULT
will be used for all queries. Case Sensitive.

Note: The version parameter is located in a different spot than MapServer 4.2, which had it on the CONNECTION
string.

TEMPLATE

• /where/the/template/file/is/located - A template directive must be specified (can point to a dummy file) in order
for MapServer to be able to query attributes from SDE. If you are only going to be drawing layers, this directive is
unnecessary and will slow down the query operations of SDE (especially for layers with lots of attribute columns).

PROCESSING

• PROCESSING “QUERYORDER=ATTRIBUTE” - Allows you to force SDE to use the WHERE clause that
was defined in your FILTER statement first, without attempting to hit the spatial index. Only in very special
cases will you want to do this.

• PROCESSING “OBJECTID=OBJECTID” - If you are having trouble with the SDE driver detecting your
unique ID column, you can override it with this processing parameter. Doing so will also have a slight perfor-
mance benefit because it will save a couple of extra queries to the database.

• PROCESSING “ATTRIBUTE_QUALIFIED=TRUE” - User can set this option to always use fully qualified
attribute names.

Within-database Join Support

MapServer’s SDE driver, as of MapServer 5.0, allows you to join a single attribute table that has no geometries to the
layer that you are rendering. This feature allows you to use the data in the joined table much as you would in a composite
query that was made with something like PostGIS or Oracle Spatial. That is, the columns in the right table of the join
are available for CLASSITEM, LABELITEM and so on. The biggest constraint, however, is that fully qualified names
must be used or it most likely will not work. The join support is activated through PROCESSING options.

• PROCESSING “JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE” - The JOINTABLE
processing option tells the driver which table you are joining the current layer to.

• CLASSITEM “SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL” - A CLASSITEM or LABELITEM
for a joined table using this mechanism must be fully qualified.

• FILTER “SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.AQ_TAG”
- An important part of the join is defining how the join is to be made. Use a FILTER to do so.
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Contour

1. Overview

MapServer (since version 6.4) can compute and render a contour layer on the fly from a raster source. The raster
source is one band of raster data, which represents a digital elevation model (DEM). More info about DEMs at: http:
//en.wikipedia.org/wiki/Digital_elevation_model

2. How it works

CONNECTIONTYPE CONTOUR. The new (to MapServer 6.4) type is a hybrid layer, which has a raster data source
as input and vector features as output. Initially, only the line representation of those vector features will be supported.
More detailed information about the original implementation can be found in RFC 85.

Since the internal layer is of type vector, queries will be supported and operate on the vectors (not on the raw raster
source). In the future we might see a need to add a query mode that queries the raster source, but this is not included
in this phase of work.

To render a contour layer, we need to define a layer in the mapfile with the following options:

• Set the layer TYPE to LINE.

• Set CONNECTIONTYPE to CONTOUR.

• Set the DATA to the raster file that contains the elevation band. Starting with MapServer 7.0.1, a TILEINDEX
can also be used, together with WMS Time to specify which raster of the tileindex must be used.

• Specify the band to use as elevation using PROCESSING “BANDS”, same as regular raster.

• Specify one or more classes and styles to render the line features.

PROCESSING settings:

These options should be specified at layer level:

• CONTOUR_INTERVAL: elevation interval between contours

• CONTOUR_LEVELS: comma-separated list of one or more ‘fixed levels’ to extract

• CONTOUR_ITEM: provides a name for the item (attribute) in which to put the elevation. (optional)

You can also provide explicit min/max scaledenom in the CONTOUR_iNTERVAL or CON-
TOUR_LEVELS values if you wish to use scale-dependent contour spacing. This is done by
adding an optional “miscaledenom,maxscaledenom:” prefix to the value or list of values. See
the example below.

Warning: If you only set a single CONTOUR_INTERVAL for all scale ranges, MapServer will likely crash at
outer scale ranges (first example below). More recent GDAL versions (such as 3.2.0) will output an error message
such as: “Input values and/or interval settings would lead to too many levels”. To avoid this, set multiple CON-
TOUR_INTERVAL lines to handle various scale ranges (see the working Copernicus DEM example below, with
output map images).

Example of a simple layer definition:

LAYER
NAME "my_contour_layer"
TYPE LINE

(continues on next page)
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(continued from previous page)

STATUS DEFAULT
CONNECTIONTYPE CONTOUR
DATA "/mnt/data/raster/grib/dem.grib"
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=10"
CLASS
STYLE
WIDTH 2
COLOR 255 0 0

END
END

END #layer

Example of a layer definition with scale-dependent contour ranges:

LAYER
NAME "my_contour_layer"
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE CONTOUR
DATA "/mnt/data/raster/grib/dem.grib"
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=0,25000:5" # interval of 5 for scales of 25000 or less
PROCESSING "CONTOUR_INTERVAL=25000,500000:10" # interval of 10 for scales in the 25000␣

→˓to 500000 range
PROCESSING "CONTOUR_LEVELS=500000,0:10,25,50,100" # explicit list of levels for scales␣

→˓of 500000 and up
LABELITEM "elevation"
CLASS
STYLE
WIDTH 2
COLOR 255 0 0

END
LABEL
...

END
END

END #layer

Example of a layer definition with a tile index and WMS TIME support:

LAYER
NAME "my_contour_layer"
TYPE LINE
STATUS OFF
CONNECTIONTYPE CONTOUR
TILEINDEX "data/contour_ti.shp"
TILEITEM "location"
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"

(continues on next page)
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(continued from previous page)

PROCESSING "CONTOUR_INTERVAL=20"
CLASS
STYLE
WIDTH 1
COLOR 255 0 0

END # STYLE
END # CLASS

METADATA
"DESCRIPTION" "contour"
"wms_title" "contour"
"wms_timeitem" "TIME"
"wms_timeextent" "2004-01-01/2004-02-01"

END # METADATA
END # LAYER

Example of a layer definition with scale-dependent contour ranges & Copernicus EU DEM data:

LAYER
NAME "dem-contours"
TYPE LINE
STATUS ON
CONNECTIONTYPE CONTOUR
DATA "eu_dem_v11_E40N20_clip.TIF"
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=Band_1"
PROCESSING "CONTOUR_INTERVAL=0,25000:5" # interval of 5 for scales of 25000 or less
PROCESSING "CONTOUR_INTERVAL=25000,500000:10" # interval of 10 for scales in the 25000␣

→˓to 500000 range
PROCESSING "CONTOUR_LEVELS=500000,0:10,25,50,100,200,300,400,500,600,700,800,900,1000"

→˓# explicit list of levels for scales of 500000 and up
CLASS
NAME "Contours"
STYLE
WIDTH 1
COLOR 139 69 19

END
END

END # layer

Figure: contours zoomed-out to coastline (Corsica island) generated from Copernicus EU DEM
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Figure: contours zoomed-in (Corsica island) generated from Copernicus EU DEM
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2.1 Data cellsize

The data produced by the gdal contour algorithm are generally in high resolution. A lot of point are used to generated
contours with precision. You might want to generalize/simplify the line in some cases (ie. Shape Smoothing). The
[data_cellsize] attribute binding represents the cellsize of the extend fetched from the raster file. This is different than
the map cellsize.

In the following example, I generalize my shape with a tolerance of 25% of the data cellsize to produce smooth contours
at all scales:

LAYER
NAME "MyContourLayer"
STATUS DEFAULT
DATA "wind.tif"
TYPE LINE
CONNECTIONTYPE CONTOUR
PROJECTION AUTO END
PROCESSING "BANDS=1"
PROCESSING "CONTOUR_ITEM=elevation"
PROCESSING "CONTOUR_INTERVAL=0,0:1"
GEOMTRANSFORM (smoothsia(generalize([shape], 0.25*[data_cellsize])))
CLASS
EXPRESSION ([elevation] >= 0)
STYLE
COLOR 0 0 255

END # STYLE
END # CLASS

END # LAYER

DGN

File listing

Data are encapsulated in a single file, usually with the suffix .dgn.

0824t.dgn

Data Access / Connection Method

• Access is available in MapServer through OGR.

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the dgn file is required, file extension is needed.

• All types of features in a DGN file are held in one “layer” of data. The layer is called elements and is the first
and only layer.

• The type of feature to be read from the DGN depends on the TYPE parameter in the map file.

• DGN files typically contain POINT, LINE, POLYGON and ANNOTATION feature types.

• DGN files contain “styling” information - how to color and present the data. This is used, optionally, by specifying
the STYLEITEM “AUTO” parameter.

8.1. Data Input 542



MapServer Documentation, Release 7.6.6

Note: DGN files typically use white as a color for their features and therefore are not visible on maps with white
backgrounds.

OGRINFO Examples

Using ogrinfo on a single DGN file:

> ogrinfo /data/dgn/0824t.dgn

Had to open data source read-only.
INFO: Open of `0842t.dgn'
using driver `DGN' successful.
1: elements

Note: No geometry/feature type for the layer is identified because it can be multiple types.

DGN files are not really GIS data files. They evolved from drafting formats used by computer aided drafting/design
(CADD) programs.

They carry a few key attributes which are usually consistent across all DGN files. Most of the attributes relate to
graphical styling of features for map presentation, such as ColorIndex, Style, etc.

Spatial reference system information is not always encoded into DGN files. This can be a major problem when trying
to adequately reference the DGN data in another mapping program.

Measurement units can be a problem. In some cases the features could be located in kilometers or feet even though
it is not obvious from the output of ogrinfo. Sometimes the only way to identify or correct a problem with units is to
open the file in Microstation software.

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo -summary /data/dgn/0824t.dgn elements

INFO: Open of '0824t.dgn'
using driver 'DGN' successful.

Layer name: elements
Geometry: Unknown (any)
Feature Count: 22685
Extent: (-513183.050000, 150292.930000) - (-224583.220000, 407463.360000)
Layer SRS WKT:
(unknown)
Type: Integer (2.0)
Level: Integer (2.0)
GraphicGroup: Integer (4.0)
ColorIndex: Integer (3.0)
Weight: Integer (2.0)
Style: Integer (1.0)
EntityNum: Integer (8.0)
MSLink: Integer (10.0)
Text: String (0.0)
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Map File Example:

LAYER
NAME dgn
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "dgn/0824t.dgn"
STYLEITEM "AUTO"
CLASS
END

END # Layer

ESRI File Geodatabase

ESRI File Geodatabases exist in a file folder and offer improved performance and size limitations. For more information
see the ESRI description page.

Note: Only file geodatabases created by AcrGIS 10.0 and above can be read by GDAL/MapServer.

File listing

File geodatabases are made up of a set of files within a folder. The files are made up of geographic data, attribute data,
index files, and lock files. A better description of the file contents can be found here.

Data Access / Connection Method

File geodatabase access is available through OGR. See the OGR driver page for FileGDB for specific driver information.
The driver is available for GDAL >= 1.9.0. You may also see the the OGR driver page for OpenFileGDB which provides
read-only access and does not require an external SDK to compile.

Note: For Windows users, MS4W leverages the OpenFileGDB driver.

The CONNECTION parameter must be used to point to the name of the file folder, and the DATA parameter should
be the name of the spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "filegdb-folder"
DATA "layername"

Note: The CONNECTION path is relative to the mapfile (SHAPEPATH is not used here). Full paths can also be used.
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OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the file geodatabase “FileGDB” driver (or the “Open-
FileGDB” driver), by using the ‘–formats’ command:

>ogrinfo --formats

Supported Formats:
...
"FileGDB" (read/write)
"ESRI Shapefile" (read/write)
"MapInfo File" (read/write)
"UK .NTF" (readonly)
"SDTS" (readonly)
"TIGER" (read/write)
...

If you don’t have the driver, see GDAL’s BuildHints page for compiling the driver.

Once you have the FileGDB driver you are ready to try an ogrinfo command on your database to get a list of spatial
tables. In the example below our folder is named us_states.gdb:

ogrinfo us_states.gdb

INFO: Open of `us_states.gdb'
using driver `FileGDB' successful.
1: statesp020 (Multi Polygon)

Now use ogrinfo to get information on the structure of the statesp020 table:

ogrinfo us_states.gdb statesp020 -summary

INFO: Open of `us_states.gdb'
using driver `FileGDB' successful.

Layer name: statesp020
Geometry: Multi Polygon
Feature Count: 2895
Extent: (-179.000000, 17.000000) - (179.000000, 71.000000)
Layer SRS WKT:
GEOGCS["GCS_North_American_1983",

DATUM["North_American_Datum_1983",
SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.017453292519943295]]

FID Column = OBJECTID
Geometry Column = SHAPE
AREA: Real (0.0)
PERIMETER: Real (0.0)
STATESP020: Real (0.0)
STATE: String (0.0)
STATE_FIPS: String (0.0)
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Mapfile Example

LAYER
NAME "fgdb_poly"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "../data/filegdb/us_states.gdb"
DATA "statesp020"
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
LABELITEM "STATE"
CLASS
NAME "US States"
STYLE
COLOR 120 120 120
OUTLINECOLOR 0 0 0

END
LABEL
COLOR 255 255 255
OUTLINECOLOR 0 0 0

END
END

END

ESRI Personal Geodatabase (MDB)

ESRI Personal Geodatabases are basically Microsoft Access files that contain spatial information. For more information
see the ESRI description page.

File listing

Similar to other database formats, the mdb file consists of several tables. The geometry is held in a BLOB table column.

Data Access / Connection Method

Personal geodatabase access is available through OGR. See the OGR driver page for specific driver information. The
driver is standard in any win32 build of GDAL/OGR version 1.3.2 or later. For Linux/Unix, MDBTools ODBC drivers
can be used for this (with some difficulty).

OGR uses the names of spatial tables within the personal geodatabase (tables with a Shape column) as layers.

The CONNECTION parameter must include the mdb extension, and the DATA parameter should be the name of the
spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "pgeodatabase.mdb"
DATA "layername"
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OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the personal geodatabase “PGeo” driver, by using the
‘–formats’ command:

>ogrinfo --formats

Loaded OGR Format Drivers:
...
-> "ODBC" (read/write)
-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the PGeo driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo test.mdb

INFO: Open of `test.mdb'
using driver `PGeo' successful.
1: counties

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo test.mdb counties -summary

INFO: Open of `test.mdb'
using driver `PGeo' successful.

Layer name: counties
Geometry: Unknown (any)
Feature Count: 67
Extent: (-87.634943, 24.543945) - (-80.031369, 31.000975)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

OBJECTID_1: Integer (10.0)
OBJECTID: Integer (10.0)
NAME: String (32.0)
STATE_NAME: String (25.0)
STATE_FIPS: String (2.0)
CNTY_FIPS: String (3.0)
FIPS: String (5.0)
...

Note that you can also use an ODBC connection to access all of the tables in your geodatabase:

>ogrinfo PGeo:testDSN counties -summary

(continues on next page)
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(continued from previous page)

INFO: Open of `testDSN'
using driver `PGeo' successful.

1: counties
2: counties_Shape_Index
...

(where “testDSN” is the name of your System DSN)

Mapfile Example

Direct Access to MDB

LAYER
NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "test.mdb"
DATA "counties"
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "counties"
STYLE
COLOR 255 255 120

END
END

END

Through an ODBC Connection

LAYER
NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "PGeo:testDSN"
DATA "counties"
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "counties"
STYLE
COLOR 255 255 120

END
END

END
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ESRI Shapefiles (SHP)

Also known as just ‘Shapefiles’, or ESRI ArcView Shapefiles. Esri is the software company that introduced this format.
ArcView was the first product to use shapefiles.

File listing

Shapefiles are made up of a minimum of three similarly named files, with different suffixes:

Countries_area.dbf
Countries_area.shp
Countries_area.shx

Data Access / Connection Method

Shapefile access is built directly into MapServer. It is also available through OGR, but direct access without OGR is
recommended and discussed here. The path to the shapefile is required (relative to the SHAPEPATH). Specifying the
“.shp” extension is recommended. Shapefiles only hold one layer of data, therefore no distinction needs to be made (as
is required for other OGR vector formats that can contain many layers).

OGRINFO Examples

• The directory can serve as a data source.

• Each shapefile in a directory serves as a layer.

• A shapefile can also be a data source. In this case the layer has the same prefix as the shapefile.

Using ogrinfo on a directory with multiple shapefiles:

> ogrinfo /data/shapefiles/

INFO: Open of `/data/shapefiles/'
using driver `ESRI Shapefile' successful.
1: wpg_h2o (Line String)
2: wpg_roads (Line String)
3: wpg_roads_dis (Line String)
4: wpgrestaurants (Point)

Using ogrinfo on a single shapefile:

> ogrinfo /data/shapefiles/Countries_area.shp

Had to open data source read-only.
INFO: Open of `Countries_area.shp'
using driver `ESRI Shapefile' successful.
1: Countries_area (Polygon)

Using ogrinfo to examine the structure of the file/layer:
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> ogrinfo -summary /data/shapefiles/Countries_area.shp Countries_area

Had to open data source read-only.
INFO: Open of `Countries_area.shp'
using driver `ESRI Shapefile' successful.

Layer name: Countries_area
Geometry: Polygon
Feature Count: 27458
Extent: (-180.000000, -90.000000) - (180.000000, 83.627419)
Layer SRS WKT:
(unknown)
FAC_ID: Integer (5.0)
TILE: Integer (3.0)
ARCLIST: String (254.0)
NAM: String (77.0)
PERIMETER: Real (22.17)
POLYGONCOU: Integer (6.0)
NA2DESC: String (45.0)

Map File Example:

LAYER
NAME "my_shapefile"
STATUS ON
TYPE POLYGON
DATA "countries_area.shp"
CLASS
NAME "Countries"
STYLE
OUTLINECOLOR 0 0 0
COLOR 150 150 150

END #style
END #class

END #layer

FlatGeobuf

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2022-04-26

FlatGeobuf is an optimized binary encoding for vectors based on Flatbuffers, that focuses on read/query performance
by leveraging a Packed Hilbert R-Tree spatial index, that enables fast bounding box spatial filtering. FlatGeobuf per-
formance has helped make it become one of the chosen formats for streaming spatial data through HTTP / “the cloud”.
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More Information

More information about FlatGeobuf is available at:

• GitHub repository: https://github.com/flatgeobuf/flatgeobuf

• Twitter: https://twitter.com/flatgeobuf

File listing

FlatGeobuf files are usually a single binary file with a FGB filename extension, such as:

countries.fgb

Note: Windows users who want to follow along, can convert MS4W’s included demo.db SpatiaLite database into a
FlatGeobuf file (for the countries table) with the command (executed inside /ms4w/apps/local-demo/data/ ) :

ogr2ogr -f FlatGeobuf countries.fgb demo.db countries

Data Access / Connection Method

FlatGeobuf access is available in MapServer through OGR’s FlatGeobuf driver. You must use GDAL version 3.1.0 or
later for FlatGeobuf access.

OGR uses the names of spatial layers within the FlatGeobuf file as layers.

The CONNECTION parameter must include the .fgb extension, and the DATA parameter should be the name of the
OGR layer.

CONNECTIONTYPE OGR
CONNECTION "name.fgb"
DATA "layername"

Tip: Since the MapServer 7.6.0 release, you can also specify OGR driver options, and for the FlatGeobuf driver you
can disable checking for invalid data, which is critical for maximum performance

CONNECTIONOPTIONS
"VERIFY_BUFFERS" "NO" # for maximum performance

END
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Step 1: Use ogrinfo to examine

First you should make sure that your local GDAL/OGR build contains the “FlatGeobuf” driver, by using the –formats
command:

ogrinfo --formats

Supported Formats:
...
FlatGeobuf -vector- (rw+v): FlatGeobuf
...

Once you have confirmed that you have the FlatGeobuf driver, you are ready to try an ogrinfo command on your file to
get a list of spatial layers:

ogrinfo countries.fgb

INFO: Open of `countries.fgb'
using driver `FlatGeobuf' successful.

1: countries (Multi Polygon)

Now use ogrinfo to get information on the structure of the spatial ‘countries’ layer:

ogrinfo countries.fgb countries -summary

INFO: Open of `countries.fgb'
using driver `FlatGeobuf' successful.

Layer name: countries
Geometry: Multi Polygon
Feature Count: 177
Extent: (-180.000000, -90.000000) - (180.000000, 83.645130)
Layer SRS WKT:
GEOGCRS["WGS 84",

ENSEMBLE["World Geodetic System 1984 ensemble",
MEMBER["World Geodetic System 1984 (Transit)"],
MEMBER["World Geodetic System 1984 (G730)"],
MEMBER["World Geodetic System 1984 (G873)"],
MEMBER["World Geodetic System 1984 (G1150)"],
MEMBER["World Geodetic System 1984 (G1674)"],
MEMBER["World Geodetic System 1984 (G1762)"],
MEMBER["World Geodetic System 1984 (G2139)"],
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],
ENSEMBLEACCURACY[2.0]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],

CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,

ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],

AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],

(continues on next page)

8.1. Data Input 552



MapServer Documentation, Release 7.6.6

(continued from previous page)

USAGE[
SCOPE["Horizontal component of 3D system."],
AREA["World."],
BBOX[-90,-180,90,180]],

ID["EPSG",4326]]
Data axis to CRS axis mapping: 2,1
featurecla: String (0.0)
scalerank: Integer (0.0)
labelrank: Integer (0.0)
sovereignt: String (0.0)
sov_a3: String (0.0)
adm0_dif: Integer (0.0)
level: Integer (0.0)
type: String (0.0)
...

Step 2: Add the layer in your mapfile

For OGR connections, it is always recommended to set CONNECTIONTYPE, CONNECTION, and DATA, as follows:

/* Countries */
LAYER
NAME "countries"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "countries.fgb"
DATA "countries" # the OGR layername, found through ogrinfo
CONNECTIONOPTIONS
"VERIFY_BUFFERS" "NO" # for maximum performance (requires MapServer >=7.6.0)

END #connectionoptions
EXTENT -180.000000 -90.000000 180.000000 83.645130 # for maximum performance
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
CLASS
NAME "World Countries"
STYLE
COLOR 200 200 200
OUTLINECOLOR 0 0 0
WIDTH 0.1

END #style
END #class

END #layer

8.1. Data Input 553



MapServer Documentation, Release 7.6.6

Step 3: Test your Mapfile with shp2img

Use the MapServer commandline utility shp2img to verify that your mapfile creates a valid map image, and also display
draw times, such as:

shp2img -m flatgeobuf.map -o ttt.png -map_debug 3

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 0 (countries), 0.012s
msDrawMap(): Drawing Label Cache, 0.002s
msDrawMap() total time: 0.015s
msSaveImage(flatgeobuf.png) total time: 0.008s

Optional: Configure your WFS service to Output FlatGeoBuf

Since MapServer 6.0, you can configure an OUTPUTFORMAT for your WFS (or WMS) service, for an OGR connec-
tion. See the OGR Output document for more information.

First, you must specify the OUTPUTFORMAT in your mapfile, for FlatGeobuf such as:

OUTPUTFORMAT
NAME "OGRFLATGEOBUF"
DRIVER "OGR/FlatGeoBuf"
FORMATOPTION "STORAGE=filesystem"
FORMATOPTION "FORM=simple"
FORMATOPTION "FILENAME=result.fgb"

(continues on next page)
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(continued from previous page)

FORMATOPTION "LCO:VERIFY_BUFFERS=NO"
END

Next, you must specify that OUTPUTFORMAT using the wfs_getfeature_formatlist metadata parameter, at the LAYER
level, such as:

METADATA
"ows_title" "World Countries"
"ows_abstract" "World Countries, served by MS4W"
"ows_include_items" "all"
"gml_include_items" "all"
"gml_featureid" "ogc_fid"
"wfs_getfeature_formatlist" "OGRGML,OGRFLATGEOBUF"
"ows_geomtype" "MultiPolygon"
"wfs_use_default_extent_for_getfeature" "false"

END

Verify that OUTPUTFORMAT through a GetCapilities request, and look for the GetFeature/ResultFormat section,
such as:

http://127.0.0.1/cgi-bin/mapserv.exe?
map=/ms4w/apps/local-demo/flatgeobuf.map
&SERVICE=wfs
&VERSION=1.0.0
&REQUEST=GetCapabilities

Which gives a response containing:
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Once we see the OGRFLATGEOBUF in the GetCapabilities response, then we can add &OUTPUTFOR-
MAT=OGRFLATGEOBUF to the end of any WFS GetFeature request, such as:

http://127.0.0.1/cgi-bin/mapserv.exe?
map=/ms4w/apps/local-demo/flatgeobuf.map
&SERVICE=WFS
&REQUEST=GetFeature
&VERSION=2.0.0
&TYPENAMES=ms:countries
&STARTINDEX=0
&COUNT=1000
&SRSNAME=urn:ogc:def:crs:EPSG::4326
&BBOX=-333.02127061643835759,-189,326.66640061643835224,189,urn:ogc:def:crs:EPSG::4326
&OUTPUTFORMAT=OGRFLATGEOBUF

and a file named result.fgb will be returned.

GML

Also known as Geographic Markup Language and GML/XML. GML is a text-based, XML format that can represent
vector and attribute data. This is an Open Geospatial Consortium specification for data interchange. More information
is available at https://www.ogc.org/standards/gml

File listing

GML files are usually a single text file with a GML filename extension. Some may use XML as the filename extension:

coal_dep.gml

XML schema documents often accompany GML files that have been translated from some other format (e.g. using the
ogr2ogr utility).

GML uses sets of nested tags to define attributes and geometry coordinates. Example of text in a GML file:

<gml:featureMember>
<Coal_Deposits fid="1">
<UNKNOWN>0.000</UNKNOWN>
<NA>0.000</NA>
<ID>2</ID>
<ID2>2</ID2>
<MARK>7</MARK>
<COALKEY>110</COALKEY>
<COALKEY2>110</COALKEY2>
<ogr:geometryProperty>
<gml:Point>
<gml:coordinates>78.531,50.694</gml:coordinates>
</gml:Point>
</ogr:geometryProperty>
</Coal_Deposits>
</gml:featureMember>
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Data Access / Connection Method

• GML access is available in MapServer through OGR. More information on OGR GML support is available at
https://gdal.org/drivers/vector/gml.html

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the GML file is required, including file extension. There can be multiple layers in a GML file,
including multiple feature types.

OGRINFO Examples

Using ogrinfo on a single GML file:

> ogrinfo /data/gml/coal_dep.gml

Had to open data source read-only.
INFO: Open of `coal_dep.gml'
using driver `GML' successful.
1: Coal_Deposits

Using ogrinfo to examine the structure of one layer:

> ogrinfo -summary /data/gml/coal_dep.gml Coal_Deposits

Had to open data source read-only.
INFO: Open of `coal_dep.gml'
using driver `GML' successful.

Layer name: Coal_Deposits
Geometry: Unknown (any)
Feature Count: 266
Extent: (23.293650, 37.986340) - (179.272550, 80.969670)
Layer SRS WKT:
(unknown)
UNKNOWN: Real (0.0)
NA: Real (0.0)
ID: Integer (0.0)
ID2: Integer (0.0)
MARK: Integer (0.0)
COALKEY: Integer (0.0)
COALKEY2: Integer (0.0)
LONG: Real (0.0)
LAT: Real (0.0)

Map File Example:

LAYER
NAME "coal_deposits"
TYPE POINT
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "gml/coal_dep.gml"

(continues on next page)
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CLASS
STYLE
COLOR 0 0 0
SYMBOL 'circle'
SIZE 6

END #style
END #class

END #layer

GeoJSON

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-05-10

GeoJSON is a text-based, open standard format that can represent vector points, lines, polygons, and multi-part collec-
tions. Officially, it is a geospatial data interchange format based on JavaScript Object Notation (JSON). GeoJSON is a
specification as part of the Internet Engineering Task Force (IETF).

More Information

More information about GeoJSON is available at:

• Official page: https://geojson.org/

• Specification: https://tools.ietf.org/html/rfc7946

File listing

GeoJSON files are usually a single text file with a JSON filename extension, such as:

countries.json

You can open that file in a text editor, and it will look something like:

{
"type": "FeatureCollection",
"name": "countries",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "name_en": "Fiji" }, "geometry": { "type":

→˓"MultiPolygon", "coordinates": [ [ [ [ 180.0, -16.067132663642447 ], [clipped for␣
→˓display here...], [ -179.793320109048636, -16.020882256741224 ] ] ] ] } },

{ "type": "Feature", "properties": { "name_en": "Tanzania" }, "geometry": { "type":
→˓"MultiPolygon", "coordinates": [ [ [ [ 33.903711197104528, -0.95 ], [ 34.07262, -1.
→˓05982 ], [clipped for display here...], [ 33.903711197104528, -0.95 ] ] ] ] } },

...
(continues on next page)
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]
}

Tip: You can also drag and drop your GeoJSON file into a modern web browser, such as FireFox, and it will nicely
display your file.

Note: Windows users who want to follow along, can convert MS4W’s included demo.db SpatiaLite database into a
GeoJSON file (for the countries table) with the command (executed inside /ms4w/apps/local-demo/data/ ) :

ogr2ogr -f GeoJSON countries.json demo.db countries

Data Access / Connection Method

• GeoJSON access is available in MapServer through OGR’s GeoJSON driver.

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the GeoJSON file is required, including the file extension.

CONNECTIONTYPE OGR
CONNECTION "name.json"
DATA "layername"

Step 1: Use ogrinfo to examine

Using ogrinfo on the GeoJSON file:

> ogrinfo countries.json

INFO: Open of `countries.json'
using driver `GeoJSON' successful.

1: countries (Multi Polygon)

Using ogrinfo to examine the structure of the countries layer:

> ogrinfo countries.json countries -summary

INFO: Open of `countries.json'
using driver `GeoJSON' successful.

Layer name: countries
Geometry: Multi Polygon
Feature Count: 177
Extent: (-180.000000, -90.000000) - (180.000000, 83.645130)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
(continues on next page)
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SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]

featurecla: String (0.0)
scalerank: Integer (0.0)
labelrank: Integer (0.0)
sovereignt: String (0.0)
sov_a3: String (0.0)
adm0_dif: Integer (0.0)
level: Integer (0.0)
type: String (0.0)
admin: String (0.0)
adm0_a3: String (0.0)
...

Step 2: Add the layer in your mapfile

For OGR connections, it is always recommended to set CONNECTIONTYPE, CONNECTION, and DATA, as follows:

/* Countries */
LAYER
NAME "countries"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "countries.json"
DATA "countries" # the OGR layername, found through ogrinfo
CLASS
NAME "World Countries"
STYLE
COLOR 200 200 200
OUTLINECOLOR 0 0 0
WIDTH 0.1

END #style
END #class

END #layer
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Step 3: Test your Mapfile with shp2img

Use the MapServer commandline utility shp2img to verify that your mapfile creates a valid map image, and also display
draw times, such as:

shp2img -m geojson.map -o ttt.png -map_debug 3

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 0 (countries), 0.091s
msDrawMap(): Drawing Label Cache, 0.000s
msDrawMap() total time: 0.091s
msSaveImage(ttt.png) total time: 0.007s

Tip: MS4W users will notice that the demo mapfile that is part of every installation (at /ms4w/apps/local-
demo/local.map) is configured to output GeoJSON.
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GeoPackage

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2022-04-25

GeoPackage, also written as “GPKG”, is a standards-based wrapper for the file-based SQLite database. GPKG is an
encoding standard adopted by the Open Geospatial Consortium back in 2014, and has since gained popularity for
distributing both vector & raster data, inside one compact file.

More Information

More information about GPKG is available at:

• Official page: https://www.geopackage.org/

• OGC’s GeoPackage Encoding Standard: https://www.ogc.org/standards/geopackage

File listing

Similar to other database formats, the .gpkg file consists of several tables. The geometry is held in a BLOB table
column.

Note: Windows users who want to follow along, can convert MS4W’s included demo.db SpatiaLite database into a
GPKG file (for the countries table) with the command (executed inside /ms4w/apps/local-demo/data/ ) :

ogr2ogr -f GPKG countries.gpkg demo.db countries
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Data Access / Connection Method

GPKG access is available in MapServer through OGR’s GPKG driver. It is recommended to use GDAL/OGR version
2.2 or later for GPKG access.

OGR uses the names of spatial tables within the GPKG database (tables with a geometry column that are registered in
the geometry_columns table) as layers.

The CONNECTION parameter must include the .gpkg extension, and the DATA parameter should be the name of the
spatial table (or OGR layer).

CONNECTIONTYPE OGR
CONNECTION "name.gpkg"
DATA "layername"

Tip: The MapServer 7.4.x series contained a few critical fixes for GPKG access, therefore at the minimum, at least
MapServer 7.6.0 is recommended.

Step 1: Use ogrinfo to examine

First you should make sure that your local GDAL/OGR build contains both the “GPKG” driver & the “SQLite / Spa-
tialite” driver, by using the –formats command:

ogrinfo --formats

Supported Formats:
...
GPKG -raster,vector- (rw+vs): GeoPackage
SQLite -vector- (rw+v): SQLite / Spatialite
...

Once you have confirmed that you have the GPKG driver you are ready to try an ogrinfo command on your database
to get a list of spatial tables:

ogrinfo countries.gpkg

INFO: Open of `countries.gpkg'
using driver `GPKG' successful.

1: countries (Multi Polygon)

Now use ogrinfo to get information on the structure of the spatial ‘countries’ table:

ogrinfo countries.gpkg countries -summary

INFO: Open of `countries.gpkg'
using driver `GPKG' successful.

Layer name: countries
Geometry: Multi Polygon
Feature Count: 177
Extent: (-180.000000, -90.000000) - (180.000000, 83.645130)
Layer SRS WKT:

(continues on next page)
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GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]

FID Column = ogc_fid
Geometry Column = GEOMETRY
featurecla: String (0.0)
scalerank: Integer (0.0)
labelrank: Integer (0.0)
sovereignt: String (0.0)
sov_a3: String (0.0)
adm0_dif: Integer (0.0)
...

You can also use ogrinfo to verify that your GPKG table’s geometry has a spatial index, which is very important for
performance (look for HasSpatialIndex (Integer) = 1 to confirm that the spatial index exists) :

ogrinfo -sql "SELECT HasSpatialIndex('countries', 'GEOMETRY')" countries.gpkg

Layer name: SELECT
Geometry: Unknown (any)
Feature Count: 1
Layer SRS WKT:
(unknown)
HasSpatialIndex: Integer (0.0)
OGRFeature(SELECT):0
HasSpatialIndex (Integer) = 1

If you need to create add a spatial index to your GPKG, you can also use ogrinfo :

ogrinfo -sql "SELECT CreateSpatialIndex('parcelle_graphique', 'geom')" PARCELLES_
→˓GRAPHIQUES.gpkg

If you are going to have MapServer filter or query a specific field in your GPKG, you should also consider adding an
attribute index for that field:

ogrinfo -sql "CREATE INDEX IDXnewindexname ON yourtable (yourcolumn)" file.gpkg
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Step 2: Add the layer in your mapfile

For OGR connections, it is always recommended to set CONNECTIONTYPE, CONNECTION, and DATA, as follows:

/* Countries */
LAYER
NAME "countries"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "countries.gpkg"
DATA "countries" # the OGR layername, found through ogrinfo
EXTENT -180.000000 -90.000000 180.000000 83.645130 # for maximum performance
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
CLASS
NAME "World Countries"
STYLE
COLOR 200 200 200
OUTLINECOLOR 0 0 0
WIDTH 0.1

END #style
END #class

END #layer

Step 3: Test your Mapfile with shp2img

Use the MapServer commandline utility shp2img to verify that your mapfile creates a valid map image, and also display
draw times, such as:

shp2img -m geopackage.map -o ttt.png -map_debug 3

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 0 (countries), 0.078s
msDrawMap(): Drawing Label Cache, 0.000s
msDrawMap() total time: 0.079s
msSaveImage(ttt.png) total time: 0.008s
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GPS Exchange Format (GPX)

GPX (the GPS Exchange Format) is a light-weight XML data format containing GPS data (waypoints, routes, and
tracks). For more information see the official GPX site.

File listing

All waypoints, routes, and tracks are stored in a single .gpx file.

Data Access / Connection Method

• GPX access is available through OGR. See the OGR driver page for specific driver information.

• A relative path to the .gpx file can be used in the mapfile LAYER’s CONNECTION string.

• The feature type is specified in the DATA parameter
– the “tracks” feature type will usually be the track line

– the “track_points” feature type will usually be the points that make up the track line
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OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the “GPX” driver, by using the ‘–formats’ command:

>ogrinfo --formats

Loaded OGR Format Drivers:
...
-> "CSV" (read/write)
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the GPX driver you are ready to try an ogrinfo command on your file to get a list of feature types:

>ogrinfo test.gpx

INFO: Open of `test.gpx'
using driver `GPX' successful.

1: waypoints (Point)
2: routes (Line String)
3: tracks (Multi Line String)
4: route_points (Point)
5: track_points (Point)

Now use ogrinfo to get information on one of the feature types:

>ogrinfo test.gpx track_points -summary

INFO: Open of `test.gpx'
using driver `GPX' successful.

Layer name: track_points
Geometry: Point
Feature Count: 661
Extent: (-66.694270, 47.985570) - (-66.675222, 47.990791)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]
track_fid: Integer (0.0)
track_seg_id: Integer (0.0)
track_seg_point_id: Integer (0.0)
ele: Real (0.0)

(continues on next page)
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time: DateTime (0.0)
magvar: Real (0.0)
geoidheight: Real (0.0)
name: String (0.0)
cmt: String (0.0)
desc: String (0.0)
src: String (0.0)
...

Mapfile Example

Since you have confirmed that OGR can read your GPX file, now you can create a MapServer layer:

LAYER
NAME "gpx"
TYPE POINT
STATUS ON
CONNECTIONTYPE OGR
CONNECTION test.gpx
DATA "track_points"
CLASS
NAME "gpx"
STYLE
SYMBOL 'circle'
COLOR 0 119 255
SIZE 2

END
END

END # layer

Inline

Inline features refer to coordinates entered directly into the map file. They are not a file or database format and do not
require any DATA or CONNECTION parameters. Instead they use a FEATURE section to define the coordinates.

Inline features can be used to define points, lines and polygons as if taken from an external file. This requires direct
entry of coordinate pairs in the mapfile using a particular syntax.

Data Access / Connection Method

This is a native MapServer option that doesn’t use any external libraries to support it.
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Mapfile Example

Points

• Each FEATURE..END section defines a feature.

• Multiple points can be defined in a FEATURE section. If multiple points are defined in the same layer, they will
have the same CLASS settings, e.g. for colours and styles.

• Coordinates are entered in the units set in the layer’s projection. In this case it is assuming the mapfile projection
is using decimal degrees.

LAYER
NAME "inline_stops"
TYPE POINT
STATUS ON
FEATURE
POINTS
72.36 33.82

END
TEXT "My House"

END
FEATURE
POINTS
69.43 35.15
71.21 37.95
72.02 38.60

END
TEXT "My Stores"

END
CLASS
STYLE
COLOR 0 0 250
SYMBOL 'circle'
SIZE 6

END
END

END

Lines

Lines are simply a list of points strung together, but the layer must be TYPE LINE instead of TYPE POINT.

LAYER
NAME "inline_track"
TYPE LINE
STATUS ON
MAXSCALE 10000000
FEATURE
POINTS
72.36 33.82
70.85 34.32

(continues on next page)
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69.43 35.15
70.82 36.08
70.90 37.05
71.21 37.95

END
END
CLASS
STYLE
COLOR 255 10 0
SYMBOL 'circle'
SIZE 2

END
END

END

Polygons

Polygons are the same as the line example, just a list of points. They require the TYPE POLYGON parameter. Polygons
also require the final coordinate pair to be the same as the first, making it a closed polygon.

KML - Keyhole Markup Language

Table of Contents

• KML - Keyhole Markup Language

– Links to KML-Related Information

– Data Access / Connection Method

– Example 1: Displaying a .KML file

– Example 2: Displaying a .KMZ file

– Example 3: Displaying a “Superoverlay” KML file

Keyhole Markup Language (KML) is an XML-based language for managing the display of 3D geospatial data. KML
is a standard maintained by the Open Geospatial Consoritum (OGC).

Links to KML-Related Information

• Google’s KML Reference

• OGC’s KML Specification

• KML Validator
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Data Access / Connection Method

KML access in MapServer is available through OGR. See the OGR driver page for specific driver information. Read
support was initially added to GDAL/OGR version 1.5.0. A more complete KML reader was added to GDAL/OGR in
version 1.8.0, through the libKML driver (including the ability to read multigeometry, and KMZ files).

The CONNECTION parameter must include the kml or kmz extension, and the DATA parameter should be the name
of the layer.

CONNECTIONTYPE OGR
CONNECTION "filename.kml"
DATA "layername"

Example 1: Displaying a .KML file

OGRINFO

First you should make sure that your GDAL/OGR build contains the “KML” driver, by using the ‘–formats’ command:

>ogrinfo --formats

Loaded OGR Format Drivers:
...
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the KML driver you are ready to try an ogrinfo command on your file to get a list of available layers:

>ogrinfo myplaces.kml

INFO: Open of `myplaces.kml'
using driver `KML' successful.
1: Layer #0 (Point)

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo fountains-hotel.kml "Layer #0" -summary

Had to open data source read-only.
INFO: Open of `fountains-hotel.kml'
using driver `KML' successful.

Layer name: Layer #0
Geometry: Point
Feature Count: 1
Extent: (18.424930, -33.919627) - (18.424930, -33.919627)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
(continues on next page)
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(continued from previous page)

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]
Name: String (0.0)
Description: String (0.0)

Mapfile Example

LAYER
NAME "kml_example"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "kml/fountains-hotel.kml"
DATA "Layer #0"
LABELITEM "NAME"
CLASS
NAME "My Places"
STYLE
COLOR 250 0 0
OUTLINECOLOR 255 255 255
SYMBOL 'circle'
SIZE 6

END
LABEL
SIZE TINY
COLOR 0 0 0
OUTLINECOLOR 255 255 255
POSITION AUTO

END
END

END

Example 2: Displaying a .KMZ file

OGRINFO

First you should make sure that your GDAL/OGR build contains the “LIBKML” driver, by using the ‘–formats’ com-
mand:

>ogrinfo --formats

Loaded OGR Format Drivers:
...

(continues on next page)

8.1. Data Input 572



MapServer Documentation, Release 7.6.6

(continued from previous page)

-> "GML" (read/write)
-> "GPX" (read/write)
-> "LIBKML" (read/write)
-> "KML" (read/write)
...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver. Or you
can follow the compiling notes for libKML and GDAL/OGR.

Once you have the LIBKML driver you are ready to try an ogrinfo command on your file to get a list of available layers:

>ogrinfo Lunenburg_Municipality.kmz

INFO: Open of `Lunenburg_Municipality.kmz'
using driver `LIBKML' successful.
1: Lunenburg_Municipality

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo Lunenburg_Municipality.kmz Lunenburg_Municipality -summary

INFO: Open of `Lunenburg_Municipality.kmz'
using driver `LIBKML' successful.

Layer name: Lunenburg_Municipality
Geometry: Unknown (any)
Feature Count: 1
Extent: (-64.946433, 44.133207) - (-64.230281, 44.735125)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],

AUTHORITY["EPSG","4326"]]
Name: String (0.0)
description: String (0.0)
timestamp: DateTime (0.0)
begin: DateTime (0.0)
end: DateTime (0.0)
altitudeMode: String (0.0)
tessellate: Integer (0.0)
extrude: Integer (0.0)
visibility: Integer (0.0)
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Mapfile Example

LAYER
NAME "lunenburg"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "Lunenburg_Municipality.kmz"
DATA "Lunenburg_Municipality"
CLASS
NAME "Lunenburg"
STYLE
COLOR 244 244 16
OUTLINECOLOR 199 199 199

END
END

END # layer

Example 3: Displaying a “Superoverlay” KML file

A superoverlay is a KML file that contains tiled data, that is broken up into “regions”; this is an efficient way to display
large images. For more background on superoverlays see the Google Developers KML Tutorial.

MapServer can access superoverlays through GDAL.

Note: The following was tested with GDAL 2.0.2-dev on 2016-01-17; several enhancements to GDAL were made
when testing this superoverlay (see tickets 6310 and 6311).

GDALINFO

First you should make sure that your GDAL/OGR build contains the “KMLSUPEROVERLAY” driver, by using the
‘–formats’ command:

>gdalinfo --formats

Supported Formats:
...
R -raster- (rwv): R Object Data Store
MAP -raster- (rov): OziExplorer .MAP
KMLSUPEROVERLAY -raster- (rwv): Kml Super Overlay
PDF -raster,vector- (rw+vs): Geospatial PDF
...

If you don’t have the driver, you might want to check if your platform has a ready-to-use package/installer (Windows
users please see MS4W), which include the driver.

Note: For this example, we will use the remote KML file referenced in the Google Developers Tutorial (http:
//mw1.google.com/mw-earth-vectordb/kml-samples/mv-doqq.kml). We will also access this remote file directly
through vsicurl, which has been available in GDAL since 1.8.0
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Now use gdalinfo to get information on the structure of the layer:

>gdalinfo /vsicurl/http://mw1.google.com/mw-earth-vectordb/kml-samples/mv-doqq.kml

Driver: KMLSUPEROVERLAY/Kml Super Overlay
Files: none associated
Size is 16384, 16384
Coordinate System is:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4326"]]
Origin = (-122.129312658577720,37.439803353779496)
Pixel Size = (0.000004270647777,-0.000004095141704)
Metadata:
DESCRIPTION=The original is a 7008 x 6720 DOQQ of Mountain View in 1991. (Source:

http://gis.ca.gov/). This is a Region NetworkLink hierarchy of 900+
GroundOverlays each of 256 x 256 pixels arranged in a hierarchy such
that more detailed images are loaded and shown as the viewpoint nears.
Enable the "Boxes" NetworkLink to see a LineString for
each Region. Tour the "Boxes" to visit each tile. Visit the
"A" and "B" Placemarks to see multiple levels of
hierarchy together. Use the slider on various images in the hierarchy
to see how the resolution varies and of the entire hierarchy to see
the imagery below. (Find the Google Campus...).

NAME=SuperOverlay: MV DOQQ
Image Structure Metadata:
INTERLEAVE=PIXEL

Corner Coordinates:
Upper Left (-122.1293127, 37.4398034) (122d 7'45.53"W, 37d26'23.29"N)
Lower Left (-122.1293127, 37.3727086) (122d 7'45.53"W, 37d22'21.75"N)
Upper Right (-122.0593424, 37.4398034) (122d 3'33.63"W, 37d26'23.29"N)
Lower Right (-122.0593424, 37.3727086) (122d 3'33.63"W, 37d22'21.75"N)
Center (-122.0943275, 37.4062560) (122d 5'39.58"W, 37d24'22.52"N)
Band 1 Block=256x256 Type=Byte, ColorInterp=Red
Overviews: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256
Mask Flags: PER_DATASET ALPHA
Overviews of mask band: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256

Band 2 Block=256x256 Type=Byte, ColorInterp=Green
Overviews: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256
Mask Flags: PER_DATASET ALPHA
Overviews of mask band: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256

Band 3 Block=256x256 Type=Byte, ColorInterp=Blue
Overviews: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256
Mask Flags: PER_DATASET ALPHA
Overviews of mask band: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256

(continues on next page)
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(continued from previous page)

Band 4 Block=256x256 Type=Byte, ColorInterp=Alpha
Overviews: 8192x8192, 4096x4096, 2048x2048, 1024x1024, 512x512, 256x256

Mapfile Example

Finally, access the superoverlay image through a MapServer layer with TYPE RASTER, as you would other rasters,
such as:

MAP
NAME "superoverlay"
STATUS ON
SIZE 400 300
EXTENT -122.1293127 37.3727086 -122.0593424 37.4398034
UNITS DD
IMAGECOLOR 255 255 255

LAYER
NAME "mountain-view-superoverlay"
TYPE RASTER
STATUS ON
DATA "/vsicurl/http://mw1.google.com/mw-earth-vectordb/kml-samples/mv-doqq.kml"
CLASS
NAME "Superoverlay"
STYLE
END #style

END #class
END #layer

END #Map

Test Your Mapfile with the shp2img Command

The easiest way to test your superoverlay mapfile is with the MapServer shp2img utility.

>shp2img -m superoverlay-kml.map -o ttt.png -all_debug 3

msLoadMap(): 0.000s
msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawRasterLayerLow(mountain-view-superoverlay): entering.
msDrawRasterLayerGDAL(): Entering transform.
msDrawRasterLayerGDAL(): src=0,0,16384,16384, dst=44,0,312,300
msDrawRasterLayerGDAL(): source raster PL (-4.888,-27.409) for dst PL (44,0).
msDrawRasterLayerGDAL(): red,green,blue,alpha bands = 1,2,3,4
msDrawMap(): Layer 0 (mountain-view-superoverlay), 4.314s
msDrawMap(): Drawing Label Cache, 0.008s
msDrawMap() total time: 4.347s
msSaveImage(ttt.png) total time: 0.090s
shp2img total time: 4.441s
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The following map image should be generated:

See also:
Debugging MapServer

MapInfo

File listing

The following files are also associated with .TAB files: .DAT, .ID, .MAP. An example is:

border.DAT
border.ID
border.MAP
border.TAB

The term MID/MIF refers to files with .MID and .MIF extension.

Data Access / Connection Method

TAB and MID/MIF access is available in MapServer through OGR.

• The CONNECTIONTYPE OGR parameter must be used.

• The path to the (*.tab or *.mif) file is required, and the file extension is needed.

• The path may be relative to the SHAPEPATH

• MapInfo files already contain styling information. This styling information can be used optionally by specifying
the STYLEITEM “AUTO” parameter in the LAYER object of the map file.

Note: If you use STYLEITEM “AUTO” you must have an empty class in the layer.
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OGRINFO Examples

Using ogrinfo on a single TAB file

> ogrinfo elev5_poly.TAB

Had to open data source read-only.
INFO: Open of `elev5_poly.TAB'
using driver `MapInfo File' successful.
1: elev5_poly (Polygon)

Using ogrinfo to examine the structure of the file/layer

> ogrinfo elev5_poly.TAB elev5_poly

Had to open data source read-only.
INFO: Open of `elev5_poly.TAB'
using driver `MapInfo File' successful.

Layer name: elev5_poly
Geometry: Polygon
Feature Count: 2236
Extent: (-141.000000, 60.000000) - (-124.403310, 69.300251)
Layer SRS WKT:
GEOGCS["unnamed",
DATUM["MIF 0",
SPHEROID["WGS 84 (MAPINFO Datum 0)",6378137.01,298.257223563],

TOWGS84[0,0,0,0,0,0,0]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
AREA: Real (0.0)
PERIMETER: Real (0.0)
ELEV5_: Integer (0.0)
ELEV5_ID: Integer (0.0)
TYPE: Real (4.0)
ELEV5: Real (4.0)
...

MapFile Example

LAYER
NAME "Elevation_Poly_5"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "./hypso/elev5_poly.TAB"
STYLEITEM "AUTO"
CLASS
NAME "Elevation Poly 5"

END #class
END # Layer
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Introduction

Microsoft SQL Server supports storing spatial data by using the built-in geometry/geography data types. MapServer
can connect to MSSQL through either: 1) an OGR connectiontype, or 2) a driver that accesses these tables containing
spatial columns, which is compiled as a plugin (“msplugin_mssql2008.dll”).

Note: Even though the driver refers to mssql2008 all versions of MSSQL since MSSQL 2008 are supported.

More Information:

• OGR MSSQL Spatial driver page (describes the OGR MSSQL support)

• ogr2ogr application (describes the ogr2ogr commandline application)

• Vector Data (MapServer Vector Data Access Guide)

Creating Spatial Data Tables in MSSQL

There are several ways to create spatial data tables in MSSQL. You can easily upload existing data to an MSSQL table
by using the ogr2ogr commandline tool and the OGR’s MSSQL Spatial driver. Here is an example that uploads a
shapefile (province.shp) into an MSSQL instance:

ogr2ogr -f MSSQLSpatial -a_srs EPSG:4326 "MSSQL:server=.\SQLEXPRESS;database=geo;trusted_
→˓connection=yes" province.shp

Connecting to Spatial Data in MSSQL

In order to connect to a MSSQL spatial database you should set up a valid connection string to the database like the
following examples:

Server=.\MSSQLSERVER2008;Database=Maps;Integrated Security=true

Server=55.55.55.55,1433;uid=a_user;pwd=a_password;database=a_database;
Integrated Security=True

Server=55.55.55.55\SQLEXPRESS,1433;uid=a_user;pwd=a_password;
database=a_database;Integrated Security=True

If you don’t specify Driver in the connection string, it uses the “SQL Server” driver (sqlsrv32.dll) which was last
updated in 2010. To use a newer driver you can specify this in the connection string:

driver={ODBC Driver 17 for SQL Server};server=55.55.55.55\SQLEXPRESS,1433;uid=a_user;
→˓pwd=a_password;

database=a_database;Integrated Security=False

The “SQL Server Native Client” drivers are also supported.
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OPTION 1: Connect Through OGR

GDAL/OGR (and therefore MapServer) can read spatial tables in MSSQL 2008 through the MSSQLSpatial driver.

Verify Local Support for MSSQLSpatial

Use the command ogrinfo –formats to verify that your local GDAL is built with support for MSSQL; the response
should contain “MSSQLSpatial” such as:

Supported Formats:
-> "OCI" (read/write)
-> "ESRI Shapefile" (read/write)
-> "MapInfo File" (read/write)
...
-> "MSSQLSpatial" (read/write)
...

Test OGR Connection Parameters

Use the ogrinfo commandline utility to test your connection through the MSSQLSpatial driver, such as:

ogrinfo "MSSQL:server=.\SQLEXPRESS;database=geo;trusted_connection=yes" province -summary

Create MapServer Layer using CONNECTIONTYPE OGR

Your layer should contain a CONNECTIONTYPE OGR statement, as well as a CONNECTION. The connection should
also contact a “tables=” parameter, and also the name of the geometry column in brackets. You do not need to specify
the DATA parameter unless you define an sql select statement starting with the ‘WHERE’ keyword. For example:

LAYER
NAME "provinces"
TYPE POLYGON
STATUS ON
####
CONNECTIONTYPE OGR
CONNECTION "MSSQL:server=.\SQLEXPRESS;uid=xx;pwd=xxx;database=geo;trusted_

→˓connection=yes;tables=province(ogr_geometry)"
####
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Land"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
END
PROCESSING 'CLOSE_CONNECTION=DEFER'

END # layer
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Note: The usual CONNECTIONTYPE terms ‘using unique’ and ‘using srid’ are not meaningful for the OGR driver
in this case, as these parameters are automatically retrieved from the ‘geometry_columns’ metadata table.

OPTION 2: Connect Through MapServer Plugin

Create MapServer Layer

Once the connection can be established to the server the layer can be configured to access MSSQL as follows:

LAYER
NAME "rivers_mssql_spatial"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE PLUGIN
PLUGIN "msplugin_mssql2008.dll"
CONNECTION "Server=.\MSSQLSERVER2008;Database=Maps;Integrated Security=true"
DATA "ogr_geometry from rivers USING UNIQUE ogr_fid USING SRID=4326"
...

END

The DATA parameter is used to perform the SQL select statement to access your table in MSSQL. The geometry
column is required in the select statement; in the above example the ogr_geometry column is the geometry column in
the rivers table. The table should also have an unique column (ogr_fid) which is provided for random access to the
features in the feature query operations.

The DATA section should also contain the spatial reference id (SRID) of the features in the data table The SRID is used
when specifying the search shapes during the intersect operations which should match with the SRID of the features
otherwise no features are returned in a particular query. if you omit specifying the SRID value in the DATA section
the diver will use SRID=0 when defining the search shapes.

Selecting the Type of the Geometry Column

For the geometry columns MSSQL supports 2 data types: “geometry” and “geography”. By default the driver considers
the type of the geometry column is “geometry”. In case if the type of the geometry column is “geography” we must
specify the data type in the DATA section explicitly, like:

DATA "ogr_geometry(geography) from rivers USING UNIQUE ogr_fid USING SRID=4326"

Expected Location of the MSSQL Plugin

On Windows platforms the DLLs needed by the program are searched for in the following order:

1) The directory from which the application loaded.

2) The current directory.

3) The system directory. Use the GetSystemDirectory function to get the path of this directory.

4) The 16-bit system directory.

5) The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.
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6) The directories that are listed in the PATH environment variable.

Binaries Containing the MSSQL Plugin

Currently the following binary distributions contain msplugin_mssql2008.dll:

• GISInternals

• MS4W

Using Spatial Indexes

In order to speed up the access to the features a spatial index should be created to the geometry column which could
easily be done with the OGR MSSQL Spatial driver like:

ogrinfo -sql "create spatial index on rivers"
"MSSQL:server=.\MSSQLSERVER2008;database=Maps;
Integrated Security=true"

In general we can safely rely on the query optimizer to select the most appropriate index in the sql query operations. In
some cases - however - we should force the optimizer to use the spatial index by specifying the index hint in the DATA
section like:

DATA "ogr_geometry from rivers using index ogr_geometry_sidx
USING UNIQUE ogr_fid USING SRID=4326"

Layer Processing Options

We can control the behaviour of the MSSQL driver by using the following PROCESSING options:

• CLOSE_CONNECTION=DEFER - This is where you can enable connection pooling for certain layer types.
Connection pooling will allow MapServer to share the handle to an open database or layer connection throughout
a single map draw process.

• MSSQL_READ_WKB=TRUE - Uses WKB (Well Known Binary) format instead of native format when fetch-
ing geometries.

MySQL
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Author
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Contents

• MySQL

– Introduction

– Connecting to Spatial Data in MySQL

∗ Requirements

∗ Verify MySQL Support in OGR Build

∗ Test Connection with ogrinfo

∗ Create MapServer Layer

– Connecting to non-Spatial Data in MySQL
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∗ Create .ovf file

∗ Test Connection with ogrinfo

∗ Create MapServer Layer

Introduction

The following methods connect to MySQL through OGR’s MySQL driver, thus avoiding the need to set up an ODBC
connection.

More Information:

• OGR Vector Layers Through MapServer (MapServer OGR document)

• Vector Data (MapServer Vector Data Access Guide)

• MySQL wiki page (describes the deprecated mygis support)

Connecting to Spatial Data in MySQL

This section describes how to display a spatial MySQL table (meaning that the table has a column of type geometry)
in MapServer. OGR’s MySQL driver was expanded in OGR version 1.3.2 to support access to MySQL spatial tables.

Requirements

• MapServer compiled with OGR support

• OGR/GDAL version 1.3.2 or more recent compiled with MySQL support
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Verify MySQL Support in OGR Build

You can verify that your local build of OGR contains MySQL support by using the ogrinfo commandline utility, and
making sure that “MySQL” is returned:

ogrinfo --formats

Supported Formats:
-> "ESRI Shapefile" (read/write)
-> "MapInfo File" (read/write)
...
-> "PostgreSQL" (read/write)
-> "MySQL" (read/write)
...

Test Connection with ogrinfo

MySQL connection strings in OGR are in the following format:

MYSQL:database,host=yourhost,user=youruser,password=yourpass,tables=yourtable

Therefore an example ogrinfo command would be:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306

which should return a list of all of your tables in the ‘test’ database:

INFO: Open of `MYSQL:test,user=root,password=mysql,port=3306'
using driver `MySQL' successful.

1: province (Polygon)

and you can return a summary of the MySQL spatial layer:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306 province -summary

INFO: Open of `MYSQL:test,user=root,password=mysql,port=3306'
using driver `MySQL' successful.

Layer name: province
Geometry: Polygon
Feature Count: 48
Extent: (-13702.315770, 3973784.599548) - (1127752.921471, 4859616.714055)
Layer SRS WKT:
PROJCS["ED50_UTM_zone_30N",
...
FID Column = OGR_FID
Geometry Column = SHAPE
id: Real (2.0)
...
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Create MapServer Layer

LAYER
NAME "spain_provinces_mysql_spatial"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "MySQL:test,user=root,password=mysql,port=3306"
DATA "SELECT SHAPE,admin_name from province"
LABELITEM "admin_name"
CLASS
NAME "Spain Provinces"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
LABEL
COLOR 0 0 0
FONT sans
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
OUTLINECOLOR 255 255 255
END

END
END # layer

The DATA parameter is used to perform the SQL select statement to access your table in MySQL. The geometry column
is required in the select statement; in the above example the SHAPE column is the geometry column in the province
table.

Connecting to non-Spatial Data in MySQL

This section describes how to display a non-spatial MySQL table (meaning the table does not have a column of type
geometry) in MapServer.

Support for this functionality is found in GDAL/OGR 1.2.6 and older on Windows and GDAL/OGR 1.3.2 on Linux.

Requirements

• MySQL database containing a table with fields containing x and y coordinates

• .ovf file, a small xml file you will create

• MapServer compiled with OGR version supporting this functionality
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Create .ovf file

Here is the .ovf file named aqidata.ovf

<OGRVRTDataSource>
<OGRVRTLayer name="aqidata">

<SrcDataSource>MYSQL:aqiTest,user=uuuuu,password=ppppp,host=192.170.1.100,
→˓port=3306,tables=testdata</SrcDataSource>

<SrcSQL>SELECT areaID, x, y, sampleValue FROM testdata</SrcSQL>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>

</OGRVRTLayer>
</OGRVRTDataSource>

If you look at the connection string in <SrcDataSource>

• The MySQL database name is ‘aqiTest’

• ‘testdata’ is the table containing the coordinate data

• host and port are for MySQL server

Use the GeometryField element to tell OGR which fields store the x and y coordinate data. Mine are simply named x
and y.

Test Connection with ogrinfo

# usr/local/bin/ogrinfo /maps/aqidata.ovf

ogrinfo returns

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.
INFO: Open of `/maps/aqidata.ovf'
using driver `VRT' successful.
1: aqidata (Point)

Don’t worry about the error, this is just telling you that it is a read-only driver. If it really bugs you, call ogrinfo with
the -ro (read only) flag.

To see the actual data

# usr/local/bin/ogrinfo /maps/aqidata.ovf -al

Create MapServer Layer

LAYER
NAME "MyAqi"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "aqidata.ovf"
DATA "aqidata"

(continues on next page)
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(continued from previous page)

CLASS
NAME "MyClass"
STYLE
SYMBOL 'circle'
SIZE 15
COLOR 0 255 0

END
END

END

DATA in the LAYER definition should be the same as the name attribute of the OGRVRTLayer element in the ovf file.

For this to draw, you need to have a SYMBOLSET defined in your mapfile and have a symbol called ‘circle’ in your
symbols.sym file.

NTF

NTF files are mostly used by the United Kingdom Ordnance Survey (OS). For more on the Ordnance Survey, see their
website at: https://ordnancesurvey.co.uk/

File listing

NTF files have an NTF extension.

Data Access / Connection Method

• NTF access requires OGR’s UK .NTF driver.

• The path to the NTF file is required in the CONNECTION string. It may be relative to the SHAPEPATH setting
in the mapfile or the full path.

• The DATA parameter is used to specify the layer to use

OGRINFO Examples

Using ogrinfo on an NTF file to retrieve layer names:

> ogrinfo llcontours.ntf

ERROR 4: NTF Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `llcontours.ntf'
using driver `UK .NTF' successful.
1: LANDLINE_POINT (Point)
2: LANDLINE_LINE (Line String)
3: LANDLINE_NAME (Point)
4: FEATURE_CLASSES (None)

Using ogrinfo to examine the structure of an NTF layer:
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> ogrinfo llcontours.ntf LANDLINE_LINE -summary

ERROR 4: NTF Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `llcontours.ntf'
using driver `UK .NTF' successful.

Layer name: LANDLINE_LINE
Geometry: Line String
Feature Count: 491
Extent: (279000.000000, 187000.000000) - (280000.000000, 188000.000000)
Layer SRS WKT:
PROJCS["OSGB 1936 / British National Grid",

GEOGCS["OSGB 1936",
DATUM["OSGB_1936",

SPHEROID["Airy 1830",6377563.396,299.3249646,
AUTHORITY["EPSG","7001"]],
AUTHORITY["EPSG","6277"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4277"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",49],
PARAMETER["central_meridian",-2],
PARAMETER["scale_factor",0.999601272],
PARAMETER["false_easting",400000],
PARAMETER["false_northing",-100000],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","27700"]]

LINE_ID: Integer (6.0)
FEAT_CODE: String (4.0)
...

Mapfile Example:

LAYER
NAME "ntf_uk"
TYPE LINE
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "./ntf/llcontours.ntf"
DATA "LANDLINE_LINE"
CLASS
NAME "Contours"
STYLE
COLOR 0 150 200

END #style
END #class

END #layer
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Introduction

MapServer includes the ability to access vector data sets in formats other than Shapefile in their native format using
the OGR library. The following document describes the process for implementing OGR support within MapServer
applications.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and especially setting up .map files.

• Some compilation skills if you don’t have ready access to a pre-compiled installation and need to compile your
own copy of MapServer with OGR support.

• access to OGR utilities, such as ogrinfo (for Windows users these are included in MS4W).

Readers should also check out the Vector Data Access Guide, which has lots of examples of how to access specific
vector formats.

What is OGR?

The OGR Simple Features Library is a C++ Open Source library (and command-line tools) providing read (and some-
times write) access to a variety of vector file formats including ESRI Shapefiles, and MapInfo mid/mif and TAB formats.

OGR is actually part of the GDAL library, so you will notice that some references point to GDAL (such as the mailing
list).

What Does OGR Add to MapServer?

The OGR Simple Features Library allows MapServer users to display several types of vector data files in their native
formats. For example, MapInfo Mid/Mif and TAB data do not need to be converted to ESRI shapefiles when using
OGR support with MapServer.

What Data Formats are Supported?

Note: See https://gdal.org/drivers/vector/index.html for the latest list of supported vector formats.

Here is a list of some of the popular vector formats that are supported:

• ArcInfo Binary Coverages

• ArcInfo E00 Coverages

• Atlas BNA (see GDAL extra-drivers)

• Comma Separated Value (.csv)

• DODS/OPeNDAP

• ESRI Personal GeoDatabase

• ESRI Shapefiles

• FMEObjects Gateway

• Géoconcept Export

• GeoJSON
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• GeoPackage

• GeoRSS

• GML

• GMT

• GRASS

• GPX

• Informix DataBlade

• INGRES

• INTERLIS

• KML

• MapInfo files

• Memory

• Microstation DGN files

• MySQL

• ODBC

• OGDI Vectors

• Oracle Spatial

• PostgreSQL

• SDTS

• SQLite

• UK.NTF (National Transfer Format)

• US Census TIGER/Line

• VRT - Virtual Datasource

• WFS

• X-Plane/Flighgear aeronautical data (see GDAL extra-drivers)

Note: Some of the above formats (e.g. OGDI) have external dependencies and are not always included in the pre-
compiled binary distributions of MapServer with OGR support.

Note: Some of the above formats are not well suited for random access by nature, that’s the case of MapInfo MIF/MID
files which is a TEXT format and will give very poor performance for a web application. On the other hand, some
binary formats such as MapInfo TAB are better suited for random access and will give performance comparable to
native shapefile access in MapServer.
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How to Get More Information on the OGR Project

• As OGR is now merged with GDAL as of GDAL 2.0, the main GDAL site is the best resource.

• The legacy pages on the OGR Simple Features Project can be found on the Wayback Archives.

• The GDAL mailing list can be used for OGR related questions. Always search the list archives before sending
new questions.

• The old GDAL Wiki has lots of good information for users and developers.

• The #gdal IRC channel on irc.freenode.net might also be of help. For info on IRC see the MapServer IRC page.

The main developer of the OGR library is currently Even Rouault (with original development by Frank Warmerdam)
and the integration of OGR within MapServer was done by Daniel Morissette.

Obtaining and Compiling MapServer with OGR Support

• Follow the instructions on the GDAL page to compile/install OGR/GDAL.

• Obtain the MapServer source.

For UNIX users, see the UNIX Compilation and Installation. If GDAL/OGR is normally installed it should be sufficient
to add -DWITH_OGR=ON to the cmake line before (re)building MapServer. Linux users might want to try FGS, a
Linux installer for MapServer.

For Windows users, it is recommended to look for a pre-compiled binary on the MapServer site (MS4W is recom-
mended). If you want to compile your own then see the README.WIN32 file in the MapServer source.

Starting with MapServer 7.0, 2.5D geometries, when handled by OGR drivers and data sources, can be taken into
account by MapServer if it is built with -DWITH_POINT_Z_M=ON.

Note: Output of 2.5D geometries in WFS requires explicit metadata item to be specified at the layer level. See WFS
server documentation.

Integrating OGR Support with MapServer Applications

The only change that is needed to integrate OGR support with a MapServer application is with the .map file. The
LAYER’s DATA parameter is expanded to three parameters (CONNECTIONTYPE OGR, CONNECTION and DATA).

The syntax for this differs depending on the type of data being used (the Vector Data Access Guide is an excellent
resource for this). In OGR, a data source can be either a set of files that share a common basename (e.g. .shp/.shx/.dbf
for ArcView Shapefiles, or .tab/.map/.dat/.ind/.id for MapInfo TAB files) or a whole directory of files (e.g. TIGER).

Let’s call the former “File-based data sources” and the later “Directory-based data sources”. When accessing a file-
based data source you specify the filename of one of the files in the set (e.g. roads.shp or roads.tab) and when accessing
a directory-based data source you specify the directory name and OGR reads all the files in the directory as a single
data source with potentially several layers (e.g. TIGER files).

Some OGR drivers (e.g. SHP, TAB) can have dual behaviors, that is if they’re pointed to a single file then they behave
as a file-based data source and if they’re pointed to a directory then they will behave as a directory-based data source
and then every file in the directory becomes a new layer in the data source.

See the OGR formats page for more info on the specific file format you’re using. (Click on the format name for more
specific driver info on that format)
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Using OGR Data Sources in the Map File

The .map file LAYER definition for file-based sources is as follows:

LAYER
...
CONNECTIONTYPE OGR
CONNECTION "<datasource_name>"
DATA "<layer_definition>"
...

END

<datasource_name> is the name of the datasource to read from and is prefixed by the CONNECTION keyword. The
exact organization depends on the format driver in use. The format driver to use is automatically selected by OGR
based on the nature of the string passed as the datasource, and/or the format of the file referenced by it.

• For file based datasources this is the name of the file, including the extension, using an absolute path, or a relative
path. Relative paths are interpreted relative to the SHAPEPATH first, if not found then we try again relative to
the .map file location.

Note: Before version 4.1 the SHAPEPATH was ignored for OGR datasources.

• For directory based datasources, such as TIGER/Line, or Arc/Info Binary Coverages this is the name of the
directory containing the files. If the path is relative it is interpreted relative to the .map file.

• For virtual datasources such as database systems, and OGDI this is the service connection string
and is generally not related to the filesystem. For instance, for Oracle Spatial this might be
“OCI:warmerda/Password@gdal800.velocet.ca”.

<layer_definition> is the name, number or SQL definition of the layer to use from the datasource. It is indicated via
the DATA keyword in the map file.

• Layer Name: The (case insenstive) layer name may be used to select a layer.

• Layer Number: The layer number (starting from 0 for the first layer) may be used to select a layer. Generally the
layer name is preferred to this since it is more self describing.

• Omitted: If no DATA keyword is provided, this is equivalent to selecting layer 0.

• SQL SELECT: If an SQL SELECT statement is used, it is interpreted in a driver specific manner to try and
generate a temporary pseudo-layer. For some formats this a restricted subset of SQL is interpreted within OGR.
For RDBMS based drivers (such as PostGIS and Oracle) this is passed through to the underlying database.

The OGRINFO utility can be used to find out the list of layers and their names in a data source.

Examples of Layer Definitions Using OGR

Please see the Vector Data Access Guide for details and examples of each data format supported.

Example 1. MapInfo TAB file

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"

(continues on next page)
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STATUS ON
CLASS
...

END
...
END

Example 2. Microstation DGN file using <layer_index>
The entire DGN file is represented in OGR as one layer (see the DGN driver page for more details):

LAYER
NAME "dgn"
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "dgn/santabarbara02.dgn"
DATA "0"
STATUS ON
STYLEITEM "AUTO"
CLASS
...

END
END # Layer

Example 3. TIGER/Line file using <layer_name>

LAYER
NAME "Roads_tig"
TYPE line
CONNECTIONTYPE OGR
CONNECTION "full/path/to/tiger/TGR25001"
DATA "CompleteChain"
STATUS ON
CLASS
...

END
END

Example 4. Directory of Shapefiles using SQL JOIN

LAYER
NAME "Parks_cov"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/shppoly"
DATA "SELECT eas_id, idl.Name FROM pol LEFT JOIN idl ON pol.eas_id = idl.eas_id"
STATUS ON
CLASSITEM "idlink.Name"
CLASS
...

END
END

Example 5. Using an ElasticSearch backend with forwarding of HTTP header Authorization

8.1. Data Input 595

https://gdal.org/drivers/vector/dgn.html


MapServer Documentation, Release 7.6.6

LAYER
NAME "elastic_search_layer"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "ES:"
CONNECTIONOPTIONS

"FORWARD_HTTP_HEADERS_FROM_ENV" "Authorization=HTTP_AUTHORIZATION"
END
DATA "my_layer"

END

How to Use “OGRINFO”

OGRINFO is part of the GDAL/OGR distribution (which is included in MS4W for Windows users). It is an executable
that can be used to obtain layer information about OGR supported files. The parameters are:

ogrinfo [-ro] [-q] datasource_name [layer [layer. . . ]]

• -ro opens the file as read only (optional)

• -q executes in quiet mode, only the layer idex line will be returned (optional)

• datasource_name is the filename including extension (eg. roads.tab); for TIGER/Line files, data-
source_name is the directory containing the TIGER files (eg. ogrinfo TGR25001)

Example 5. To get the list of layers in a file:

$ ogrinfo popplace.tab

Had to open data source read-only.
INFO: Open of `popplace.tab'
using driver `MapInfo File' successful.
1: popplace (Point)

which shows that there is one point layer in the popplace.tab file.

Example 6. To get a dump of a specific layer, including field names, projection, etc:

$ ogrinfo popplace.tab popplace

Had to open data source read-only.
INFO: Open of `popplace.tab'
using driver `MapInfo File' successful.

Layer name: popplace
Geometry: Point
Feature Count: 497
Layer SRS WKT: PROJCS["unnamed",GEOGCS["unnamed",DATUM["North ...snipped...
AREA: Real (15.3)
PERIMETER: Real (15.3)
POPPLACE_: Real (11.0)
POPPLACE_I: Real (15.0)
NAME: String (50.0)
OGRFeature(popplace):1

(continues on next page)
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AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 1
POPPLACE_I (Real) = 1
NAME (String) = Port Hope Simpson
POINT (2437287.249 1153656.751)

OGRFeature(popplace):2
AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 2
POPPLACE_I (Real) = 1
NAME (String) = Hopedale

...

...

Example 7. To get a list of layers in a TIGER/Line Directory:

$ ogrinfo TGR25001

Had to open data source read-only.
INFO: Open of `TGR25001'
using driver `TIGER' successful.
1: CompleteChain (Line String)
2: AltName (None)
3: FeatureIds (None)
4: ZipCodes (None)
5: Landmarks (Point)
6: AreaLandmarks (None)
7: KeyFeatures (None)
8: Polygon (None)
9: EntityNames (Point)
10: IDHistory (None)
11: PolyChainLink (None)
12: PIP (Point)
13: TLIDRange (None)
14: ZipPlus4 (None)

The above example shows that there are 14 layers in the TGR25001 directory.

Example 8. To get a summary of a specific TIGER layer, including only field names, projection, and extent

$ ogrinfo TGR25001 Landmarks -summary

Had to open data source read-only.
INFO: Open of `TGR25001'
using driver `TIGER' successful.

Layer name: Landmarks
Geometry: Point
Feature Count: 777
Extent: (-70.674324, 41.519817) - (-69.969211, 42.046868)

(continues on next page)
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Layer SRS WKT: GEOGCS["NAD83",DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]],PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]]
MODULE: String (8.0)
FILE: String (5.0)
STATE: Integer (2.0)
COUNTY: Integer (3.0)
LAND: Integer (10.0)
SOURCE: String (1.0)
CFCC: String (3.0)
LANAME: String (30.0)

Queries Through OGR Format

OGR layers can be queried the same way as regular shapefiles in MapServer.

TILEINDEX with OGR

OGR layers can utilize tile indexes in a similar fashion to Shapefile based layers. The TILEINDEX keyword should
contain the connection string for the tile index file. The tile index file may be any supported OGR format, including
shapefiles.

The TILEITEM keyword in the LAYER definition indicates what attribute from the tile index file should be used as the
datasource location. If omitted, the default TILEITEM value is “location”. The value in the location field should be a
connection string the same as would have been used in the CONNECTION field for OGR layers. The CONNECTION
keyword is not needed (and will be ignored) for layers using the OGR connection type and having the TILEINDEX
keyword.

Tileindex files can be prepared in an external GIS, or using the OGR utility ogrtindex. Details can be found on the
OGR Utilities Page.

The following is a simple example of a point layer using a tile index.

LAYER
NAME "ogr_points"
TYPE POINT
CONNECTIONTYPE OGR
TILEINDEX "PIP_ogr_tiles.shp,0"
STATUS ON
CLASS
NAME "points"
STYLE
SYMBOL "default-circle"
COLOR 255 0 0
SIZE 6

END
END

END

OGR tileindex layers should support all normal query and attribute fetching mechanisms, including from MapScript.
If auto projection support is used for tileindexed OGR layers, the tileindex is read for the projection (not the component
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tiles). Problems may (or may not) be encountered if the component tiles have differing schemas (different sets of
attributes).

Starting with MapServer 7.2, it is possible to use tileindexes of tiles referenced in different SRS by specifying the
TILESRS keyword to be the value of the -src_srs_name option of ogrtindex (as of GDAL 2.2 or later)

Connection Pooling

For some OGR supported formats, connecting to the dataset is quite expensive in terms of CPU use and amount of
disk IO. For instance, establishing access to an S-57 dataset results in a complete read into memory of the data files.
Connection pooling control aims at reducing this overhead in situations where the same file is used for several different
map layers.

To ensure that an OGR supported dataset is only opened once per map render (instead of separately for each map
LAYER referencing the dataset, use the CLOSE_CONNECTION PROCESSING option. The default value is for
CLOSE_CONNECTION is NORMAL, but if set to DEFER the dataset will be kept open till the map render is complete.
It will be reused by any other layers with using the same datasource.

Example 9. Preserve S-57 connection for two layers
In this example, we are using the same dataset (NO410810.000) for two layers. To avoid re-reading the dataset, we mark
the first layer to defer closing the connection till layer. In the second (or last) layer we request NORMAL connection
handling (though this could have been left out as normal handling is the default).

LAYER
NAME "AdminAreas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "ADMARE"
PROCESSING "CLOSE_CONNECTION=DEFER"
STATUS ON
...

END
LAYER
NAME "Land Areas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "LNDARE"
PROCESSING "CLOSE_CONNECTION=NORMAL"
STATUS ON
...

END

1. The text of the CONNECTION keyword must match exactly between layers for the connection to be reused.

2. Some dataset connections are quite memory expensive, and keeping them open may result in increased memory
use.

3. If all layers rendered for a particular connection defer closing the connection, it will remain open till MapServer
terminates. For normal cgi or MapScript use this is likely OK.

4. This use of CLOSE_CONNECTION handling is unique to OGR layers, and may be changed at some point in
the future as part of a broader implementation of connection pooling in MapServer.
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STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File

Note: This feature is only supported with MapInfo TAB and Microstation DGN files at the moment, but eventually
other formats that carry colors and styles at the shape-level may also be supported through OGR.*

In MapServer, ArcView, and other shapefile-based applications, colors and styles are usually defined at the layer level.
This means that all the shapes in a given layer are usually rendered using the same color and styles.

On the other hand, some formats supported by OGR such as MapInfo TAB do have color and style information attached
to each shape. OGR adds support for the ‘STYLEITEM “AUTO”’ layer parameter which allows you to request that the
shapes in a layer be rendered using colors and styles coming from the data source instead of being driven by CLASSes
as was traditionally done with MapServer.

How to Implement

In order to have a layer rendered using colours and styles coming from the OGR data source, your must do the following:

• Your layer definition must contain the STYLEITEM “AUTO” parameter.

• Your layer definition needs to contain at least one CLASS (which may be empty) and optionally a CLASSITEM
to match the expressions if your CLASS contains an expression. The empty CLASS in the layer will be updated
dynamically at runtime to contain colours and styles coming from the data source for each shape.

Examples

Example 10. Layer Definition Using STYLEITEM “AUTO” without a CLASSITEM

LAYER
NAME "test_dgn"
STATUS ON
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "../data/dgn/test.dgn"

# This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

# Define an empty class that will be filled at runtime from the
# color and styles read on each shape in the source file.
CLASS
END

END # layer

Example 11. Layer Definition Using STYLEITEM “AUTO” with a CLASSITEM

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON

(continues on next page)
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(continued from previous page)

# This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

# Define an empty class that will be filled at runtime from the
# color and styles read on each shape in the source file.
CLASSITEM "CATEGORY"
CLASS
EXPRESSION "1"

END
END

Please Note:
CLASS EXPRESSIONs are still working, so it is still possible to query and classify layers that are using STYLEITEM
“AUTO”. The only difference is that instead of using static class definitions, the colors and style will be read from the
data file.

Important Notes

NOTE 1
Even though MapInfo and other OGR data sources may support layers with mixed geometry types
(e.g. points, lines and polygons in the same file) this is not yet supported in MapServer. So you still
have to define a layer ‘TYPE’ and make sure that all the shapes in the OGR data source are compatible
with that layer type, otherwise MapServer may produce an error about incompatible geometry types
at runtime.

NOTE 2
Due to the dynamic nature of this feature, it is not compatible with the labelcache, so the labelcache
is automatically disabled for layers that make use of ‘STYLEITEM “AUTO”’.

NOTE 3
When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR to
names in your symbol file. For a quick solution, try using the following symbol file:

https://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of MapInfo files, it
will be:

• For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name will be ‘mapinfo-
sym-##’ where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32’.

• For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##’ where ‘##’ is the symbol number in the font.
In this case, the name of the font itself is ignored by MapServer.

• MapInfo also supports “custom symbols” (bitmap symbols). . . I’m not sure what you would get from OGR for
this, but I’m pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to MapServer. Look at the
“Style” string in the ogrinfo output for each shape that is read.
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Mapping of OGR Style Info to the MapServer CLASS Members

Here is the list of style parameters that are currently supported from OGR data sources and how they’re mapped in
MapServer:

Line color
The line colour (PEN.c) is mapped to CLASS.STYLE.COLOR

Line thickness
The line thickness (PEN.w) is mapped to CLASS.STYLE.WIDTH. The default will be 1 pixel line (as it always
is with MapServer).

Line pattern
The line pattern (PEN.p) is mapped to CLASS.STYLE.PATTERN. The default is a solid line.

Line cap and join
The line cap (PEN.cap) is mapped to CLASS.STYLE.CAP and the join to CLASS.STYLE.JOIN.

Line offset
The line perpendicular offset (PEN.dp) is mapped to CLASS.STYLE.OFFSET

Line symbol
OGR provides MapServer with symbol names (PEN.id), and if the symbol name returned by OGR to MapServer
matches the name of one of the symbols in your symbolset then this symbol will be used.

Polygon background color
Polygon background color (BRUSH.bc) is mapped directly to CLASS.STYLE.BACKGROUNDCOLOR

Polygon fill color
Polygon fill color (BRUSH.fc) is mapped directly to CLASS.STYLE.COLOR

Polygon outline
If a polygon has an outline color (PEN.c) and thickness defined in the data source then the same
rule as for line color and thickness above will apply, except that the outline color is mapped to
CLASS.STYLE.OUTLINECOLOR

Polygon symbols
OGR provides MapServer with symbol names (BRUSH.id), and if the symbol name returned by OGR to
MapServer matches the name of one of the symbols in your symbolset then this symbol will be used.

Polygon symbol color (BRUSH.fc) is directly mapped to CLASS.STYLE.COLOR. Polygon symbol size
(BRUSH.s) is directly mapped to CLASS.STYLE.SIZE. Polygon symbol spacing (note the OGR BRUSH.dx
and BRUSH?dy parameters mus be equal) is directly mapped to CLASS.STYLE.GAP. Polygon symbol angle
(BRUSH.a) is directly mapped to CLASS.STYLE.ANGLE.

Point symbols
Point symbol color (SYMBOL.c) is directly mapped to CLASS.STYLE.COLOR. Point symbol outline color
(SYMBOL.c) is directly mapped to CLASS.STYLE.OUTLINECOLOR. Point symbol size (SYMBOL.s) is di-
rectly mapped to CLASS.STYLE.SIZE.

If your symbolset contains a symbol called “default-marker” then this symbol will be used, otherwise the default
will be CLASS.SYMBOL=0 (i.e. a 1 pixel dot)

It is also possible (with a bit of work) to control which symbol gets used in rendering point symbols. OGR
provides MapServer with symbol names (SYMBOL.id), and if the symbol name returned by OGR to MapServer
matches the name of one of the symbols in your symbolset then this symbol will be used.

For MapInfo point symbols (numbered 32 to 67 in the MapInfo MIF spec), the name returned by OGR is
“mapinfo-sym-X” where X should be replaced with the MapInfo symbol number (e.g. “mapinfo-sym-35” is
the star symbol).
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If the OGR symbol id is a web reference (http://. . . /mysymbol.png), the symbol will be downloaded and a new
symbol entry will be created referring to it.

Text labels
The text string (LABEL.t) is mapped to CLASS.LABEL.TEXT

Text color (LABEL.c) is mapped to CLASS.LABEL.COLOR

Text background color (LABEL.b) is mapped to CLASS.LABEL.BACKGROUNDCOLOR

Text shadow color (LABEL.h) is mapped to CLASS.LABEL.SHADOWCOLOR

Text outline color (LABEL.h) is mapped to CLASS.LABEL.OUTLINECOLOR

Text height (LABEL.s) is mapped to CLASS.LABEL.SIZE

Text angle (LABEL.a) is mapped to CLASS.LABEL.ANGLE

Text anchor position (LABEL.p) is mapped to CLASS.LABEL.POSITION

Text font mapping follows the following rules:

1. If TTF fonts are supported:

a. If the native font name (e.g. “Arial”) is found in your fontset then this font will be used. The font styles
bold and italic are supported as follows: Arial bold fontname maps to arial-bold. Arial italic fontname
maps to arial-italic. Arial bold italic fontname maps to arial-bold-italic. If the styles are not available,
arial will be used.

b. If 1a. failed and a font called “default” is present in your fontset then this “default” font will be used.

2. If TTF fonts are not supported or if all above cases failed, then BITMAP MEDIUM font will be used.

Starting with MapServer 7.0, multiple OGR tools (i.e. pen, brush, symbols) can be supported per feature. The cor-
responding STYLE object are created in the order the OGR tools appear in the OGR FeatureStyle string, i.e. the
last one in the string is drawn on top of previous ones. This rule is true except if the priority level parameters
(PEN/BRUSH/SYMBOL.l) of OGR tools is defined, in which case it has precedence over the apparition order of
the OGR tools.

Accessing OGR STYLEITEMAUTO Label Styles Through MapScript

OGR STYLEITEMAUTO label styles can be accessed through MapScript, such as PHP/MapScript’s getshape() or get-
value() methods, by setting the LAYER’s PROCESSING parameter to “GETSHAPE_STYLE_ITEMS=all”. Therefore,
the LAYER must contain:

LAYER
...
PROCESSING "GETSHAPE_STYLE_ITEMS=all"
...

END

The following label styles are supported:
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Label Style Description MapServer Version Im-
plemented

OGR:LabelFont Comma-delimited list of fonts names 5.4
OGR:LabelSize Numeric value with units 5.2.0
OGR:LabelText Label text string 5.2.0
OGR:LabelAngle Rotation angle (in degrees) 5.2.0
OGR:LabelFColorForeground color 5.4
OGR:LabelBColorBackground color 5.4
OGR:LabelPlacementHow is the text drawn relative to the feature’s geometry 5.4
OGR:LabelAnchorA value from 1 to 12 defining the label’s position relative to the

point to which it is attached.
5.4

OGR:LabelDx X offset 5.4
OGR:LabelDy Y offset 5.4
OGR:LabelPerp Perpendicular offset 5.4
OGR:LabelBold Bold text 5.4
OGR:LabelItalic Italic text 5.4
OGR:LabelUnderlineUnderlined text 5.4
OGR:LabelPriorityNumeric value defining the order in which style parts should be

drawn.
5.4

OGR:LabelStrikeoutStrike out text (gdal >= 1.4.0) 5.4
OGR:LabelStretchStretch factor changes the width of all characters in the font by factor

percent. (gdal >= 1.4.0)
5.4

OGR:LabelAdjHorHorizontally adjacent text (gdal >= 1.4.0) 5.4
OGR:LabelAdjVertVertically adjacent text (gdal >= 1.4.0) 5.4
OGR:LabelHColorShadow color (gdal >= 1.4.0) 5.4
OGR:LabelOColorOutline color (gdal > 1.6.0) 5.4

Please see the OGR Feature Style Specification document for more details on those specific styles.

Sample PHP MapScript code to access the “OGR:LabelText” label style follows:

<?php

// define variables
define( "MAPFILE", "D:/ms4w/apps/ogr-demos/nfld_demo/test.map" );

// open map
$oMap = ms_newMapObj( MAPFILE );

//get layer
$oLayer = $oMap->getLayerByName("Map_Labels");

//get styles
$status = $oLayer->open();
$status = $oLayer->whichShapes($oMap->extent);
while ($oShape = $oLayer->nextShape())
{
//echo $oShape->index ."<br>\n";
echo $oShape->getValue($oLayer,"OGR:LabelText");
echo "\n";

}
$oLayer->close();

(continues on next page)
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(continued from previous page)

?>

Sample Sites Using OGR/MapServer

The following sites use OGR’s STYLEITEM “AUTO” feature:

• https://demo.mapserver.org/ogr-demos/yk_demo/demo_init.html

• https://demo.mapserver.org/ogr-demos/nfld_demo/demo_init.html

The following site uses OGR, as well as MapInfo’s ‘Seamless Map Layers’ feature:

• https://demo.mapserver.org/ogr-demos/ro_demo/demo_init.html

The following site uses OGR to display TIGER 2000 files:

• https://demo.mapserver.org/ogr-demos/tig_demo/demo_init.html

FAQ / Common Problems

Q
What Does “OGR” Stand For?

A
Basically, OGR does not stand for anything. For a detailed explanation of how OGR was named, see
GDAL’s FAQ at http://trac.osgeo.org/gdal/wiki/FAQ.

Q
When using STYLEITEM AUTO, what should I have in my .sym symbols file?

A
When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR to
names in your symbol file. For a quick solution, try using the following symbol file:

https://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of
MapInfo files, it will be:

• For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name
will be ‘mapinfo-sym-##’ where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32’.

• For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##’ where ‘##’ is the symbol num-
ber in the font. In this case, the name of the font itself is ignored by MapServer.

• MapInfo also supports “custom symbols” (bitmap symbols). . . I’m not sure what you would get
from OGR for this, but I’m pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to
MapServer. Look at the “Style” string in the ogrinfo output for each shape that is read.
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You can also see the original OracleSpatial wiki page that this document was based on.
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Binaries

MapServer Windows plugins with Oracle spatial support are included in MS4W. But you need Oracle client software
installed on the server on which you are running MapServer. Oracle client software can be obtained for develop-
ment purposes from the Oracle website. The ORACLE TECHNOLOGY NETWORK DEVELOPMENT LICENSE
AGREEMENT applies to this software. The instant client will be satisfactory, and you can download the instant client.
Make sure that your MapServer is compiled against the same version as your Oracle client.

Installation

See Oracle Installation for more configuration and installation information for MapServer’s native Oracle support.

Note: If you receive error messages like “Error: .”. It’s likely related to MapServer being unable access or locate the
ORACLE_HOME.

Two options for using Oracle Spatial with MapServer

Oracle Spatial layers in MapServer can be used through 2 interfaces:

• The native built-in support through maporaclespatial.c

• OGR, but watch out: GDAL/OGR is not compiled with Oracle Spatial support by default, so it won’t work without
compiling in OCI (Oracle client) yourself. This requires both recompiling GDAL/OGR as well as recompiling
MapServer itself against the new GDAL/OGR !!!!

Mapfile syntax for native Oracle Spatial support

The DATA statement for a LAYER of CONNECTIONTYPE oraclespatial can now have 4 options. This change is
backwards compatible, i.e. the old ways of specifying DATA still work. The new options are an extension to the old
DATA statements, as they needed to include identification of the primary key to be used for the query modes (UNIQUE).

The following options are valid DATA statements:

"[geom_column]
FROM
[table]| [(

SELECT [...]
FROM [table]|[Spatial Operator]
[WHERE condition] )]

[USING [UNIQUE column]
| [SRID #srid]
| [FUNCTION]
| [VERSION #version]

]"

Note variable binding is supported by using BINDVALS and name value pairs.
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Examples

Example 1

The most simple DATA statement, in this case you only need to define one geometry column and one table. This option
assumes you do not have an SRID defined.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE"
...

END

Example 2

It’s composed of the first option plus the USING UNIQUE parameter. These new features are necessary when you
want to use any query function. When it is used you must pass a numeric column type. This option assumes you do
not have an SRID defined.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID"
...

END

Example 3

This option is an extension to the first option. In this mode you must define the USING SRID parameter when the
SRID value in your data is different from NULL.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING SRID 90112"
...

END

Example 4

This option is a combination of examples 2 and 3.

LAYER
...
CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID SRID 90112"
...

END
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Using subselects in the DATA statement

It is possible to define the source of the date as a subselect and not only as a table. As source of data, used in FROM
token, you can define any SQL, table, function, or operator that returns a SDO_GEOMETRY. For example:

DATA "[geom_column] FROM (SELECT [columns] FROM [table]|[Spatial function])"

If the LAYER definition contains a CLASSITEM, LABELITEM or FILTER, it is necessary that the fields used are
returned by the query. When you define CLASSITEM you can use an expression without any problems.

Additional keywords - [FUNCTION]

You can add three keywords to the DATA statement for [FUNCTION] option that influence the query which will be
executed in Oracle:

USING FILTER

"[geom_column] FROM [table]|([Subselect]) USING FILTER"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_FILTER operator. This operator executes only
the Oracle Spatial primary filter over your query data. In the Oracle User guide they explain: The primary filter
compares geometric approximations, it returns a superset of exact result. The primary filter therefore should be as
efficient (that is, selective yet fast) as possible. This operator uses the spatial index, so you need to define your spatial
index correctly to retrieve an exact result. If the result of the query is not exact you can try the next option.

USING RELATE

"[geom_column] FROM [table]|([Subselect]) USING RELATE"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_RELATE operator. This operator applies the
primary and secondary Oracle Spatial filters. It’s performance can be slightly slow but the result is extremely correct.
You can use this mode when you want a perfect result or when you can’t readjust the spatial index.

USING GEOMRELATE

"[geom_column] FROM [table]|([Subselect]) USING GEOMRELATE"

Using this keyword triggers MapServer to use the geometry function SDO_GEOM.RELATE, a function that searches
the relations between geometries. SDO_GEOM.RELATE does not use the spatial index and your performance is more
slow than operators but it’s very accurate. You can use this mode when you can’t use the spatial index or when it doesn’t
exist.
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USING NONE

"[geom_column] FROM [table]|([Subselect]) USING NONE"

Using this keyword triggers MapServer to not use any geometry function or spatial operator. So, the internal SQL
doesn’t restrict, based on the extent, the data from source. All the data from source will be returned to MapServer.
The NONE token is very useful when the source of the data doesn’t contain any spatial index. It usually occurs when
the source is a function like SDO_BUFFER, SDO_XOR, SDO_INTERSECTION. . . . . . So this mode is recommended
when you can’t use the spatial index or when it doesn’t exist.

Additional keywords - [VERSION]

You can define what version of database you are using to improve the internal sql. This is very useful when using
geodetic SRIDs and MapServer functions that retrieve the extent from data.

USING VERSION 8i

"[geom_column] FROM [table]|([Subselect]) USING VERSION 8i"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 8i version.

USING VERSION 9i

"[geom_column] FROM [table]|([Subselect]) USING VERSION 9i"

The second indicates MapServer to use 9i version, is recommended to use this parameter if you are using 9i version
because the internal SQL will use specific spatial functions that is need to retrieve data correctly from 9i Oracle Spatial
versions.

USING VERSION 10g

"[geom_column] FROM [table]|([Subselect]) USING VERSION 10g"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 10g version.

More information

• You can define any PROJECTION to your LAYER without problem, can be used for data with or without an
SRID in Oracle.

• The native support for Oracle Spatial supports the defaults definition for SDO_GEOMETRY in database, the
Oracle Spatial SDO package.

• Information about the primary and secondary Oracle Spatial filters can be found in the Oracle Spatial User Guide
(the “Query Model” section). Information about the SDO_FILTER and SDO_RELATE operators can be found
in the “Spatial Operators” section, and information about the SDO_GEOM.RELATE function can be found in
the “Geometry Function” section of the Oracle Spatial User Guide.
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Example of a LAYER

LAYER
NAME kwadranten
TYPE POLYGON
CONNECTIONTYPE oraclespatial
CONNECTION "user/pwd"
DATA "GEOMETRIE FROM KWADRANTEN USING SRID 90112"
CLASS

STYLE
OUTLINECOLOR 0 0 0
COLOR 0 128 128

END
END

END

You can specify the SID for your database, the SID alias needs to be supplied in the tnsnames.ora file of the Oracle
client, e.g.

Example for tnsnames.ora:

MYDB =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = server_ip)(PORT = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = DB1)
)

)

So after this you can define you layer connection as:

CONNECTION "user/pwd@MYDB"

Mapfile syntax for OGR Oracle Spatial support

Syntax for your MAP file:

CONNECTION "OCI:user/pwd@service"
CONNECTIONTYPE OGR
DATA "Tablename"

Note: Make sure you set the wms_extent METADATA for the LAYER, as otherwise the “Getcapabilities” request
takes a lot of time.
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What MapServer Components are related to Oracle Spatial access

Note: This list was created back for MapServer 5.2 so it is somewhat outdated.

• mode=map

• query modes: query, nquery, itemnquery

• MapScript query functions such as querybyattributes

• OGC:WMS: GetCapabilities, GetMap, GetFeatureInfo, DescribeLayer

• OGC:WFS, GetCapabilities, DescribeFeatureType, GetFeature

PostGIS/PostgreSQL

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2022-04-25
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PostGIS/PostgreSQL

PostGIS spatially enables the Open Source PostgreSQL database.

The PostGIS wiki page may include additional information.

Tip: Be sure that you have loaded the extension into your database: CREATE EXTENSION postgis;

Tip: If you have upgraded PostGIS, be sure to execute the following on your database: SELECT post-
gis_extensions_upgrade();

See also:
Vector Data Management & Optimization

Data Access /Connection Method

PostGIS is supported directly by MapServer and must be compiled into MapServer to work.

The PostgreSQL client libraries (libpq.so or libpq.dll) must be present in the system’s path environment for functionality
to be present.

The CONNECTIONTYPE parameter must be set to POSTGIS.

The CONNECTION parameter is used to specify the parameters to connect to the database. CONNECTION parameters
can be in any order. Most are optional. dbname is required. user is required. host defaults to localhost, port defaults
to 5432 (the standard port for PostgreSQL).

The DATA parameter is used to specify the data used to draw the map. The form of DATA is “[geometry_column]
from [table_name|sql_subquery] using unique [unique_key] using srid=[spatial_reference_id]”. The “using unique”
and “using srid=” clauses are optional when drawing features, but using them improves performance. If you want to
make MapServer query calls to a PostGIS layer, your DATA parameter must include “using unique”. Omitting it will
cause the query to fail.

Tip: If you are trying to execute a query and receive the message “ERROR: column oid does not exist at character. . . ”
it is likely that you are missing the using unique part in your DATA parameter. If you don’t specify a unique ID column,
then MapServer will try to look for one (at the cost of executing a few more queries). It is therefore best to always
specify a unique ID column in your DATA statement. If your table does not have a unique ID column, you can add one
such as:

ALTER TABLE mytable ADD COLUMN unique_id SERIAL PRIMARY KEY;

Warning: OIDs were removed from PostgreSQL as of the PostgreSQL 12.0 release. It is recommended to specify
a different unique ID column instead, in your layer’s DATA statement, of your mapfile.

Note: Variable binding is supported by using BINDVALS and name value pairs.

Here is a simple generic example:
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CONNECTIONTYPE POSTGIS
CONNECTION "host=yourhostname dbname=yourdatabasename user=yourdbusername

password=yourdbpassword port=yourpgport"
DATA "geometrycolumn from yourtablename"

This example shows specifying the unique key and srid in the DATA line:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from the_database using unique gid using srid=4326"

This example shows using a SQL subquery to perform a join inside the database and map the result in MapServer.
Note the “as subquery” string in the statement – everything between “from” and “using” is sent to the database for
evaluation:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, g.the_geom, a.attr1, a.attr2 from

geotable g join attrtable a on g.gid = a.aid) as subquery
using unique gid using srid=4326"

This example shows using a geometry function and database sort to limit the number of features and vertices returned
to MapServer:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Simplify(g.the_geom, 10.0) as

the_geom from geotable g order by ST_Area(g.the_geom) desc
limit 10) as subquery using unique gid using srid=4326"

This example shows the use of the !BOX! substitution string to over-ride the default inclusion of the map bounding box
in the SQL. By default the spatial box clause is appended to the SQL in the DATA clause, but you can use !BOX! to
insert it anywhere you like in the statement. In general, you won’t need to use !BOX!, because the PostgreSQL planner
will generate the optimal plan from the generated SQL, but in some cases (complex sub-queries) a better plan can be
generated by placing the !BOX! closer to the middle of the query:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Union(g.the_geom, 10.0) as

the_geom from geotable g where ST_Intersects(g.geom,!BOX!)) as
subquery using unique gid using srid=4326"

OGRINFO Examples

OGRINFO can be used to read out metadata about PostGIS tables directly from the database.

First you should make sure that your GDAL/OGR build contains the PostgreSQL driver, by using the ‘–formats’ com-
mand:

>ogrinfo --formats

Supported formats:
...

(continues on next page)
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PGeo -vector- (ro): ESRI Personal GeoDatabase
MSSQLSpatial -vector- (rw+): Microsoft SQL Server Spatial Database
PostgreSQL -vector- (rw+): PostgreSQL/PostGIS
MySQL -vector- (rw+): MySQL

...

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432"
using driver `PostgreSQL' successful.
1: province (Polygon)

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432"␣
→˓province -summary

INFO: Open of `PG:host=127.0.0.1 user=postgres password=postgres dbname=canada'
using driver `PostgreSQL' successful.

Layer name: province
Geometry: Polygon
Feature Count: 1068
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
PROJCS["NAD83 / Canada Atlas Lambert",

GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]],
PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["standard_parallel_1",49],
PARAMETER["standard_parallel_2",77],
PARAMETER["latitude_of_origin",49],
PARAMETER["central_meridian",-95],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH],
AUTHORITY["EPSG","3978"]]

FID Column = ogc_fid
Geometry Column = wkb_geometry

(continues on next page)
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...

Mapfile Example

LAYER
NAME "province"
STATUS ON
TYPE POLYGON
CONNECTIONTYPE POSTGIS
CONNECTION "host=127.0.0.1 user=postgres password=postgres port=5432 dbname=canada"
DATA "wkb_geometry FROM province USING UNIQUE ogc_fid USING srid=3978"
EXTENT -2340603.750000 -719746.062500 3009430.500000 3836605.250000 # for maximum␣

→˓performance
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
CLASS
NAME "Provincial Land"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
END
PROJECTION #source

"init=epsg:3978"
END

END

For more info about PostGIS and MapServer see the PostGIS docs: https://postgis.net/documentation/

PostGIS Raster (PGRaster)

Since the PostGIS 2.0 release, PostGIS includes support for raster data, which can be accessed by MapServer (through
GDAL).

Tip: Be sure that you have loaded the extension into your database: CREATE EXTENSION postgis_raster;

Load Raster DATA

You must use raster2pgsql to load your raster data into PostGIS (see postgis.net for usage), such as:

raster2pgsql -s 2961 -I -C -M -F -t auto -l 2,4,8 colorhillshade_dtm_1m_utm20_w_10_91.
→˓tif lunenburg_colorhillshade > raster.sql
psql -U postgres -p 5432 -d mydb -f raster.sql

The above will create a new lunenburg_colorhillshade table from a GeoTIFF file.

Important points for display in MapServer:
• be sure to set the -t switch to tile the raster
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• be sure to set the -I switch to create a GiST index on the raster

• be sure to set the -C switch to apply raster constraints

• be sure to set the -F switch to add a column with the name of the raster file

Connect with GDALINFO

Use the gdalinfo utility to list the available raster tables in your database, such as:

gdalinfo PG:"host=127.0.0.1 port=5432 user=postgres password=postgres dbname=mydb"

which returns something like:

Driver: PostGISRaster/PostGIS Raster driver

Subdatasets:
...
SUBDATASET_3_NAME=PG:host=127.0.0.1 port=5432 user=postgres password=postgres␣

→˓dbname=mydb schema='public' table='lunenburg_colorhillshade' column='rast'
SUBDATASET_3_DESC=PostGIS Raster table at public.lunenburg_colorhillshade (rast)

...

Next specify the table and column, with the -nomd switch, such as:

gdalinfo PG:"host=127.0.0.1 port=5432 user=postgres password=postgres dbname=mydb␣
→˓table=lunenburg_colorhillshade column=rast" -nomd

which returns a summary of the raster, including its projection (EPSG:2961) :

Driver: PostGISRaster/PostGIS Raster driver
Coordinate System is:
PROJCS["NAD83(CSRS) / UTM zone 20N",

GEOGCS["NAD83(CSRS)",
DATUM["NAD83_Canadian_Spatial_Reference_System",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6140"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4617"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-63],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],

(continues on next page)
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AXIS["Northing",NORTH],
AUTHORITY["EPSG","2961"]]

Mapfile Layer

The mapfile layer is similar to other raster layers, but the PostGIS connection parameters are specified in the DATA
parameter, such as:

LAYER
NAME "lunenburg_raster"
TYPE RASTER
STATUS ON
DATA "PG:host=127.0.0.1 port=5432 sslmode=disable user=postgres password=postgres␣

→˓dbname=mydb schema=public table=lunenburg_colorhillshade column=rast mode=2"
PROJECTION
"init=epsg:2961"

END
CLASS
NAME "Lunenburg"

END
PROCESSING "CLOSE_CONNECTION=DEFER"

END # layer

Note: The parameter mode=2 must be specified in the DATA connection string, for MapServer to load this properly,
as the raster is tiled. See the PostGIS Raster Driver page for more info.

Test with shp2img

shp2img -m postgis.map -o ttt.png -map_debug 3

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawRasterLayerLow(lunenburg_raster): entering.
msDrawMap(): Layer 1 (lunenburg_raster), 0.355s
msDrawMap(): Drawing Label Cache, 0.000s
msDrawMap() total time: 0.356s
msSaveImage(ttt.png) total time: 0.004s
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Support for 2.5D geometries

In addition to horizontal coordinates (X,Y or longitude,latitude), PostGIS can support geometries with a vertical com-
ponent, often called 2.5D geometries.

As of MapServer 7.0, such 2.5D geometries will be taken into account if MapServer is built with -
DWITH_POINT_Z_M=ON.

Note: Output of 2.5D geometries in WFS requires explicit metadata item to be specified at the layer level. See WFS
server documentation.

Note: It is still possible to force 2D only geometries to be retrieved from PostGIS by setting the following PROCESS-
ING option

PROCESSING "FORCE2D=YES"

Support for SQL/MM Curves

PostGIS is able to store circular interpolated curves, as part of the SQL Multimedia Applications Spatial specification
(read about the SQL/MM specification).

For more information about PostGIS’ support, see the SQL-MM Part 3 section in the PostGIS documentation, such as
here.

As of MapServer 6.0, the PostGIS features CircularString, CompoundCurve, CurvePolygon, MultiCurve, and Multi-
Surface can be drawn through MapServer directly.
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Example#1: CircularString in MapServer

The following is the Well Known Text of the feature loading into PostGIS:

INSERT INTO test ( g, id ) VALUES ( ST_GeomFromText('CIRCULARSTRING(0 0,
4 0, 4 4, 0 4, 0 0)', -1), 2);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE
COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

Example#2: CompoundCurve in MapServer

The following is the Well Known Text of the feature loading into PostGIS:

INSERT INTO test ( g, id ) VALUES ( ST_GeomFromText('COMPOUNDCURVE(
CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))', -1), 3);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS

(continues on next page)
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STYLE
COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:

Example#3: CurvePolygon in MapServer

The following is the Well Known Text of the feature loading into PostGIS:

INSERT INTO test ( g, id ) VALUES ( ST_GeomFromText('CURVEPOLYGON(
CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3,
3 1, 1 1))', -1), 4);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE
COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:
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Example#4: MultiCurve in MapServer

The following is the Well Known Text of the feature loading into PostGIS:

INSERT INTO test ( g, id ) VALUES ( ST_GeomFromText('MULTICURVE((0 0,
5 5),CIRCULARSTRING(4 0, 4 4, 8 4))', -1), 6);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE
COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:
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Example#5: MultiSurface in MapServer

The following is the Well Known Text of the feature loading into PostGIS:

INSERT INTO test ( g, id ) VALUES ( ST_GeomFromText('MULTISURFACE(
CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4,
0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))', -1), 7);

An example MapServer layer might look like:

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "g from test using SRID=-1 using unique id"
CLASS
STYLE
COLOR 128 128 128
ANTIALIAS true

END
END

END

And testing with shp2img should produce a map image of:
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Using MapServer < 6.0

If you cannot upgrade to MapServer 6.0, then you can use the PostGIS function ST_CurveToLine() in your MapServer
LAYER to draw the curves (note that this is much slower however):

LAYER
NAME "curves_poly"
STATUS DEFAULT
TYPE POLYGON
CONNECTIONTYPE postgis
CONNECTION "user=postgres password=postgres dbname=curves host=localhost port=5432"
DATA "wkb_geometry from (select c.id, ST_CurveToLine(c.g) as

wkb_geometry from c) as subquery using
unique id using SRID=-1"

CLASS
STYLE
COLOR 128 128 128
ANTIALIAS true

END
(continues on next page)
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END
END

SDTS

This is a United States Geological Survey (USGS) format. SDTS has a raster and a vector format. The raster format is
not supported in MapServer. Only the vector formats are supported, including VTP and DLG files.

File listing

• SDTS files are often organized into state-sized pieces. For example, all of the state of Maryland (MD), U.S.A.

• Files are also available for multiple types of features including hydrography, transportation and administrative
boundaries.

This example uses transportation data, which consists of 35 separate files, each with the suffix DDF:

MDTRAHDR.DDF MDTRARRF.DDF MDTRCATS.DDF
MDTRDQCG.DDF MDTRFF01.DDF MDTRLE02.DDF
MDTRNA03.DDF MDTRNO03.DDF MDTRSPDM.DDF
MDTRAMTF.DDF MDTRBFPS.DDF MDTRCATX.DDF
MDTRDQHL.DDF MDTRIDEN.DDF MDTRLE03.DDF
MDTRNE03.DDF MDTRPC01.DDF MDTRSTAT.DDF
MDTRARDF.DDF MDTRBMTA.DDF MDTRDDSH.DDF
MDTRDQLC.DDF MDTRIREF.DDF MDTRNA01.DDF
MDTRNO01.DDF MDTRPC02.DDF MDTRXREF.DDF
MDTRARDM.DDF MDTRCATD.DDF MDTRDQAA.DDF
MDTRDQPA.DDF MDTRLE01.DDF MDTRNA02.DDF
MDTRNO02.DDF MDTRPC03.DDF

Data Access / Connection Method

• SDTS access is available in MapServer through OGR’s SDTS driver.

• The CONNECTIONTYPE OGR parameter must be used.

• The path (which can be relative) to the catalog file (____CATD.DDF) is required, including file extension.

• There are multiple layers in the SDTS catalog, some of which are only attributes and have no geometries.

• The layer name is specified with the DATA parameter
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OGRINFO Examples

Using ogrinfo on a catalog file (note that the first 7 layers do not have geometries):

> ogrinfo /data/sdts/MD/MDTRCATD.DDF

Had to open data source read-only.
INFO: Open of `MDTRCATD.DDF'
using driver `SDTS' successful.
1: ARDF (None)
2: ARRF (None)
3: AMTF (None)
4: ARDM (None)
5: BFPS (None)
6: BMTA (None)
7: AHDR (None)
8: NE03 (Point)
9: NA01 (Point)
10: NA02 (Point)
11: NA03 (Point)
12: NO01 (Point)
13: NO02 (Point)
14: NO03 (Point)
15: LE01 (Line String)
16: LE02 (Line String)
17: LE03 (Line String)
18: PC01 (Polygon)
19: PC02 (Polygon)
20: PC03 (Polygon)

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo /data/sdts/MD/MDTRCATD.DDF LE01 -summary

Had to open data source read-only.
INFO: Open of `MDTRCATD.DDF'
using driver `SDTS' successful.

Layer name: LE01
Geometry: Line String
Feature Count: 780
Extent: (-80.000289, 36.999774) - (-74.999711, 40.000225)
Layer SRS WKT:
GEOGCS["NAD27",

DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.978698213901]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

RCID: Integer (0.0)
SNID: Integer (0.0)
ENID: Integer (0.0)
ENTITY_LABEL: String (7.0)
ARBITRARY_EXT: String (1.0)

(continues on next page)
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RELATION_TO_GROUND: String (1.0)
VERTICAL_RELATION: String (1.0)
OPERATIONAL_STATUS: String (1.0)
ACCESS_RESTRICTION: String (1.0)
OLD_RAILROAD_GRADE: String (1.0)
WITH_RAILROAD: String (1.0)
COVERED: String (1.0)
HISTORICAL: String (1.0)
LIMITED_ACCESS: String (1.0)
PHOTOREVISED: String (1.0)
LANES: Integer (2.0)
ROAD_WIDTH: Integer (3.0)
BEST_ESTIMATE: String (1.0)
ROUTE_NUMBER: String (7.0)
ROUTE_TYPE: String (9.0)

Mapfile Example:

LAYER
NAME "sdts_maryland"
TYPE LINE
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "data/sdts/MD/MDTRCATD.DDF"
DATA "LE01"
CLASS
STYLE
COLOR 0 0 0

END #style
END #class

END #layer

S57

Also known as S57. The IHO S-57 format is a vector interchange format used for maritime charts. It was developed
by the International Hydrographic Organisation (IHO). For more information about the IHO see: https://iho.int/
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File listing

Individual S57 data files have an extension of *.000. For example:

US1BS02M.000

Data Access / Connection Method

• S57 access in MapServer occurs through OGR’s S57 driver.

• CONNECTIONTYPE OGR must be specified.

• Specify a full path or a relative path from the SHAPEPATH to the .000 file for the CONNECTION

• Use the DATA parameter to specify the S57 layer name

Special Notes

The underlying OGR code requires two files from your GDAL/OGR installation when reading S57 data in
MapServer : s57objectclasses.csv and s57attributes.csv. These files can be found in the /GDAL/data/ folder (unix:
/usr/local/share/gdal Windows: /ms4w/gdaldata). If you receive an error in MapServer such as:

msDrawMap(): Image handling error. Failed to draw layer named 's57'.
msOGRFileOpen(): OGR error. xxx failed for OGR connection

you may have to point MapServer to these files using the CONFIG parameter in the main section of your map file:

CONFIG GDAL_DATA "C:\ms4w\gdaldata"

OGRINFO Examples

Using ogrinfo on an S57 file to get the layer name:

> ogrinfo us1bs02m.000

ERROR 4: S57 Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `us1bs02m.000'
using driver `IHO S-57 (ENC)' successful.
1: ADMARE (Polygon)
2: CBLSUB (Line String)
3: CTNARE
4: COALNE (Line String)
5: DEPARE
6: DEPCNT (Line String)
7: LNDARE
8: LNDELV
9: LNDRGN
10: LNDMRK
11: LIGHTS (Point)
12: OBSTRN

(continues on next page)
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13: RDOSTA (Point)
14: SEAARE
15: SBDARE
16: SLCONS
17: SOUNDG (Multi Point)
18: UWTROC (Point)
19: WATTUR
20: WRECKS
21: M_COVR (Polygon)
22: M_NPUB (Polygon)
23: M_NSYS (Polygon)
24: M_QUAL (Polygon)
25: C_ASSO (None)

Using ogrinfo to examine the structure of an S57 layer:

> ogrinfo us1bs02m.000 DEPARE -summary

ERROR 4: S57 Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `us1bs02m.000'
using driver `IHO S-57 (ENC)' successful.

Layer name: DEPARE
Geometry: Unknown (any)
Feature Count: 297
Extent: (165.666667, 48.500000) - (180.000000, 60.750000)
Layer SRS WKT:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

GRUP: Integer (3.0)
OBJL: Integer (5.0)
RVER: Integer (3.0)
AGEN: Integer (2.0)
FIDN: Integer (10.0)
FIDS: Integer (5.0)
LNAM: String (16.0)
LNAM_REFS: StringList (16.0)
DRVAL1: Real (0.0)
DRVAL2: Real (0.0)
QUASOU: String (0.0)
SOUACC: Real (0.0)
VERDAT: Integer (0.0)
INFORM: String (0.0)
NINFOM: String (0.0)
NTXTDS: String (0.0)
SCAMAX: Integer (0.0)
SCAMIN: Integer (0.0)
TXTDSC: String (0.0)

(continues on next page)
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RECDAT: String (0.0)
RECIND: String (0.0)
...

Mapfile Example:

LAYER
NAME "s57"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "./s57/us1bs02m.000"
DATA "DEPARE"
CLASS
STYLE
COLOR 247 237 219
OUTLINECOLOR 120 120 120

END #style
END #class

END #layer

SpatiaLite

SpatiaLite spatially enables the file-based SQLite database. For more information see the SpatiaLite description page.

File listing

Similar to other database formats, the .sqlite file (.db is another common file extension for this) consists of several
tables. The geometry is held in a BLOB table column.

Data Access / Connection Method

Spatialite access is available through OGR. See the OGR driver page for specific driver information. The driver is
available in GDAL/OGR version 1.7.0 or later.

OGR uses the names of spatial tables within the SpatiaLite database (tables with a geometry column that are registered
in the geometry_columns table) as layers.

The CONNECTION parameter must include the sqlite extension, and the DATA parameter should be the name of the
spatial table (or OGR layer).

CONNECTIONTYPE OGR
CONNECTION "spatialite_db.sqlite"
DATA "layername"
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OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the spatialite “SQLite” driver, by using the ‘–formats’
command:

>ogrinfo --formats

Loaded OGR Format Drivers:
...
-> "GMT" (read/write)
-> "SQLite" (read/write)
-> "ODBC" (read/write)
...

If you don’t have the driver, you might want to try the MS4W or OSGeo4W packages, which include the driver.

Once you have confirmed that you have the SQLite driver you are ready to try an ogrinfo command on your database
to get a list of spatial tables:

>ogrinfo counties.sqlite

INFO: Open of `counties.sqlite'
using driver `SQLite' successful.
1: mn_counties (Polygon)

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo counties.sqlite county -summary

INFO: Open of `counties.sqlite'
using driver `SQLite' successful.

Layer name: mn_counties
Geometry: Polygon
Feature Count: 87
Extent: (189783.560000, 4816309.330000) - (761653.524114, 5472346.500000)
Layer SRS WKT:
PROJCS["NAD83 / UTM zone 15N",

GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-93],

(continues on next page)

8.1. Data Input 631

https://ms4w.com
https://trac.osgeo.org/osgeo4w/


MapServer Documentation, Release 7.6.6

(continued from previous page)

PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
AUTHORITY["EPSG","26915"],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]

FID Column = PK_UID
Geometry Column = Geometry
AREA: Real (0.0)
PERIMETER: Real (0.0)
COUNTY_ID: Integer (0.0)
FIPS: String (0.0)
...

Mapfile Example

Standard connection

LAYER
NAME "my_counties_layer"
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "counties.sqlite"
DATA "mn_counties"
EXTENT 189783.560000 4816309.330000 761653.524114 5472346.500000 # for maximum␣

→˓performance
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "mncounties"
STYLE
COLOR 255 255 120

END
END

END

Connection utilizing SQL syntax

LAYER
NAME "my_counties_layer"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "select geometry from mn_counties"
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "mncounties"

(continues on next page)
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STYLE
COLOR 255 255 120

END
END

END

Connection utilizing joined table for additional attributes

LAYER
NAME "my_counties_layer"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "SELECT mn.geometry, c.fips FROM mn_counties mn inner

join county_data c on mn.county_id = c.county_id'
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "mncounties"
STYLE
COLOR 255 255 120

END
END

END

Standard Connection with a filter

LAYER
NAME "my_counties_layer"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "mn_counties"
FILTER ('[fips]' = '27031')
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "mncounties"
STYLE
COLOR 255 255 120

END
END

END
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Filter utilizing SQL syntax

LAYER
NAME "my_counties_layer"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "counties.sqlite"
DATA "select geometry from mn_counties where fips = '27031"
PROCESSING "CLOSE_CONNECTION=DEFER" # for maximum performance
STATUS ON
CLASS
NAME "mncounties"
STYLE
COLOR 255 255 120

END
END

END

USGS TIGER

TIGER/Line files are created by the US Census Bureau and cover the entire US. They are often referred simply as TIGER
files. For more information see: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.
html.

File listing

TIGER/Line files are text files and directory-based data sources. For example, one county folder TGR06059 contains
several associated files:

TGR06059.RT1 TGR06059.RT2 TGR06059.RT4 TGR06059.RT5
TGR06059.RT6 TGR06059.RT7 TGR06059.RT8 TGR06059.RTA
TGR06059.RTC TGR06059.RTH TGR06059.RTI TGR06059.RTP
TGR06059.RTR TGR06059.RTS TGR06059.RTT TGR06059.RTZ

Data Access / Connection Method

• TIGER/Line access occurs through through OGR’s TIGER driver.

• CONNECTIONTYPE OGR must be specified.

• The full path to the directory containing the associated files is required in the CONNECTION string.

• The feature type is specified in the DATA parameter
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OGRINFO Examples

Using ogrinfo on a TIGER directory to retrieve feature types:

> ogrinfo TGR06059 (NOTE that this is a directory)

ERROR 4: Tiger Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `TGR06059'
using driver `TIGER' successful.
1: CompleteChain (Line String)
2: AltName (None)
3: FeatureIds (None)
4: ZipCodes (None)
5: Landmarks (Point)
6: AreaLandmarks (None)
7: Polygon (None)
8: PolygonCorrections (None)
9: EntityNames (Point)
10: PolygonEconomic (None)
11: IDHistory (None)
12: PolyChainLink (None)
13: PIP (Point)
14: TLIDRange (None)
15: ZeroCellID (None)
16: OverUnder (None)
17: ZipPlus4 (None)

Using ogrinfo to examine the structure of the TIGER feature type CompleteChain:

> ogrinfo TGR06059 CompleteChain -summary

ERROR 4: Tiger Driver doesn't support update.
Had to open data source read-only.
INFO: Open of `TGR06059'
using driver `TIGER' successful.

Layer name: CompleteChain
Geometry: Line String
Feature Count: 123700
Extent: (-118.125898, 33.333992) - (-117.412987, 33.947512)
Layer SRS WKT:
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
MODULE: String (8.0)
TLID: Integer (10.0)
SIDE1: Integer (1.0)
SOURCE: String (1.0)
FEDIRP: String (2.0)
FENAME: String (30.0)

(continues on next page)
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FETYPE: String (4.0)
FEDIRS: String (2.0)
CFCC: String (3.0)
FRADDL: String (11.0)
TOADDL: String (11.0)
FRADDR: String (11.0)
TOADDR: String (11.0)
FRIADDL: String (1.0)
TOIADDL: String (1.0)
FRIADDR: String (1.0)
TOIADDR: String (1.0)
ZIPL: Integer (5.0)

Mapfile Example:

LAYER
NAME "my_tiger_layer"
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/path/to/data/tiger/TGR06059"
DATA "CompleteChain"
CLASS
STYLE
COLOR 153 102 0

END #style
END #class

END #layer

Vector field rendering - UVraster

Added in MapServer 6.2, Vector fields are used for instance in meteorology to store/display wind direction and mag-
nitude.

See also:
rfc78

The source is two bands of raster data, the first band represents the U component of the vector, and the second band the
V component. Using the u,v values at a given location we can compute a rotation and magnitude and use that to draw
an arrow of a size proportional to the magnitude and pointing in the direction of the phenomenon (wind, current, etc.)

For more details about vector fields, refer to: Vector field

Visual example (rendered with MapServer):
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LAYER Description

A vector field LAYER is a hybrid layer, which has a raster data source as input and vector features as output. The output
features are represented as points. Queries are not supported.

Since the data source is a raster, all raster processing options can be used (e.g. RESAMPLE). RESAMPLE=AVERAGE
generally gives a good result, and the default. This can be overridden by explicitly specifying the type of resampling.

Vector field layers are of TYPE point, and have CONNECTIONTYPE uvraster. The raster data set is specified in DATA.
The two bands that define the vector field are specified using PROCESSING BANDS (U first, V second).

LAYER Attributes

The UVraster connection type offers the following attributes:

• [u]: the raw u value

• [v]: the raw v value

• [uv_angle]: the vector angle

• [uv_minus_angle]: the vector angle - opposite direction

• [uv_length]: the vector length (scaled with the UV_SIZE_SCALE optional value)

• [uv_length_2]: half the vector length
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Optional PROCESSING Settings

• UV_SPACING: The spacing is simply the distance, in pixels, between arrows to be displayed in the vector field.
Default is 32.

• UV_SIZE_SCALE: The uv size scale is used to convert the vector lengths (magnitude) of the raster to pixels for
a better rendering. Default is 1.

Example of a layer definition

SYMBOL
NAME "horizline"
TYPE VECTOR
POINTS

0 0
1 0

END # points
END # symbol
SYMBOL
NAME "arrowhead"
TYPE vector
FILLED true
#ANCHORPOINT 0 0.5
POINTS
0 2
4 1
0 0

END # points
END # symbol
SYMBOL
NAME "arrowtail"
TYPE vector
FILLED true
ANCHORPOINT 1 0.5 # to shift the arrowtail
POINTS
0 2
4 1
0 0
-99 -99
0 1
4 1

END # points
END # symbol
LAYER
NAME "my_uv_test"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE uvraster
DATA /path/wind.grib2
PROCESSING "BANDS=1,2"
PROCESSING "UV_SPACING=40"
PROCESSING "UV_SIZE_SCALE=0.2"

(continues on next page)
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CLASS
STYLE
SYMBOL "horizline"
ANGLE [uv_angle]
SIZE [uv_length]
WIDTH 3
COLOR 100 255 0

END # style
STYLE
SYMBOL "arrowhead"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_angle]

END # style
STYLE
SYMBOL "arrowtail"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_minus_angle]

END # style
END # class

END # layer

Virtual Spatial Data

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-05-05

Table of Contents

• Virtual Spatial Data

– Types of Databases

– Types of Flat Files

– Steps for Display

OGR’s VRT driver allows you to connect to databases in MapServer that do not explicitly hold spatial data, as well as
flat text files. Your data must have an X and a Y column, and the data may be accessed through an ODBC connection
or a direct pointer to a text file.

The original VirtualSpatialData wiki page may contain additional information.
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Types of Databases

The VirtualSpatialData OGR extension has been tested with the following databases and should, in theory, support all
ODBC data sources.

• Oracle

• MySQL

• SQL Server

• Access

• PostgreSQL

Types of Flat Files

Comma, tab or custom delimited text/flat files work with VirtualSpatialData.

Steps for Display

1. Create the Datasource Name (DSN)

• Specific notes about creating a DSN on Windows and Linux can be found by searching the MapServer reference
documents site

• On some Windows systems you must create a SYSTEM DSN.

2. Test your Connection

Test your connection with ogrinfo. The syntax for this command is:

> ogrinfo ODBC:user/pass@DSN table

Windows users may not be required to specify a user/password, so the syntax would be:

> ogrinfo ODBC:@DSN table

Example: Accessing a comma separated text file through ODBC using ogrinfo

The following is a snippet of the flat text file coal_dep.txt containing lat/long points:

unknown,na,id,id2,mark,coalkey,coalkey2,long,lat
0.000,0.000,1,1,7,87,87,76.90238,51.07161
0.000,0.000,2,2,7,110,110,78.53851,50.69403
0.000,0.000,3,3,3,112,112,83.22586,71.24420
0.000,0.000,4,4,6,114,114,80.79896,73.41175

If the DSN name is Data_txt, the ogrinfo command to see a list of applicable files in the directory is:

> ogrinfo ODBC:jeff/test@Data_txt

INFO: Open of `ODBC:jeff/test@Data_txt'
using driver `ODBC' successful.

(continues on next page)
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1: coal_dep.csv
2: coal_dep.txt
3: coal_dep_nf.txt
4: coal_dep_trim.txt
5: Copy of coal_dep.txt
6: deposit.csv
7: maruia.asc
8: oahuGISbathy.csv
9: oahuGISbathy.txt
10: on_pts.txt
11: on_pts_utm.txt
12: test.txt
13: utm_test.txt

Username and password may be optional, so the following may also be valid:

> ogrinfo ODBC:@Data_txt

Therefore, the command to see more information about one of the specific layers is:

> ogrinfo ODBC:@Data_txt coal_dep.txt

INFO: Open of `ODBC:@Data_txt'
using driver `ODBC' successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266
Layer SRS WKT:
(unknown)
UNKNOWN: String (255.0)
NA: String (255.0)
ID: String (255.0)
ID2: String (255.0)
MARK: String (255.0)
COALKEY: String (255.0)
COALKEY2: String (255.0)
LONG: String (255.0)
LAT: String (255.0)
OGRFeature(coal_dep.txt):0
UNKNOWN (String) = 0.000
....
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3. Create a Virtual Data File

This is a file with an ovf extension and looks like the following:

<OGRVRTDataSource>
<OGRVRTLayer name="mylayer">
<SrcDataSource>ODBC:user/pass@DSN</SrcDataSource>
<SrcLayer>tablename</SrcLayer>
<GeometryType>wkbPoint</GeometryType>
<LayerSRS>WGS84</LayerSRS>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>
</OGRVRTLayer>

</OGRVRTDataSource>

More information on ovf files can be found at: https://gdal.org/drivers/vector/vrt.html

Example ovf file for coal_dep.txt:

<OGRVRTDataSource>
<OGRVRTLayer name="coal-test">
<SrcDataSource>ODBC:Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>
<GeometryField encoding="PointFromColumns" x="Long" y="Lat"/>
<GeometryType>wkbPoint</GeometryType>
</OGRVRTLayer>

</OGRVRTDataSource>

4. Test Virtual Data File with ogrinfo

Use ogrinfo to test your new ovf file, such as:

> ogrinfo coal.ovf coal-test

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.
INFO: Open of `myfile.ovf'
using driver `VRT' successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266
Layer SRS WKT:
(unknown)
UNKNOWN: String (255.0)
NA: String (255.0)
ID: String (255.0)
ID2: String (255.0)
MARK: String (255.0)
...
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5. Mapfile Layer

Using an ovf file your layer may look like:

LAYER
CONNECTION "coal.ovf"
CONNECTIONTYPE OGR
DATA "coal-test"
METADATA
"wms_srs" "4326"
"wms_title" "coal-test"

END
NAME "coal-test"
SIZEUNITS PIXELS
STATUS ON
TOLERANCE 0
TOLERANCEUNITS PIXELS
TYPE POINT
UNITS METERS
CLASS
STYLE
COLOR 255 0 0
MAXSIZE 100
MINSIZE 1
SIZE 6
SYMBOL "star"

END
END

END

Note: For the CONNECTION, you can specify an absolute path, or a relative path. Relative paths are interpreted
relative to the SHAPEPATH first, if not found then MapServer will try again relative to the .map location. For more
information about connection rules please read the MapServer OGR document.

Or you may specify the ovf contents inline such as:

LAYER
CONNECTION "<OGRVRTDataSource>
<OGRVRTLayer name='coal-test'>
<SrcDataSource>ODBC:@Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>
<GeometryField encoding='PointFromColumns' x='Long' y='Lat'/>
<GeometryType>wkbPoint</GeometryType>
</OGRVRTLayer>
</OGRVRTDataSource>"

CONNECTIONTYPE OGR
DATA "coal-test"
METADATA
"wms_srs" "4326"
"wms_title" "coal-test"

END
NAME "coal-test"

(continues on next page)
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SIZEUNITS PIXELS
STATUS ON
TOLERANCE 0
TOLERANCEUNITS PIXELS
TYPE POINT
UNITS METERS
CLASS
STYLE
COLOR 255 0 0
MAXSIZE 100
MINSIZE 1
SIZE 6
SYMBOL "star"

END
END

END

6. Test your Mapfile

The first thing you should try is to use the shp2img utility:

shp2img -m mymapfile.map -o test.png

Once you successfully created a map image, then try your application. Note Windows users may come across a problem
where shp2img works but their application throws an error similar to this:

Warning: [MapServer Error]: msOGRFileOpen(): Open failed for OGR connection `coal.ovf'.
Unable to initialize ODBC connection to DSN for jeff/test@Data_txt,
[Microsoft][ODBC Driver Manager] Data source name not found
and no default driver specified in D:\ms4w\Apache\htdocs\quickmap.php on line 40

If that happens you should make sure you have created a System DSN.

WFS

WFS is an Open Geospatial Consortium (OGC) specification. For more information about the format itself, see: https:
//www.ogc.org/standards/wfs

WFS allows a client to retrieve geospatial data encoded in Geography Markup Language (GML) from multiple Web
Feature Services. GML is built on the standard web language XML.

WFS differs from the popular Web Map Service (WMS) specification in that WFS returns a subset of the data in valid
GML format, not just a graphic image of data.
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Capabilities

Requesting the capabilities using the GetCapabilities request to a WFS server returns an XML document showing what
layers and projections are available, etc. Example of a WFS GetCapabilities URL:

https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=
GetCapabilities

Example of the Resulting XML from GetCapabilties:

...
<FeatureTypeList>
<Operations>
<Query/>

</Operations>
<FeatureType>
<Name>continents</Name>
<Title>World continents</Title>
<SRS>EPSG:4326</SRS>
<LatLongBoundingBox minx="-180" miny="-90" maxx="180" maxy="83.6274"/>

</FeatureType>
<FeatureType>
<Name>cities</Name>
<Title>World cities</Title>
<SRS>EPSG:4326</SRS>
<LatLongBoundingBox minx="-178.167" miny="-54.8" maxx="179.383" maxy="78.9333"/>

</FeatureType>
</FeatureTypeList>
...

Data Access / Connection Method

• WFS access is a core MapServer feature. MapServer currently supports WFS version 1.0.0.

See also:
WFS Client

• WFS access is also supported through OGR’s WFS driver.

• CONNECTIONTYPE WFS or CONNECTIONTYPE OGR must be used (see the OGR Vector Layers Through
MapServer documentation for details on how to use WFS through OGR).

• WFS layers can be requested through a layer in a map file, or you can request the GML directly through the
browser with a GetFeature request. You can specify a specific layer with the TypeName request. In a map file
the name/value pairs should be put into a METADATA object.

• You can limit the number of features returned in the GML by using the MaxFeatures option (e.g. &MAXFEA-
TURES=100).
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Example of a WFS Request Directly Through the Browser

The following URL requests the GML for the layer continents. (see the GetCapabilities above for the possible layers
available on this test server) . The URL is all one line, broken up here for readability (click here for a working link).

https://demo.mapserver.org/cgi-bin/wfs?
SERVICE=WFS&
VERSION=1.0.0&
REQUEST=getfeature&
TYPENAME=continents&
MAXFEATURES=100

Mapfile Example

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
CONNECTION "https://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "continents"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "10"

END
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Continents"
STYLE
COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END # Layer

8.1.2 Raster Data

Author
Frank Warmerdam

Contact
warmerdam at pobox.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com
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• Raster Data

– Introduction

– How are rasters added to a Map file?

– Supported Formats

– Rasters and Tile Indexing

– Raster Warping

– 24bit RGB Rendering

– Special Processing Directives

– Raster Query

– Raster Display Performance Tips

– Preprocessing Rasters

– Georeference with World Files

Introduction

MapServer supports rendering a variety of raster file formats in maps. The following describes some of the supported
formats, and what capabilities are supported with what formats.

This document assumes that you are already familiar with setting up MapServer Mapfile, but does explain the raster
specific aspects of mapfiles.

How are rasters added to a Map file?

A simple raster layer declaration looks like this. The DATA file is interpreted relative to the SHAPEPATH, much like
vector files.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON

END

Though not shown rasters can have PROJECTION, METADATA, PROCESSING, MINSCALE, and MAXSCALE infor-
mation. It cannot have labels, CONNECTION, CONNECTIONTYPE, or FEATURE information.
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Classifying Rasters

Rasters can be classified in a manner similar to vectors, with a few exceptions.

There is no need to specify a CLASSITEM. The raw pixel value itself (“[pixel]”) and, for paletted images, the red, green
and blue color associated with that pixel value (“[red]”, “[green]” and “[blue]”) are available for use in classifications.
When used in an evaluated expression the pixel, red, green and blue keywords must be in lower case.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON
CLASSITEM "[pixel]"
# class using simple string comparison, equivalent to ([pixel] = 0)
CLASS
EXPRESSION "0"
STYLE
COLOR 0 0 0

END
END
# class using an EXPRESSION using only [pixel].
CLASS
EXPRESSION ([pixel] >= 64 AND [pixel] < 128)
STYLE
COLOR 255 0 0

END
END
# class using the red/green/blue values from the palette
CLASS
NAME "near white"
EXPRESSION ([red] > 200 AND [green] > 200 AND [blue] > 200)
STYLE
COLOR 0 255 0

END
END
# Class using a regular expression to capture only pixel values ending in 1
CLASS
EXPRESSION /*1/
STYLE
COLOR 0 0 255

END
END

END

As usual, CLASS definitions are evaluated in order from first to last, and the first to match is used. If a CLASS has a
NAME attribute it may appear in a LEGEND. Only the COLOR, EXPRESSION and NAME parameters within a CLASS
definition are utilized for raster classifications. The other styling or control information is ignored.

Raster classifications always take place on only one raster band. It defaults to the first band in the referenced file, but
this can be altered with the BANDS PROCESSING directive. In particular this means that including even a single
CLASS declaration in a raster layer will result in the raster layer being rendered using the one band classification rules
instead of other rules that might have applied (such as 3 band RGB rendering).
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Classifying Non-8bit Rasters

As of MapServer 4.4 support has been added for classifying non-8bit raster inputs. That is input rasters with values
outside the range 0-255. Mostly this works transparently but there are a few caveats and options to provide explicit
control.

Classifying raster data in MapServer is accomplished by pre-classifying all expected input values and using that table
of classification results to lookup each pixel as it is rendered. This is done because evaluating a pixel value against a
series of CLASS definitions is relatively expensive to do for the hundreds of thousands of pixels in a typical rendered
image.

For simple 8bit inputs, only 256 input values need to be pre-classified. But for non-8bit inputs more values need to be
classified. For 16bit integer inputs all 65536 possible input values are pre-classified. For floating point and other input
data types, up to 65536 values are pre-classified based on the maximum expected range of input values.

The PROCESSING directive can be used to override the range of values to be pre-classified, or the number of val-
ues (aka Buckets) in that range to classify. The SCALE=min,max PROCESSING directive controls the range. The
SCALE_BUCKETS PROCESSING directive controls the number of buckets. In some cases rendering can be acceler-
ated considerable by selecting a restricted range of input values and a reduced number of scaling values (buckets).

The following example classifies a floating raster, but only 4 values over the range -10 to 10 are classified. In particular,
the values classified would be -7.5, -2.5, 2.5, and 7.5 (the middle of each “quarter” of the range). So those four value
are classified, and one of the classification results is selected based on which value is closest to the pixel value being
classified.

LAYER
NAME grid1
TYPE raster
STATUS default
DATA data/float.tif
PROCESSING "SCALE=-10,10"
PROCESSING "SCALE_BUCKETS=4"
CLASS
NAME "red"
EXPRESSION ([pixel] < -3)
STYLE
COLOR 255 0 0

END
END
CLASS
NAME "green"
EXPRESSION ([pixel] >= -3 and [pixel] < 3)
STYLE
COLOR 0 255 0

END
END
CLASS
NAME "blue"
EXPRESSION ([pixel] >= 3)
STYLE
COLOR 0 0 255

END
END

END
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Supported Formats

Since version 6.2, MapServer raster input support is through the GDAL raster library only.

Note: For PGRaster access, see: PostGIS/PostgreSQL

More information on GDAL can be found at https://gdal.org, including the supported formats list. Some of the advanced
MapServer raster features, such as resampling, RGB color cube generation and automatic projection capture only work
with raster formats used through GDAL. GDAL is normally built and installed separately from MapServer, and then
enabled during the build of MapServer using the –with-gdal configuration switch.

To find out if GDAL support is built into a particular MapServer executable, use the -v flag to discover what build
options are enabled. To find out what GDAL formats are available, the “gdalinfo –formats” command may be used.
For example:

warmerda@gdal2200[124]% mapserv -v
MapServer version 6.2.0 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
SUPPORTS=PROJ SUPPORTS=GD SUPPORTS=AGG SUPPORTS=FREETYPE
SUPPORTS=CAIRO SUPPORTS=OPENGL SUPPORTS=ICONV SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

warmerda@gdal2200[18]% gdalinfo --formats
Supported Formats:
VRT (rw+v): Virtual Raster
GTiff (rw+vs): GeoTIFF
NITF (rw+vs): National Imagery Transmission Format
RPFTOC (rovs): Raster Product Format TOC format
ECRGTOC (rovs): ECRG TOC format
...

Rasters and Tile Indexing

When handling very large raster layers it is often convenient, and higher performance to split the raster image into a
number of smaller images. Each file is a tile of the larger raster mosaic available for display. The list of files forming a
layer can be stored in a shapefile with polygons representing the footprint of each file, and the name of the files. This
is called a ‘TILEINDEX’ and works similarly to the same feature in vector layers. The result can be represented in
the Mapfile as one layer, but MapServer will first scan the tile index, and ensure that only raster files overlapping the
current display request will be opened.

The following example shows a simple example. No DATA statement is required because MapServer will fetch the
filename of the raster files from the Location attribute column in the hp2.dbf file for records associated with polygons
in hp2.shp that intersect the current display region. The polygons in hp2.shp should be rectangles representing the
footprint of the corresponding file. Note that the files do not have to be all the same size, the formats can vary and they
can even overlap (later files will be drawn over earlier ones).

Starting with MapServer 6.4, the files can have different coordinate system (projection). This requires specifying the
TILESRS keyword and generating the tileindex with a few additional options. See Tileindexes with tiles in different
projections.
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LAYER
NAME "hpool"
STATUS ON
TILEINDEX "hp2.shp"
TILEITEM "Location"
TYPE RASTER

END

The filenames in the tileindex are searched for relative to the SHAPEPATH or map file, not relative to the tileindex.
Great care should be taken when establishing the paths put into the tileindex to ensure they will evaluate properly in use.
Often it is easiest to place the tileindex in the SHAPEPATH directory, and to create the tileindex with a path relative
to the SHAPEPATH directory. When all else fails, absolute paths can be used in tileindex, but then they cannot be so
easily moved from system to system.

While there are many ways to produce TILEINDEX shapefiles for use with this command, one option is the gdaltindex
program, part of the GDAL utility suite. The gdaltindex program will automatically generate a tile index shapefile from
a list of GDAL supported raster files passed on the command line.

Usage: gdaltindex [-tileindex field_name] index_file [gdal_file]*

% gdaltindex doq_index.shp doq/*.tif

Tile Index Notes

• The shapefile (index_file) will be created if it doesn’t already exist.

• The default tile index field is ‘location’.

• Simple rectangular polygons must be generated in the same coordinate system as the raster layer. If the files in
the tileindex are not in the same projection as the raster layer, or are in heterogeneous projections, the TILESRS
keyword must be specified in the LAYER definition. See Tileindexes with tiles in different projections

• Raster filenames will be put in the file exactly as they are specified on the commandline.

• Many problems with tile indexes relate to how relative paths in the tile index are evaluated. They should be
evaluated relative to the SHAPEPATH if one is set, otherwise relative to the tileindex file. When in doubt absolute
paths may avoid path construction problems.

The gdaltindex program is built as part of GDAL. Prebuilt binaries for GDAL including the gdaltindex program can be
downloaded as part of the OSGeo4W, FWTools and MS4W distributions.

See also:
Tile Indexes

Raster Warping

MapServer is able to resample GDAL rasters on the fly into new projections. Non-GDAL rasters may only be up or
down sampled without any rotation or warping.

Raster warping kicks in if the projection appears to be different for a raster layer than for the map being generated.
Warped raster layers are significantly more expensive to render than normal raster layers with rendering time being
perhaps 2-4 times long than a normal layer. The projection and datum shifting transformation is computed only at
selected points, and generally linearly interpolated along the scanlines (as long as the error appears to be less than
0.333 pixels.
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In addition to reprojecting rasters, the raster warping ability can also apply rotation to GDAL rasters with rotational
coefficients in their georeferencing information. Currently rotational coefficients won’t trigger raster warping unless
the map and layer have valid (though matching is fine) projection definitions.

24bit RGB Rendering

Traditionally MapServer has been used to produce 8 bit pseudo-colored map displays generated from 8bit greyscale or
pseudocolored raster data. However, if the raster file to be rendered is actually 24bit (a red, green and blue band) then
additional considerations come into play. Rendering of 24bit imagery is supported via the GDAL renderer.

If the output is still 8bit pseudo-colored (the IMAGEMODE is PC256 in the associated OUTPUTFORMAT declaration)
then the full 24bit RGB colors for input pixels will be converted to a color in the colormap of the output image. By
default a color cube is used. That is a fixed set of 175 colors providing 5 levels of red, 7 levels of green and 5 levels of
blue is used, plus an additional 32 greyscale color entries. Colors in the input raster are mapped to the closest color in
this color cube on the fly. This substantial degrades color quality, especially for smoothly changing images. It also fills
up the colors table, limited to 256 colors, quite quickly.

A variation on this approach is to dither the image during rendering. Dithering selects a color for a pixel in a manner
that “diffuses error” over pixels. In an area all one color in the source image, a variety of output pixel colors would
be selected such that the average of the pixels would more closely approximate the desired color. Dithering also takes
advantage of all currently allocated colors, not just those in the color cube. Dithering requires GDAL 1.1.9 or later, and
is enabled by providing the PROCESSING “DITHER=YES” option in the mapfile. Dithering is more CPU intensive
than using a simple color cube, and should be avoided if possible in performance sensitive situations.

The other new possibility for handling 24bit input imagery in MapServer 4.0 or later, is to produce 24bit output images.
The default “IMAGETYPE png24” or “IMAGETYPE jpeg” declaration may be used to produce a 24bit PNG output
file, instead of the more common 8bit pseudo-colored PNG file. The OUTPUTFORMAT declaration provides for
detailed control of the output format. The IMAGEMODE RGB and IMAGEMODE RGBA options produce 24bit and
32bit (24bit plus 8bit alpha/transparency) for supported formats.

Special Processing Directives

As of MapServer 4.0, the PROCESSING parameter was added to the LAYER of the Mapfile. It is primarily used to
pass specialized raster processing options to the GDAL based raster renderer. The following processing options are
supported in MapServer 4.0 and newer.

BANDS=red_or_grey[,green,blue[,alpha]]
This directive allows a specific band or bands to be selected from a raster file. If one band is selected, it is treated
as greyscale. If 3 are selected, they are treated as red, green and blue. If 4 are selected they are treated as red,
green, blue and alpha (opacity).

Example:

PROCESSING "BANDS=4,2,1"

COLOR_MATCH_THRESHOLD=n
Alter the precision with which colors need to match an entry in the color table to use it when producing
8bit colormapped output (IMAGEMODE PC256). Normally colors from a raster colormap (or greyscale val-
ues) need to match exactly. This relaxes the requirement to being within the specified color distance. So a
COLOR_MATCH_THRESHOLD of 3 would mean that an existing color entry within 3 (sum of difference in
red, green and blue) would be used instead of creating a new colormap entry. Especially with greyscale raster
layers, which would normally use all 256 color entries if available, this can be a good way to avoid “stealing”
your whole colormap for a raster layer. Normally values in the range 2-6 will give good results.

Example:
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PROCESSING "COLOR_MATCH_THRESHOLD=3"

DITHER=YES
This turns on error diffusion mode, used to convert 24bit images to 8bit with error diffusion to get better color
results.

Example:

PROCESSING "DITHER=YES"

EXTENT_PRIORITY=WORLD
Override GDAL with a world file.

Example:

PROCESSING "EXTENT_PRIORITY=WORLD"

LOAD_FULL_RES_IMAGE=YES/NO
This option affects how image data is loaded for the resampler when reprojecting or otherwise going through
complex resampling (as opposed to the fast default image decimation code path). This forces the source image
to be loaded at full resolution if turned on (default is NO). This helps work around problems with default image
resolution selection in when radical warping is being done. It can result in very slow processing if the source
image is large.

LOAD_WHOLE_IMAGE=YES/NO
This option affects how image data is loaded for the resampler (as above). This option, if turned on, will cause
the whole source image to be loaded and helps make up for problem identifying the area required, usually due
to radical image reprojection near a dateline or projection “horizon”. The default is NO. Turning this on can
dramatically affect rendering performance and memory requirements.

LUT[_n]=<lut_spec>
This directive (MapServer 4.9+) instructs the GDAL reader to apply a custom LUT (lookup table) to one or all
color bands as a form of on the fly color correction. If LUT is used, the LUT is applied to all color bands. If
LUT_n is used it is applied to one color band (n is 1 for red, 2 for green, 3 for blue, 4 for alpha).

The LUT can be specified inline in the form:

<lut_spec> = <in_value>:<out_value>[,<in_value>:<out_value>]*

This essentially establish particular input values which are mapped to particular output values. The list implic-
itly begins with 0:0, and 255:255. An actual 256 entry lookup table is created from this specification, linearly
interpolating between the values. The in values must be in increasing order.

Starting with MapServer 7.2, the range of input values can go up to 65535. The last point of the curve must be
explicitly listed, e.g. for a 12-bit raster, 4095:255. This extended LUT syntax is only properly supported if no
SCALE directive is specified, since the purpose of extended LUT is mainly to avoid pre-scaling.

The LUT specification may also be in a text file with the <lut_spec> being the filename. The file contents should
be in the same syntax, and the file is searched relative to the mapfile.

Example:

PROCESSING "LUT_1=red.lut"
PROCESSING "LUT_2=green.lut"
PROCESSING "LUT_3=blue.lut"
or

PROCESSING "LUT=100:30,160:128,210:200"
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As a special case there is also support for GIMP format curve files. That is the text files written out by the
Tools->Color->Curves tool. If this is specified as the filename then it will be internally converted into linear
segments based on the curve control points. Note that this will not produce exactly the same results as the GIMP
because linear interpolation is used between control points instead of curves as used in the GIMP. For a reasonable
number of control points the results should be similar. Also note that GIMP color curve files include an overall
“value” curve, and curves for red, green, blue and alpha. The value curve and the appropriate color curve will
be composed internally to produce the final LUT.

Example:

PROCESSING "LUT=munich.crv"

OVERSAMPLE_RATIO=double
Default is 2.5. Rendering time will increase with increasing OVERSAMPLE_RATIO.

Example:

PROCESSING "OVERSAMPLE_RATIO=1.0"

RESAMPLE=NEAREST/AVERAGE/BILINEAR
This option can be used to control the resampling kernel used sampling raster images. The default (and fastest)
is NEAREST. AVERAGE will perform compute the average pixel value of all pixels in the region of the disk
file being mapped to the output pixel (or possibly just a sampling of them). BILINEAR will compute a linear
interpolation of the four pixels around the target location. This topic is discussed in more detail in rfc4.

Resampling options other than NEAREST result in use of the generalized warper and can dramatically slow
down raster processing. Generally AVERAGE can be desirable for reducing noise in dramatically downsampled
data, and can give something approximating antialiasing for black and white linework. BILINEAR can be helpful
when oversampling data to give a smooth appearance.

Example (chose one):

PROCESSING "RESAMPLE=NEAREST"
PROCESSING "RESAMPLE=AVERAGE"
PROCESSING "RESAMPLE=BILINEAR"

SCALE[_n]=AUTO or min,max
This directive instructs the GDAL reader to pre-scale the incoming raster data. It is primarily used to scale
16bit or floating point data to the range 0-255, but can also be used to constrast stretch 8bit data. If an explicit
min/max are provided then the input data is stretch (or squished) such that the minimum value maps to zero, and
the maximum to 255. If AUTO is used instead, a min/max is automatically computed. To control the scaling of
individual input bands, use the SCALE_1, SCALE_2 and SCALE_3 keywords (for red, green and blue) instead
of SCALE which applies to all bands.

Example:

PROCESSING "SCALE=AUTO"
or
PROCESSING "SCALE_1=409,1203"
PROCESSING "SCALE_2=203,296"
PROCESSING "SCALE_3=339,1004"

WORLDFILE=<file>
Specifies an alternative world file (for georeferencing). If a path only is specified, the base name of the dataset
will be appended. The suffix (.wld / .tfw / . . . ) can be omitted.

Example:
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PROCESSING "WORLDFILE=/path/"
or
PROCESSING "WORLDFILE=/path/file.wld"
or
PROCESSING "WORLDFILE=/path/file"

Raster Query

A new feature added in MapServer 4.4 is the ability to perform queries on rasters in a manner similar to queries
against vector layers. Raster queries on raster layers return one point feature for each pixel matching the query. The
point features will have attributes indicating the value of different bands at that pixel, the final rendering color and
the class name. The resulting feature can be directly access in MapScript, or processed through templates much like
normal vector query results. Only raster layers with a query TEMPLATE associated can be queried, even for the query
methods that don’t actually use the query template (much like vector data).

Raster query supports QueryByPoint, QueryByRect, and QueryByShape. QueryByPoint supports single and multiple
result queries. Other query operations such as QueryByIndex, QueryByIndexAdd, QueryByAttributes and Query-
ByFeature are not supported for raster layers.

Raster layers do not support saving queries to disk, nor query maps.
Raster queries return point features with some or all of the following attributes:

x
georeferenced X location of pixel.

y
georeferenced Y location of pixel.

value_list
a comma separated list of the values of all selected bands at the target pixel.

value_n
the value for the n’th band in the selected list at this pixel (zero based). There is one value_n entry
for each selected band.

class
Name of the class this pixel is a member of (classified layers only).

red
red component of the display color for this pixel.

green
green component of the display color for this pixel.

blue
blue component of the display color for this pixel.

The red, green and blue attribute are intended to be the final color the pixel would be rendered with, but in some
subtle cases it can be wrong (ie. classified floating point results). The selected bands are normally the band that would
be used to render the layer. For a pure query-only layer BANDS PROCESSING directive can be used to select more
bands than could normally be used in a render operation. For instance for a 7 band landsat scene a PROCESSING
“BANDS=1,2,3,4,5,6,7” directive could be used to get query results for all seven bands in results to a query operation.

Care should be taken to avoid providing a large query area (selecting a lot of pixels) as each selected pixel requires
over 100 bytes of memory for temporary caching. The RASTER_QUERY_MAX_RESULT PROCESSING item can
be used to restrict the maximum number of query results that will be returned. The default is one million which would
take on the order of 100MB of RAM.
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Query results can be returned as HTML via the normal substitution into query template HTML. Query results are
also accessible via WMS GetFeatureInfo calls, and from MapScript. The following example shows executing a feature
query from Python MapScript and fetching back the results:

map = mapscript.Map('rquery.map')
layer = map.getLayer(0)

pnt = mapscript.Point()
pnt.x = 440780
pnt.y = 3751260

layer.queryByPoint( map, pnt, mapscript.MS_MULTIPLE, 180.0 )

layer.open()
for i in range(1000):
result = layer.getResult( i )
if result is None:
break

s = layer.getShape( result )
for i in range(layer.numitems):
print '%s: %s' % (layer.getItem(i), s.getValue(i))

layer.close()

This following is a simple example query TEMPLATE file. The raster pixel attributes will be substituted in before the
query result is returned to the user as HTML.

Pixel:<br>
values=[value_list]<br>

value_0=[value_0]<br>
value_1=[value_1]<br>
value_2=[value_2]<br>
RGB = [red],[green],[blue]<p>
Class = [class]<br>

Internally raster query results are essentially treated as a set of temporary features cached in RAM. Issuing a new query
operation clears the existing query cache on the layer. The transitory in-memory representation of raster query results is
also responsible for the inability to save raster query results since saved query results normally only contain the feature
ids, not the entire features. Some addition information is available in the RasterQuery Wiki topic.

Raster Display Performance Tips

• Build overview levels for large rasters to ensure only a reasonable amount of data needs to be touched to display an
overview of a large layer. Overviews can be implemented as a group of raster layers at different resolutions, using
MINSCALEDENOM, and MAXSCALEDENOM to control which layers are displayed at different resolutions.
Another, perhaps easier way, is to build overviews for GDAL supported formats using the gdaladdo utility.

• When using tileindexes to manage many raster files as a single file, it is especially important to have an overview
layer that kicks in at high scales to avoid having to open a large number of raster files to fulfill the map request.

• Preprocess RGB images to eightbit with a colormap to reduce the amount of data that has to be read, and the
amount of computation to do on the fly.
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• For large images use tiling to reduce the overhead for loading a view of a small area. This can be accomplished
using the TILEINDEX mechanism of the mapfile, or by creating a tiled format file (ie. TIFF with GDAL).

• Ensure that the image is kept on disk in the most commonly requested projection to avoid on-the-fly image
warping which is fairly expensive.

• If you are getting debug output from MapServer in your web server log file, check to see if the message msRe-
sampleGDALToMap in effect appears. If so, the raster layer is being resampled. If you don’t think it should be
resampled carefully review your map file to ensure that the layer projection exactly matches the map projection
or that the layer has no projection definition.

See also:
Debugging MapServer

Preprocessing Rasters

The following operations use GDAL commandline utilities, some of which are python scripts. They are generally
available on any GDAL installation with python support.

Producing Tiled Datasets

The TIFF and Erdas Imagine formats support internal tiling within files, and will generally give better display speed
for local map requests from large images. To produce a GeoTIFF file in internally tiled format using the TILED=YES
creation option with the gdal_translate utility:

gdal_translate -co TILED=YES original.tif tiled.tif

Erdas Imagine (HFA) files are always tiled, and can be larger than 4GB (the GeoTIFF limit). Use a command like the
following to translate a raster to Imagine format:

gdal_translate -of HFA original.tif tiled.img

Reducing RGB to 8bit

Rendering and returning 24bit images (especially as PNG) can be quite expensive in render/compress time and band-
width. Pre-reducing raster data to 8bit can save disk space, processing time, and bandwidth. However, such a color
reduction also implicitly reduces the quality of the resulting map. The color reduction can be done on the fly by
MapServer but this requires even more processing. A faster approach is to pre-reduce the colors of 24bit imagery to
8bit. This can be accomplished with the GDAL rgb2pct.py script like this:

rgb2pct.py original.tif 8bit.tif

By default images will be reduced to 256 colors but this can mean there are not enough colors to render other colors in
the map. So it may be desired to reduce to even less colors:

rgb2pct.py -n 200 original.tif 8bit.tif

Downsampling to 8bit should be done before internal tiling and overview building. The rgb2pct.py script tries to
compute an optimal color table for a given image, and then uses error diffusion during the 24bit to 8bit reduction.
Other packages (such as ImageMagick or Photoshop) may have alternative color reduction algorithms that are more
appropriate for some uses.

8.1. Data Input 657

https://gdal.org/programs/gdal_translate.html


MapServer Documentation, Release 7.6.6

Building Internal Overviews

Most GDAL supported raster formats can have overviews pre-built using the gdaladdo utility. However, a few formats,
such as JPEG2000, MrSID, and ECW already contain implicit overviews in the format themselves and will not generally
benefit from external overviews. For other formats (such as GeoTIFF, and Erdas Imagine format) use a command like
the following to build overviews:

gdaladdo tile.tif 2 4 8 16 32 64 128

The above would build overviews at x2 through x128 decimation levels. By default it uses “nearest neighbour” down-
sampling. That is one of the pixels in the input downsampled area is selected for each output pixel. For some kinds of
data averaging can give much smoother overview results, as might be generated with this command:

gdaladdo -r average tiled.tif 2 4 8 16 32 64 128

Note that overview building should be done after translating to a final format. Overviews are lost in format conversions
using gdal_translate. Also, nothing special needs to be done to make MapServer use GDAL generated overviews. They
are automatically picked up by GDAL when mapserver requests a reduced resolution map.

Building External Overviews

When working with large collections of raster files using a MapServer tileindex, it is desirable to build reduced resolu-
tion overview layers that kick in at high scales (using MINSCALEDENOM / MAXSCALEDENOM to control which layer
activates). Preparing the overviews can be a somewhat complex process. One approach is to use the gdal_merge.py
script to downsample and mosaic all the images. For instance if we want to produce an overview of many 1meter ortho
photos with 250 meter pixels we might do something like:

gdal_merge.py -o overview.tif -ps 250 250 ortho_*.tif

The gdal_merge.py utility suffers from a variety of issues, including no support for different resampling kernels. With
GDAL 1.3.2 or later it should be able to accomplish something similar with the more flexible gdalwarp utility:

gdalwarp -rc -tr 250 250 ortho_*.tif overview.tif

In some cases the easiest way of generating an overview is to let MapServer do it using the shp2img utility. For instance
if the tileindex layer is called ‘’orthos” we could do something like:

shp2img -m ortho.map -l orthos -o overview.png

Note that the overview will be generated with the extents and size in the .map file, so it may be necessary to temporarily
adjust the map extents and size values to match the raster extents and the desired output size. Also, if using this method,
don’t leave large files in PNG (or GIF or JPEG) format as they are slow formats to extract subareas from.

Georeference with World Files

World files are a simple mechanism for associating georeferencing (world coordinates) information with raster files.
ESRI was the first company to propagate the use of world files, and they are often used with TIFF instead of embedding
georeferencing information in the file itself.

The world file contents look like the following. The first coefficient is the X pixel size. The second and third are
rotational/shear coefficients (and should normally be 0.0). The fourth is the Y pixel size, normally negative indicating
that Y decreases as you move down from the top left origin. The final two values are the X and Y location of the
center of the top left pixel. This example is for an image with a 2m x 2m pixel size, and a top left origin at (356800E,
5767999N):

8.1. Data Input 658

https://gdal.org/programs/gdaladdo.html


MapServer Documentation, Release 7.6.6

2
0.0000000000
0.0000000000
-2
356800.00
5767999.00

The name of the world file is based on the file it relates to. For instance, the world file for aerial.tif might be aerial.tfw.
Conventions vary for appropriate endings, but with MapServer the extension .wld is always OK for world files.

8.1.3 Virtual File System
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Virtual File System

Starting with GDAL version 1.8.0, it is possible to read and display “virtual” VECTOR and RASTER files, such as
to a remote file by pointing to a URL, or a compressed local .zip file that contains an OGR data source, and display
that in MapServer. Useful mapfile parameters include /vsizip/, /vsigzip/, /vsitar/, /vsicurl/

More Information on Virtual File System

• Blog post by initial developer Even Rouault

• GDAL Trac page

Display Compressed File Directly in MapServer

The following example uses a compressed shapefile, “test.zip”, that contains 3 files:

test.shp
test.dbf
test.zip

Step 1: Verify Format is “Virtual” Enabled

Execute ogrinfo –formats (for vector) or gdalinfo –formats (for raster) to check if the format lists a “v” beside the driver
name, such as:

> ogrinfo --formats

Supported Formats:
PCIDSK -raster,vector- (rw+v): PCIDSK Database File
netCDF -raster,vector- (rw+s): Network Common Data Format
PDF -raster,vector- (rw+vs): Geospatial PDF
DB2ODBC -raster,vector- (rw+): IBM DB2 Spatial Database
ESRI Shapefile -vector- (rw+v): ESRI Shapefile
MapInfo File -vector- (rw+v): MapInfo File
...

The “(rw+v)” beside shapefile indicates that virtual files are supported.

Step 2: Test Access through ogrinfo/gdalinfo

Use ogrinfo with /vsizip/ to summarize the features of the zipped shapefile. Follow the OGR Vector Layers Through
MapServer document examples for how to use the ogrinfo command with layers, such as:

> ogrinfo /vsizip/test.zip/test.shp test -summary

Note that “test.zip” exists in the same directory where we are running the ogrinfo command.

INFO: Open of `/vsizip/test.zip/test.shp'
using driver `ESRI Shapefile' successful.

(continues on next page)
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(continued from previous page)

Layer name: test
Metadata:
DBF_DATE_LAST_UPDATE=2000-03-17

Geometry: Polygon
Feature Count: 665
Extent: (-2750564.750000, -936638.500000) - (3583872.500000, 4673125.000000)
Layer SRS WKT:
(unknown)
AREA: Real (15.3)
PERIMETER: Real (15.3)
...

Step 3: Configure MapServer Layer

Once you have verified that you can read the features with ogrinfo (or gdalinfo for raster), then we can try creating a
map in MapServer.

Warning: A full (absolute) path is required for the CONNECTION parameter, for these virtual layers.

LAYER
NAME "test"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "/vsizip/C:/ms4w/apps/test/data/test.zip/test.shp"
DATA "test"
CLASS
NAME "test"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
END

END # layer

Note: You can omit the filename from the connection (test.shp) if there are no other files inside the zip than expected
for a shapefile. When you omit it, the zip is recognized as a directory and it is the same logic as executing ogrinfo on
a directory.
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Step 4: Test your Mapfile

Verify that MapServer can generate a map image by using the shp2img utility:

shp2img -m mymapfile.map -o test.png -all_debug 5

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
GDAL: GDALOpen(/vsizip/C:/ms4w/apps/test/data/test.zip/test.shp, this=07D691D8) succeeds␣
→˓as ESRI Shapefile.
Shape: 492 features read on layer 'test'.
GDAL: GDALClose(/vsizip/C:/ms4w/apps/test/data/test.zip/test.shp, this=07D691D8)
msDrawMap(): Layer 0 (test), 0.016s
msDrawMap(): Drawing Label Cache, 0.000s
msDrawMap() total time: 0.031s
msSaveImage(ttt.png) total time: 0.000s
msFreeMap(): freeing map at 06289688.

See also:
Debugging MapServer

Display Remote Compressed File Directly in MapServer

We can also display an external compressed file, that is accessible through HTTP, using /vsicurl/ with /vsizip/

Test Access through ogrinfo/gdalinfo

> ogrinfo -ro /vsizip/vsicurl/https://download.osgeo.org/mapserver/docs/vsicurl-test.zip/
→˓test.shp test -summary

Configure MapServer Layer

LAYER
NAME "test"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE OGR
CONNECTION "/vsizip/vsicurl/https://download.osgeo.org/mapserver/docs/vsicurl-test.zip/

→˓test.shp"
DATA "test"
CLASS
NAME "test"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

END
END

END # layer
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Warning: Virtual layers have a “cost” / are not as fast to display in MapServer as regular layers.

Display Remote (RASTER) File Directly in MapServer

Remote raster files can also be accessed through HTTP, using /vsicurl/

Test Access through gdalinfo

> gdalinfo /vsicurl/https://download.osgeo.org/gdal/data/gtiff/small_world.tif

Driver: GTiff/GeoTIFF
Files: /vsicurl/https://download.osgeo.org/gdal/data/gtiff/small_world.tif
Size is 400, 200
Coordinate System is:
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4326"]]

Origin = (-180.000000000000000,90.000000000000000)
Pixel Size = (0.900000000000000,-0.900000000000000)
...

Configure MapServer Layer

LAYER
NAME "test"
TYPE RASTER
STATUS ON
DATA "/vsicurl/https://download.osgeo.org/gdal/data/gtiff/small_world.tif"
CLASS
NAME "test"

END
END # layer

Since the GDAL/OGR library is used for vector and raster access in MapServer, many more formats are supported, so
please see the OGR (vector) and GDAL (raster) formats pages.
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9.1 Output Generation

9.1.1 AGG Rendering Specifics
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Table of Contents

• AGG Rendering Specifics

– Introduction

– Setting the OutputFormat

– New Features

– Modified Behavior

Introduction

MapServer 5.0 released with a new rendering backend. This howto details the changes and new functionality that this
adds to map creation. This howto assumes you already now the basics of mapfile syntax. If not, you should probably
be reading the mapfile syntax.
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Setting the OutputFormat

24 bit png (high quality, large file size):

OUTPUTFORMAT
NAME 'AGG'
DRIVER AGG/PNG
IMAGEMODE RGB

END

24 bit png, transparent background:

OUTPUTFORMAT
NAME 'AGGA'
DRIVER AGG/PNG
IMAGEMODE RGBA

END

24 bit jpeg (jpeg compression artifacts may appear, but smaller file size):

OUTPUTFORMAT
NAME 'AGG_JPEG'
DRIVER AGG/JPEG
IMAGEMODE RGB

END

png output, with number of colors reduced with quantization.

OUTPUTFORMAT
NAME 'AGG_Q'
DRIVER AGG/PNG
IMAGEMODE RGB
FORMATOPTION "QUANTIZE_FORCE=ON"
FORMATOPTION "QUANTIZE_DITHER=OFF"
FORMATOPTION "QUANTIZE_COLORS=256"

END

New Features

• All rendering is now done antialiased by default. All ANTIALIAS keywords are now ignored, as well as TRANS-
PARENCY ALPHA. Pixmaps and fonts are now all drawn respecting the image’s internal alpha channel (unless
a backgroundcolor is specified).

• As with GD in ver. 4.10, using a SYMBOL of type ELLIPSE to draw thick lines isn’t mandatory anymore. To
draw a thick line just use:

STYLE
WIDTH 5
COLOR 0 0 255

END

• A line symbolizer has been added, that works with vector or pixmap symbols, to draw textured lines. This
happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield” symbolization,
i.e. a marker placed only on some points of the line, you must add a GAP parameter to your symbol definition.
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This GAP value is scaled w.r.t the style’s SIZE parameter. Specify a positive gap value for symbols always facing
north (optionally rotated by the ANGLE of the current style), or a negative value for symbols that should follow
the line orientation

• This happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield” sym-
bolization, i.e. a marker placed only on some points of the line, you must add a GAP parameter to your symbol
definition. This GAP value is scaled w.r.t the style’s SIZE parameter - specify a positive gap value for symbols
always facing north (optionally rotated by the ANGLE of the current style), or a negative value for symbols that
should follow the line orientation

• Pixmap and font symbols can now be rotated without losing their transparency

• For POLYGON layers with no specific SYMBOL, the WIDTH keyword specifies the width of the outline, if
an OUTLINECOLOR was specified. This is a shorthand that avoids having to create multiple styles for basic
rendering, and will provide a marginal performance gain. Note that in this case, the width of the outline is /not/
scale dependent.

Modified Behavior

• When specifying a SYMBOL for a polygon shape, the GAP parameter of the symbol is used as a separation
between each rendered symbol. This works for symbols of type vector, pixmap and ellipse. For example a
symbol defined by

SYMBOL
NAME 'triangle'
TYPE VECTOR
FILLED TRUE
POINTS
0 1
.5 0
1 1
0 1
END
GAP 1
END

that is rendered in a class where SIZE is 15 will be rendered like

• layers of type CIRCLE support hatch type symbol filling

• the ENCODING keyword for labels is now enforced. If unset, MapServer will treat your label text byte-by-byte
(resulting in corrupt special characters).
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9.1.2 AntiAliasing with MapServer

Author
Pericles Nacionales

Contact
naci0002 at umn.edu

Last Updated
2009/01/17

Warning: This document is outdated. Since version 6.0, MapServer will produce aliased output for the “gd/”
drivers, and antialiased output for the “agg/” and “cairo/” ones

Note: For quality antialiased output from mapserver, it is highly recommended to use the AGG rendering. This
document applies only if you wish to stick to the GD rendering, or if you are using a version predating the 5.0 release
of mapserver.

Table of Contents

• AntiAliasing with MapServer

– What needs to be done

What needs to be done

1. Change (or add) IMAGETYPE keyword in MAP object to PNG24 (24-bit PNG output) or JPEG

MAP
...
IMAGETYPE PNG24
...

END

2. Add TRANSPARENCY to the LAYER object and set value to ALPHA

MAP
...
IMAGETYPE PNG24
...

LAYER
...
TRANSPARENCY ALPHA
...

END
END

3. Add ANTIALIAS keyword to the STYLE object within the CLASS object within the LAYER and set value to
TRUE
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MAP
...
IMAGETYPE PNG24
...

LAYER
...
TRANSPARENCY ALPHA
...
CLASS
...
STYLE
...
ANTIALIAS TRUE
...

END
\.\.\.

END # end class
END # end layer

END # end map

Note: Don’t use the SYMBOL or the SIZE keywords within the CLASS object, instead use WIDTH to specify width
of line or polygon outline. Don’t use WIDTH unless you have to. If you must define a SYMBOL, use symbol of type
ELLIPSE–it supports antialiasing.

Here’s an example of a real-world mapfile:

Note: From MapServer 6, symbol type CARTOLINE is no longer supported. You have to use AGG rendering and
STYLE PATTERN to achieve dashed lines. Therefore, the following example does not work anymore.

1 MAP
2 NAME 'ms101'
3 EXTENT -2198022.00 -2444920.25 2707932.00 1234545.25 # CONUS LAEA (US)
4 SIZE 640 480
5 SHAPEPATH 'data'
6 SYMBOLSET 'symbols/symbols.txt'
7

8 IMAGETYPE PNG24
9

10 PROJECTION
11 "init=epsg:2163"
12 END
13

14 # The layer below will be rendered as 1-pixel wide, antialiased line
15 # If you'd like to change the line thickness add the WIDTH keyword
16 # in the STYLE object with a value of 3 or greater.
17 LAYER # begin antialiased country boundary (line) layer
18 NAME 'country_line'
19 DATA 'shapefile/WorldCountryBorders.shp'
20 TYPE LINE

(continues on next page)
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(continued from previous page)

21 STATUS ON
22 TRANSPARENCY ALPHA
23

24 PROJECTION
25 "init=epsg:4326"
26 END
27

28 CLASS
29 NAME 'Country Boundary'
30 STYLE
31 COLOR 96 96 96
32 ANTIALIAS TRUE
33 END
34 END
35 END # end country boundary layer
36

37 # The layer below shows one way to draw a polygon with antialiased outline
38 LAYER # begin antialiased country boundary (polygon) layer
39 NAME 'country_line'
40 DATA 'shapefile/Countries_area.shp'
41 TYPE POLYGON
42 STATUS ON
43 TRANSPARENCY ALPHA
44

45 PROJECTION
46 "init=epsg:4326"
47 END
48

49 CLASS
50 NAME 'Country Boundary'
51 STYLE
52 COLOR 212 212 212
53 OUTLINECOLOR 96 96 96
54 WIDTH 3
55 ANTIALIAS TRUE
56 END
57 END
58 END # end country boundary polygon layer
59

60 # The layer below shows one way to draw a polygon with antialiased outline
61 LAYER # begin antialiased state boundary (line) layer
62 NAME 'state_line'
63 DATA 'shapefile/us_states.shp'
64 TYPE LINE
65 STATUS ON
66 TRANSPARENCY ALPHA
67

68 PROJECTION
69 "init=epsg:4326"
70 END
71

72 CLASS
(continues on next page)
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(continued from previous page)

73 NAME 'State Boundary'
74 STYLE
75 COLOR 144 144 144
76 SYMBOL 'cartoline'
77 ANTIALIAS TRUE
78 END
79 END
80 END # end state line layer
81 END # end of map file

Here’s how the ‘cartoline’ symbol is defined:

Note: From MapServer 6, symbol type CARTOLINE is not available. You have to use AGG rendering and STYLE
PATTERN to achieve dashed lines. Therefore, the following symbol can not be used anymore.

SYMBOL
NAME 'cartoline'
TYPE CARTOLINE
LINECAP "round"
LINEJOIN "round"
LINEJOINMAXSIZE 3

END

Note: The examples provided here are for illustrative purposes only–keep your map file definitions simple. Antialias-
ing adds computing overhead on the server and could slow/degrade its performance. Don’t use it unless you must and
certainly don’t use symbols with it unless you really have to.

9.1.3 Dynamic Charting

Author
Thomas Bonfort

Contact
thomas.bonfort at gmail.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-04-15

Table of Contents

• Dynamic Charting

– Setup
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∗ Supported Renderers

∗ Output from AGG and GD Renderers

– Adding a Chart Layer to a Mapfile

∗ Layer Type

∗ Specifying the Size of each Chart

∗ Specifying the Values to be Plotted

∗ Specifying Style

– Pie Charts

∗ Pie Chart Expressions

– Bar Graphs

∗ Stacked bar Graphs

Starting with version 5.0, MapServer includes the ability to automatically draw pie or bar graphs whose values are
taken and adjusted from attributes of a datasource.

This document assumes that you are already familiar with MapServer application development and especially setting
up mapfiles. You can also check out the Vector Data Access Guide, which has lots of examples of how to access specific
data sources.
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Setup

Supported Renderers

Dynamic charts are supported through the AGG renderer (for PNG output) and Cairo renderer (for PDF & SVG output)
for MapServer 7 and more recent versions, as the GD renderer was removed in the MapServer 7.0 release; MapServer
versions 5 and 6 support the GD and AGG renderers for dynamic charting.

Attempting to add a chart layer with an unsupported renderer will result in undefined behavior. Rendering quality with
the GD renderer (if you are using MapServer 5 or 6) is less than optimal, especially with small graphs, due to the lack
of subpixel rendering functions.

Output from AGG and GD Renderers

MapServer AGG Rendering

MapServer GD Rendering

Adding a Chart Layer to a Mapfile

Layer Type

A new type of layer has been added to the mapfile syntax. To specify a chart layer, use

LAYER
...

TYPE CHART
...

END

No other specific keywords have been added in order to keep the number of different keywords to a minimum in the
mapfile syntax, therefore all the chart specific configuration is determined by PROCESSING directives.
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Specifying the Size of each Chart

The size of each chart is specified by the CHART_SIZE directive. If two values are given for this parameter, this will
specify the width and height of each chart (this only applies for bar graphs). By default, the charts are 20x20 pixels.

LAYER
TYPE CHART
PROCESSING "CHART_SIZE=21" # specify size of the chart for pie or bar graphs
#PROCESSING "CHART_SIZE=20 10" # specify width and height for bar graphs
...

END

The diameter of a pie chart can be bound to an attribute,using the CHART_SIZE_RANGE PROCESSING attribute:

PROCESSING "CHART_SIZE_RANGE = itemname minsize maxsize minval maxval exponent"

or just

PROCESSING "CHART_SIZE_RANGE = itemname"

where:

• itemname is the name of the attribute that drives the chart size (e.g. total_sales)

• minsize and maxsize are the minimum and maximum chart size values in pixels (e.g. “10 100”)

• minval and maxval are the minimum values of the attribute that correspond to chart sizes of minsize and maxsize
(e.g. 10000 1000000).

• exponent (optional) applies an exponential factor to the diameter, calculated with:

diameter=mindiameter +
pow((attribute_value-minvalue)/(maxvalue-minvalue),1.0/exponent)*
(maxdiameter-mindiameter);

If the attribute value is smaller than ‘minval’ then the chart size will be minsize pixels, and if the attribute value is
larger than maxval, the chart size will be maxsize pixels.

Specifying the Values to be Plotted

Each value to be plotted (i.e. a slice in a pie chart, or a bar in a par graph) is specified in a CLASS of the chart layer.
The value to be plotted is taken from the SIZE keyword from the first STYLE block of the class. This is semantically
a bit awkward, but keeps the number of different keywords to a minimum in the mapfile syntax. The value given to
the SIZE keyword could of course be given a static value, but dynamic charting really only makes sense with attribute
binding.

LAYER
...

CLASS
# include a NAME keyword if you want this class to be included
# in the legend
NAME "value 1"
STYLE

# specify which value from the data source will be used as the
# value for the graph

(continues on next page)
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(continued from previous page)

SIZE [attribute]
...

END
END
CLASS

...
END

...
END

At least 2 CLASS blocks must be specified before charting can occur (but you already knew this if you want your charts
to convey at least some information).

Specifying Style

The styling of each value in the charts is specified by the usual MapServer syntax. Only one style per class is supported,
any other STYLE block will be silently ignored. Only a subset of the styling keywords are supported:

STYLE
SIZE [attribute]
# specify the fill color
COLOR r g b

# if present will draw an outline around the corresponding bar or slice
OUTLINECOLOR r g b

#specify the width of the outline if OUTLINECOLOR is present (defaults to 1)
WIDTH w

# only for pie charts. 'a' is the number of pixels the corresponding
# slice will be offset relative to the center of the pie. This is useful
# for emphasizing a specific value in each chart. 'b' is required by the
# mapfile parser but is ignored.
OFFSET a b

END

Pie Charts

This is the default type of chart that is rendered. This can also be specifically set with a PROCESSING keyword in the
layer attributes:

PROCESSING "CHART_TYPE=PIE"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each pie slice, with
the angles of the slices that are automatically computed so as to form a full pie. For example:

1 LAYER
2 NAME "Ages"
3 TYPE CHART
4 CONNECTIONTYPE postgis

(continues on next page)

9.1. Output Generation 674



MapServer Documentation, Release 7.6.6

(continued from previous page)

5 CONNECTION "blabla"
6 DATA "the_geom from demo"
7 PROCESSING "CHART_TYPE=pie"
8 PROCESSING "CHART_SIZE=30"
9 STATUS ON

10 CLASS
11 NAME "Population Age 0-19"
12 STYLE
13 SIZE [v1006]
14 COLOR 255 244 237
15 END
16 END
17 CLASS
18 NAME "Population Age 20-39"
19 STYLE
20 SIZE [v1007]
21 COLOR 255 217 191
22 END
23 END
24 CLASS
25 NAME "Population Age 40-59"
26 STYLE
27 SIZE [v1008]
28 COLOR 255 186 140
29 END
30 END
31 END

In the example above, if for a given shape we have v1006=1000, v1007=600 and v1008=400 then the actual pie slices
for each class will be respectively 50%, 30% and 20% of the total pie size.

Pie Chart Expressions

Expressions can be used within a CLASS to generate a pie chart for a layer. This is best explained through an example.
Let’s say we have 3 polygons, with the following crop type attributes:

ID NAME TYPE
1 polygon1 corn,rice
2 polygon2 wheat
3 polygon3 rice,corn,wheat

We can use an expression to give a specific color for each crop type, such as:

LAYER
NAME "pie-charts"
TYPE CHART
STATUS ON
DATA "croptype.shp"
PROCESSING "ITEMS=TYPE"
PROCESSING "CHART_TYPE=pie"

(continues on next page)
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(continued from previous page)

PROCESSING "CHART_SIZE=70"
CLASSITEM "TYPE"
CLASS
NAME "corn"
EXPRESSION /(^|,)corn($|,)/
STYLE
SIZE 1
COLOR 255 0 0

END
END
CLASS
NAME "wheat"
EXPRESSION /(^|,)wheat($|,)/
STYLE
SIZE 1
COLOR 0 255 0

END
END
CLASS
NAME "rice"
EXPRESSION /(^|,)rice($|,)/
STYLE
SIZE 1
COLOR 0 0 255

END
END

END # layer

More examples of working mapfiles with expressions can be found within the msautotest suite.

Note: The size of the pie chart is actually set by: PROCESSING “CHART_SIZE=70”, not through the STYLE within
the CLASS.
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Bar Graphs

Bar graph drawing is set with a PROCESSING keyword in the layer attributes:

PROCESSING "CHART_TYPE=BAR"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each bar in the
graph. By default, the vertical axis of each bar graph is scaled for the values of the corresponding shape, and will
always include the origin (=0). For example

• a shape whose STYLE SIZEs contains values {5,8,10,3} will be plotted on a graph whose vertical axis spans 0
to 10.

• a shape whose STYLE SIZEs contains values {-5,-8,-10,-3} will be plotted on a graph whose vertical axis spans
-10 to 0.

• a shape whose STYLE SIZEs contains values {-5,-8,10,3} will be plotted on a graph whose vertical axis spans
-8 to 10.

Additional PROCESSING directives are used to optionally specify the bounds of vertical axes so that the graphs for all
the shapes can be plotted with the same scale:

PROCESSING "CHART_BAR_MINVAL=val"
PROCESSING "CHART_BAR_MAXVAL=val"

Values in the datasource that are above CHART_BAR_MAXVAL or below CHART_BAR_MINVAL will be clipped
respectively to these values. If only one of these directives is included, the other will be automatically adjusted for each
shape to include at least the origin, i.e. the graphs for all the shapes will be in the same scale only if all the values are
of the same sign (positive or negative).

Stacked bar Graphs

Stacked bar graphs can be drawn using:

PROCESSING "CHART_TYPE=VBAR"

9.1.4 Flash Output

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Author
Yewondwossen Assefa

Contact
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Last Updated
2008-07-15
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• Flash Output

– Introduction

– Installing MapServer with Flash Support

– How to Output SWF Files from MapServer

– What is Currently Supported and Not Supported

Introduction

Warning: SWF is no longer supported since version 6.0

Since MapServer 4.0, MapServer can output Flash files, in SWF format (or “Shockwave Flash Format”). The following
document outlines how to enable Flash output in MapServer.

Installing MapServer with Flash Support

To check that your mapserv executable includes Flash support, use the “-v” command-line switch and look for “OUT-
PUT=SWF”.

$ ./mapserv -v
MapServer version 5.2.0-rc1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG
SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS
SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=JPEG INPUT=POSTGIS
INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Using Pre-compiled Binaries

Windows users can use MS4W, which supports SWF output.

Compiling MapServer with Flash Support

The library chosen to output SWF files is the Ming library. Ming is a C library for generating SWF (“Flash”) format
movies, and it contains a set of wrappers for using the library from C++ and popular scripting languages like PHP,
Python, and Ruby.
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Building on Windows

• download the Ming library (the version currently supported is 0.2a)

• as of Ming 0.3 there was no makefile for Windows available in the distribution yet, but you can download a MS
VC++ makefile (makefile.vc) from here (contains makefile and also libming.lib)

• copy makefile.vc under the src directory (ming-0.2/src)

• execute:

nmake /f makefile.vc

• at this point you should have a libming.lib that will be linked with MapServer

• edit the nmake.opt in your MapServer directory and uncomment the MING=-DUSE_MING_FLASH flag, and
point MING_DIR to your Ming directory.

• build MapServer as usual

Building on Unix

Use the “–with-ming” configure flag to enable MING support on Unix. “–with-ming=dir” will try to find the include
files and library in the indicated directory.

Note: compiling MapServer 4.4.2 with flash support (mingbeta version 0.3) requires
the -DMING_VERSION_03 option otherwise the make fails. This option should be included
in the configure.in after -DUSE_MING_FLASH as below:

MING ENABLED= "-DUSE_MING_FLASH -DMING_VERSION_03"

How to Output SWF Files from MapServer

SWF output is specified by using the OUTPUTFORMAT object. There are 2 possible output types:

1. A single movie containing the raster output for all the layers. To enable this, declare the following in the map
file:

OUTPUTFORMAT
NAME swf
MIMETYPE "application/x-shockwave-flash"
DRIVER swf
IMAGEMODE PC256
FORMATOPTION "OUTPUT_MOVIE=SINGLE"

END

2. A movie for every layer (vector movies for vector layers and raster movies for raster layers). To enable this,
declare the following in the map file:

OUTPUTFORMAT
NAME swf
MIMETYPE "application/x-shockwave-flash"
DRIVER swf
IMAGEMODE PC256

(continues on next page)
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(continued from previous page)

FORMATOPTION "OUTPUT_MOVIE=MULTIPLE"
END

Other OutputFormat Options

• FORMATOPTION “FULL_RESOLUTION=FALSE”
The FULL_RESOLUTION applies only for vector layers. If set to FALSE, filtering will be applied to the vector
elements. It results in a smaller SWF file. The default value is TRUE.

• FORMATOPTION “LOAD_AUTOMATICALLY=OFF”
Setting this option to OFF will not load the SWF files for each layer. The default value is ON.

Composition of the Resulting SWF Files

Several SWF Files will be produced from a single map file: there will be one SWF file for each layer defined in the
map file and one ‘main’ SWF file containing critical information on the map file and the layers produced.

• The ‘main’ SWF File will contain Action Script (AS) code that gives critical information on the map file and
the SWF layers produced. Basically there will be an object called mapObj containing the height, width, extent,
scale, number of layers, etc. Here is an example (in AS) of the contents of this main movie:

mapObj = new Object ();
mapObj.name = "DEMO_SWF";
mapObj.width = 400;
mapObj.height = 300;
mapObj.extent = "-2594561.353333,3467361.353333,3467361.353333,3840000.000000"; ;
mapObj.numlayers = 4;
mapObj.layers = new Array ();
function LayerObj (name, type, fullname, relativename) {
this.name = name;
this.type = type;
this.fullname = fullname;
this.relativename = relativename;
}
mapObj.layers[0] = new LayerObj ("park", "2", "c:/tmp/ms_tmp/102389536132841_layer_
→˓0.swf", "102389536132841_layer_0.swf");
mapObj.layers[1] = new LayerObj ("popplace", "4", "c:/tmp/ms_tmp/102389536132841_
→˓layer_1.swf", "102389536132841_layer_1.swf");
mapObj.layers[2] = new LayerObj ("rail", "1", "c:/tmp/ms_tmp/102389536132841_layer_
→˓2.swf", "102389536132841_layer_2.swf");
mapObj.layers[3] = new LayerObj ("road", "1", "c:/tmp/ms_tmp/102389536132841_layer_
→˓3.swf", "102389536132841_layer_3.swf");

This example is produced based on a mapfile with two layers defined in it. We create a layer class object con-
taining useful information on a layer. The parameters are:

– Name : the name found in the map file

– Type : the type of layer ( 0 = Point Layer; 1=Line; 2=Polygon; 3=Raster; 4=Annotation; 6=Circle)

– Fullname : Full name of the file with path included
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– Relative name : Relative Name

For example you can use mapObj.layers[0].name to extract the name of the first layer.

Note: All map parameters from MapServer are not exported at this time. We should come up with a list of
information of what we want to output. Note that this information can be used in a Flash application to load the
SWF file, to build a legend, to build a scale bar, etc.

• SWF Files for each layer

Each layer defined in the mapfile will have an associated SWF file created. The names of these SWF files are
based on the name of the main file with an addition of ‘layer_X’ at the end of the name (where X is the layer
index).

These SWF files will contain vector and raster data as well as some Action Script depending on the layer and
some configurations in the map file. We will see these configurations in detail in the following section.

Exporting Attributes

Exporting attributes works on a layer basis (it is only available for Vector Layers). To be able to export attributes to
the SWF files, you have to define a metadata item called SWFDUMPATTRIBUTES in the layer section of the mapfile.
Here is an example :

...
LAYER
NAME park
METADATA
"DESCRIPTION""Parks"
"RESULT_FIELDS" "NAME_E YEAR_EST AREA_KMSQ"
"SWFDUMPATTRIBUTES" "NAME_E,AREA_KMSQ "

END
TYPE POLYGON
STATUS ON
DATA park.shp
...

In the above example, the values for the attributes NAME_E and AREA_KMSQ will be exported for each element in
the layer.

The resulting SWF File will have the values of these attributes (written in Action Script). Here is an example related
to the above layer:

nAttributes= 2;
Attributes = new Array();
Attributes[0] = "NAME_E";
Attributes[1] = "AREA_KMSQ";
Element = new Array ();
Element[0] = new Array();
Element[0][0] = "Ellesmere Island National Park Reserve";
Element[0][1] = "1500";
Element[1][0] = " Aulavik National park";
Element[1][1] = "1500";
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Events and Highlights

Here is what is currently implemented concerning events (events here refer to mouse events happening on an element.
The available events are MOUSEUP, MOUSEDOWN, MOUSEOVER, MOUSEOUT):

• Events are only available for layers that have defined attributes exported (using SWFDUMPATTRIBUTES). This
is like defining that a certain layer is queryable.

• When a mouse event happens on one of the elements, there is an Action Script call that is made:
_root.ElementSelecetd(LayerId, ShapeId, Event) . The Flash application who wants to receive these events
should define the function ElementSelected and use the information received to do actions like retrieving the
attribute values from the specific SWF for the specified shape and display it.

In order to have highlighting, it has to be defined when the SWF is produced (basically highlighting means that the
shape is redrawn using a different color).

As of MapServer 5.0, highlighting is available on queryable layers by using the QueryMap object in the map file to
extract the color and do a highlight when on MOUSEOVER. The current implementation will highlight all objects that
are in a layer that uses SWFDUMPATTRIBUTES, using the COLOR set in the QueryMap object in the mapfile.

Before MapServer 5.0, all objects that are in a layer that uses SWFDUMPATTRIBUTES are highlighted using a red
color.

Fonts

Ming uses a special type of font called FDB files. It does not yet support Truetype fonts. Please refer to ming docu-
mentation on how to produce FDB files.

Outputting Raster SWF for Vector Layers

One mechanism would be to use the metadata for layer objects to define a raster output for vector layers. We could
use something like “SWFOUTPUT” “RASTER”. If this sounds desirable, please file an enhancement ticket with this
request, specifying the “Output-SWF” component.

What is Currently Supported and Not Supported

1. Vector layers

• Layer Point (case MS_LAYER_POINT) : done

– msDrawMarkerSymbol

– msDrawLabel

• Layer line (case MS_LAYER_LINE) : done

– msDrawLineSymbol

– msDrawLabel

• Layer circle ( case MS_LAYER_CIRCLE) : not done (should be done easily but missing data for testing)

– omsCircleDrawLineSymbol

– omsCircleDrawShadeSymbol

• Layer annotation (case MS_LAYER_ANNOTATION): done

– omsDrawMarkerSymbol
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– omsDrawLabel

• Layer Polygon (MS_SHAPE_POLYGON): done

– omsDrawShadeSymbol

– omsDrawLineSymbol

– omsDrawLabel

• Vector Low Level functions

– omsDrawMarkerSymbol

∗ case(MS_SYMBOL_TRUETYPE) : done

∗ case(MS_SYMBOL_PIXMAP) : done

∗ case(MS_SYMBOL_ELLIPSE) : done

∗ case(MS_SYMBOL_VECTOR) : done

– omsDrawLineSymbol

∗ case : simple line : done

• drawing with the symbols : not done

– omsDrawShadeSymbol

∗ case : solid fill polygon : done

∗ case : filled with symbols : cannot be implemented for now (tried to create a GD image to fill the
shape but files created were huge)

– omsCircleDrawLineSymbol : not done

– omsCircleDrawShadeSymbol : not done

– omsDrawLabel : done

– omsDrawLabelCache : done

– obillboard (shadow for texts) : not done

2. Raster Layer

• msDrawRasterLayer: done

3. WMS Layer

• msDrawWMSLayer: done

4. Surround components (Legend, scalebar) : not supported

9.1.5 HTML Legends with MapServer

Author
Jeff McKenna
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jmckenna at gatewaygeomatics.com
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Introduction

The HTML legend is an alternative to the traditional GIF legend in MapServer. The following document describes
the process for implementing an HTML legend in MapServer CGI applications (NOTE: MapServer version > 3.5 is
required).

This document assumes that you are already familiar with certain aspects of MapServer:

• Setting up MapServer mapfiles and templates.

Implementation

Key components for generating HTML legends are 1) a template parameter in the legend object, 2) a CGI [legend] tag
in the HTML file, and 3) an HTML legend template file. So that means that if the HTML page has the CGI [legend]
parameter set, and the mapfile has a LEGEND object with its TEMPLATE set to a valid HTML legend file then an
HTML legend will be returned. The following sections discuss these components.

Legend Object of Mapfile

The HTML legend is enabled by a new TEMPLATE parameter in the Legend Object of the mapfile. If TEMPLATE
is set in the Legend Object, then the HTML legend template file is read and used to generate an HTML legend which
will be inserted at the location of the [legend] tag in the main HTML template. Similar to other MapServer templates,
the HTML legend template filename MUST end with an “.html” extension.

Example 1. Sample Legend Object with the new TEMPLATE parameter

...
# LEGEND object
LEGEND
STATUS ON
KEYSIZE 18 12
# LABEL object
LABEL
TYPE BITMAP
SIZE MEDIUM
COLOR 0 0 89

END
(continues on next page)
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TEMPLATE "legend.html" ### HTML template file
END
...

If TEMPLATE is not set, then the [legend] tag produces a regular image in a GIF/PNG image (the traditional behaviour).

CGI [legend] tag

The traditional CGI [legend] tag returns the URL of an image, so it is usually used inside an <IMG SRC=[legend]> tag
in the HTML file. The new HTML [legend] tag returns a block of HTML, so when converting an existing application
template from using a traditional image legend to the new HTML legend, you have to remove the IMG tag in the main
application template. Also note that if legend mode is specified in the URL, then MapServer will return a gif containing
the whole legend if no template is specified.

See the CGI Reference doc for more information on CGI parameters.

Example 2. [legend] tag in the main HTML template (with TEMPLATE set)

...
<FONT SIZE=+1><B>Legend</B></FONT><BR><HR>[legend]<HR>
...

Example 3. [legend] tag in the main HTML template (with TEMPLATE not set)

...
<FONT SIZE=+1><B>Legend</B></FONT><BR><HR><IMG SRC="[legend]"><HR>
...

HTML Legend Template File

The HTML legend template file is a separate file that contains 0 or 1 of each of the following tags that define blocks of
HTML to use in building the legend:

[leg_group_html] ... [/leg_group_html]
[leg_layer_html <OPTIONAL PARAMS>] ... [/leg_layer_html]
[leg_class_html <OPTIONAL PARAMS>] ... [/leg_class_html]

Note
Any text or HTML tags outside the [leg_*_html] tag pairs in the legend template file are ignored by the template parser.

The following example shows what an HTML legend TEMPLATE file could look like:

Example 4. An HTML legend TEMPLATE file

[leg_group_html]
<tr>

<td colspan=3 bgcolor=#cccccc><b>[leg_group_name]</b></td>
</tr>
[/leg_group_html]

[leg_layer_html order_metadata=legend_order opt_flag=5]
<tr>

(continues on next page)
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<td>
<input type=checkbox name="map_[leg_layer_name]_status"
value=1 [if name=layer_status oper=eq value=2]CHECKED[/if]>

</td>
<td colspan=2>

<a href="[metadata name=href]">[metadata name=layer_title]</a>
</td>

</tr >
[/leg_layer_html]

[leg_class_html]
<tr>

<td width=15> </td>
<td>

<img src="[leg_icon width=20 height=10]" width=20 height=10>
</td>
<td>

[leg_class_name]
</td>

</tr>
[/leg_class_html]

Supported Tags for the TEMPLATE file:

HEADER block

Tag
[leg_header_html]. . . [/leg_header_html]

Description
HTML block to use as the header of the legend.

FOOTER block

Tag
[leg_footer_html]. . . [/leg_footer_html]

Description
HTML block to use as the footer of the legend.

Example 5. HTML Legend File Using Header/Footer Blocks

[leg_header_html]
<p><b>my header</b></p>

[/leg_header_html]

[leg_layer_html]
...

[/leg_layer_html]

[leg_footer_html]
(continues on next page)
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<p><b>my footer</b></p>
[/leg_footer_html]

GROUP block

Tag
[leg_group_html <OPTIONAL PARAMS>]. . . [/leg_group_html]

Description
HTML block to use for layer group headers if layers should be grouped in the legend. If not set then
layers are not grouped in the legend.

When the [leg_group_html] tag is used, then layers that don’t belong to any group (i.e. LAYER GROUP not set in
the mapfile) and their classes will not show up at all in the legend. The group list is decided by the order_metadata
parameter, which is explained later.

SUPPORTED PARAMETERS:
Parameter

opt_flag=<bit_mask>

Description
Control the group’s display, by adding the following values (default is 15). The opt_flag is applied
on all layers in the group. If at least one layer matches the flag, the group will show up in the legend.

1
If set, show group even if all layers in group are out of scale (default: hide groups
out of scale).

2
If set, show group even if all layers in group have status OFF (default: hide
groups with STATUS OFF).

4
If set, show group even if all layers in group are of type QUERY (default: hide
group of TYPE QUERY)

8
If set, show group even if all layers in group are of type ANNOTATION (default:
hide groups of TYPE ANNOTATION)

Deprecated since version 6.2: Use CLASS->LABEL or CLASS->STYLE in
your existing layer instead of a separate ANNOTATION layer

e.g. opt_flag=12 (shown below) means show all layer types, including QUERY and AN-
NOTATION layers (4 + 8)

[leg_group_html opt_flag=12]
...

[/leg_group_html]

SUPPORTED TAGS:
Tag

[leg_group_name]

Description
Returns the group’s name.
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Tag
[layer_status]

Description
Returns the status of the first layer in the group.

Tag
[leg_icon width=<optional_width> height=<optional_height>]

Description
In the group context, the [leg_icon] tag returns the URL of a legend icon for the first class in the first
layer that’s part of this group.

Tag
[metadata name=<metadata_field_to_display>]

Description
Returns specified metadata value from web’s metadata.

e.g. the group block below simply displays the name of the group in the legend:

[leg_group_html]
<tr><td colspan=2><b>[leg_group_name]</b></td></tr>

[/leg_group_html]

LAYER block

Tag
[leg_layer_html <OPTIONAL PARAMS>] . . . [/leg_layer_html]

Description
HTML block to use for layer header. If not set then no layer headers are displayed (could allow a
legend with only classes in it).

SUPPORTED PARAMETERS:
Parameter

order_metadata=<field_to_order_by>

Description
Specifies that the value of the layer metadata <field_to_order_by> controls the order and visibility of
the layers in the legend.

• Layers with <field_to_order_by> >= 0 are sorted in order of this value, with multiple layers with
same value being accepted, in which case the map layer orderapplies between those layers.

• Layers with <field_to_order_by> < 0 are always hidden in the legend.

Parameter
opt_flag=<bit_mask>

Description
Control the layer display process. Add the values below to acquire the desired options (default is 15):

1
If set, show layer even if out of scale (default: hide layers out of scale).

2
If set, show layer even if status is OFF (default: hide layers with STATUS OFF).
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4
If set, show layer even if type is QUERY (default: hide layers of TYPE QUERY)

8
If set, show layer even if type is ANNOTATION (default: hide layers of TYPE
ANNOTATION)

Deprecated since version 6.2: Use CLASS->LABEL or CLASS->STYLE in
your existing layer instead of a separate ANNOTATION layer

e.g. opt_flag=14 (shown below) means do not show layers in the legend that are out of scale.

[leg_layer_html opt_flag=14]
...

[/leg_layer_html]

SUPPORTED TAGS:
Tag

[leg_layer_group]

Description
Returns the group name of the layer. This was added to MapServer v4.8.

Tag
[leg_layer_index]

Description
Returns the mapfile index value of the layer, which is useful for ordering. This was added to
MapServer v4.8.

Tag
[leg_layer_maxscale]

Description
Returns the maximum scale set for the layer. This was added to MapServer v4.8.

Tag
[leg_layer_minscale]

Description
Returns the minimum scale set for the layer. This was added to MapServer v4.8.

Tag
[leg_layer_name]

Description
Returns the current LAYER NAME value.

Tag
[leg_icon width=<optional_width> height=<optional_height>]

Description
In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first class in this
layer.

Tag
[metadata name=<metadata_field_to_display>]

Description
Returns specified metadata value from this layer’s metadata and web’s metadata.

e.g. the layer block below simply displays an icon of the layer’s class and the layer name:
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[leg_layer_html]
<tr><td><img src=[leg_icon width=15 height=15]><b>[leg_layer_name]</b></td></tr>

[/leg_layer_html]

CLASS block

Tag
[leg_class_html <OPTIONAL PARAMS>] . . . [/leg_class_html]

Description
HTML block to use for classes. If not set then no classes are displayed (could allow a legend with
only layer headers in it). Note that classes with NULL (i.e. empty) NAMEs are not displayed.

SUPPORTED PARAMETERS:
Parameter

opt_flag=<bit_mask>

Description
Control the layer (i.e. class) display process. Add the values below to acquire the desired options
(default is 15). Note that using this parameter for the CLASS block has the same effect as using the
opt_flag parameter in the LAYER block.

1
If set, show layer even if out of scale (default: hide layers out of scale).

2
If set, show layer even if status is OFF (default: hide layers with STATUS OFF).

4
If set, show layer even if type is QUERY (default: hide layers of TYPE QUERY)

8
If set, show layer even if type is ANNOTATION (default: hide layers of TYPE
ANNOTATION)

Deprecated since version 6.2: Use CLASS->LABEL or CLASS->STYLE in
your existing layer instead of a separate ANNOTATION layer

e.g. opt_flag=14 (shown below) means do not show classes in the legend that are out of
scale.

[leg_class_html opt_flag=14]
...

[/leg_class_html]

SUPPORTED TAGS:
Tag

[leg_class_index]

Description
Returns the mapfile index value of the class, which is useful for ordering and legend icon creation.
This was added to MapServer v4.8.

Tag
[leg_class_maxscale]
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Description
Returns the maximum scale set for the class. This was added to MapServer v4.8.

Tag
[leg_class_minscale]

Description
Returns the minimum scale set for the class. This was added to MapServer v4.8.

Tag
[leg_class_name]

Description
Returns the CLASS NAME value.

Tag
[leg_class_title]

Description
Returns the CLASS TITLE value.

Tag
[leg_layer_name]

Description
Returns the parent layer name. This was added to MapServer v4.8.

Tag
[leg_icon width=<optional_width> height=<optional_height>]

Description
In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first class in this
layer.

Tag
[metadata name=<metadata_field_to_display>]

Description
Returns specified metadata value from the metadata of the layer to which this class belongs and web’s
metadata.

e.g. the class block below simply displays an icon of the layer’s class and the class name:

[leg_class_html]
<tr><td><img src=[leg_icon width=15 height=15]><b>[leg_class_name]</b></td></tr>

[/leg_class_html]

CONDITIONAL text

[if] tags can be used in any of the [leg_*_html] tags above to place conditional text. The syntax is:

[if name=<field_to_check> oper=<eq|neq|isset|isnull> value=<to_compare_with_field>] ...␣
→˓[/if]

Note:
Nested IF’s are supported. Parameter “oper” can be “eq” for equal, “neq” for not equal, “isset” (self-explanatory), or
“isnull” (self-explanatory). The default value is equal.

Example 6. [if] tag can be used to maintain the state of a layer checkbox
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[leg_layer_html order_metadata=legend_order opt_flag=5]
<tr>

<td>
<input type=checkbox name="map_[leg_layer_name]_status"
value=1 [if name=layer_status oper=eq value=2]CHECKED[/if] >

</td>
<td colspan=2>

<a href="[metadata name=href]">[metadata name=layer_title]</a>
</td>

</tr >
[/leg_layer_html]

The possible values that can be tested in an [if] tag depend on the context in which the [if] tag is used. At the moment,
the number of values that can be tested is limited, but new values may be added as needed.

Note that the order of the items in the following [if] contexts are listed by their order of precedence. The rule is always
that special keywords have top priority (e.g. layer_status, etc.), followed by layer-level metadata, and ending with
map-level metadata. The possible values that can be tested are as follows:

In a [leg_group_html] context:

• [if name=layer_status value=. . . ] . . . [/if]

value is the layer status of the first layer that belongs to the group in integer format: 0=OFF, 1=ON,
2=DEFAULT

• [if name=layer_visible value=. . . ] . . . [/if]

value is the visibility of the first layer in the group: 0=NOT VISIBLE, 1=VISIBLE

• [if name=group_name value=. . . ] . . . [/if]

• [if name=any_layer_metadata value=. . . ] . . . [/if]

Uses metadata value from the first layer in the mapfile that belongs to that group

• [if name=any_web_metadata value=. . . ] . . . [/if]

• [if name=layer_queryable value=. . . ] . . . [/if]

Added in version 5.6.

value is the queryability of the first layer in the group: 0=NOT QUERYABLE, 1=QUERYABLE

In a [leg_layer_html] context:

• [if name=layer_status value=. . . ] . . . [/if]

value is the layer’s status in integer format: 0=OFF, 1=ON, 2=DEFAULT

• [if name=layer_type value=. . . ] . . . [/if]

value is the layer’s type in integer format: 0=POINT, 1=LINE, 2=POLYGON, 3=RASTER, 4=AN-
NOTATION (deprecated since 6.2), 5=QUERY, 6=CIRCLE

• [if name=layer_name value=. . . ] . . . [/if]

value is the layer’s name in string format

• [if name=layer_group value=. . . ] . . . [/if]

value is the layer’s group name in string format

• [if name=layer_visible value=. . . ] . . . [/if]
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value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE

• [if name=any_layer_metadata value=. . . ] . . . [/if]

• [if name=any_web_metadata value=. . . ] . . . [/if]

• [if name=layer_queryable value=. . . ] . . . [/if]

Added in version 5.6.

value is the queryability of the layer: 0=NOT QUERYABLE, 1=QUERYABLE

In a [leg_class_html] context:

• [if name=layer_status value=. . . ] . . . [/if]

value is the status of the layer in which the class is located

• [if name=layer_type value=. . . ] . . . [/if]

value is the layer’s type in integer format: 0=POINT, 1=LINE, 2=POLYGON, 3=RASTER, 4=AN-
NOTATION (deprecated since 6.2), 5=QUERY, 6=CIRCLE

• [if name=layer_name value=. . . ] . . . [/if]

value is the layer’s name in string format

• [if name=layer_group value=. . . ] . . . [/if]

value is the layer’s group name in string format

• [if name=layer_visible value=. . . ] . . . [/if]

value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE

• [if name=class_name value=. . . ] . . . [/if]

• [if name=any_layer_metadata value=. . . ] . . . [/if]

• [if name=any_web_metadata value=. . . ] . . . [/if]

• [if name=layer_queryable value=. . . ] . . . [/if]

Added in version 5.6.

value is the queryability of the layer: 0=NOT QUERYABLE, 1=QUERYABLE

Sample Site Using the HTML Legend

https://demo.mapserver.org/itasca_legend/

This demo is based on the MapServer Itasca demo and contains several variations of HTML Legends, some of which
are listed below:

• “HTML Legend 1” - displays classes only, similar to the traditional legends:

[leg_class_html opt_flag=15]
<img src=[leg_icon]> [leg_class_name]<br>

[/leg_class_html]

• “HTML Legend 2” - displays layer titles with HREF links and classes:
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[leg_layer_html order_metadata=WMS_ORDER visibility_flag=15]
<a href="[leg_layer_name]">[metadata name=WMS_TITLE]</a><BR>

[/leg_layer_html]

[leg_class_html visibility_flag=15]
<img src=[leg_icon]> [leg_class_name]<br>

[/leg_class_html]

• “HTML Legend 3” - displays layers by group, with checkboxes to turn layers on/off:

[leg_group_html]
<tr><td colspan=2><b>[leg_group_name]</b></td></tr>

[/leg_group_html]

[leg_layer_html order_metadata=WMS_ORDER opt_flag=15]
<tr>

<td><input type=checkbox name=layer value=[leg_layer_name]
[if name=layer_status value=1]CHECKED[/if]>
[if name=layer_type value=4]

<img src=[leg_icon width=22 height=18]>
[/if]
[if name=layer_type oper=neq value=4]<img src=[leg_icon]>[/if]

</td>
<td>

<a href="[leg_layer_name]">[metadata name=WMS_TITLE]</a>
</td>

</tr>
[/leg_layer_html]

9.1.6 HTML Imagemaps
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Introduction

The shpxy method of creating imagemaps uses MapServer query functionality to build a html imagemap. Just like a
regular MapServer query, you send a query request and MapServer uses the templates to build a block of html that it
sends back to the browser. The first example shows you how to build an imagemap based on a point layer. An example
template for a polygon layer is also included.

Components
• MapServer mapfile

• query template file

• query header template

• query footer template

Mapfile Layer Definition

Here is a simple mapfile for our example

MAP
NAME "myMapFile
STATUS ON
SIZE 200 200
EXTENT 178784 4804000 772653 5483346

UNITS METERS
STATUS ON
SHAPEPATH "/web/maps/data"
IMAGECOLOR 255 255 255

WEB
IMAGEPATH "/web/maps/tmp/"
IMAGEURL "/maps/tmp/"

END

QUERYMAP
STATUS ON
STYLE NORMAL

END

LAYER
NAME "sites"
STATUS DEFAULT
TYPE point
DATA 'aqiAreas.shp'

TEMPLATE "bodytemplate.html"
HEADER "imapheader.html"
FOOTER "imapfooter.html"

END
END

You can see that we have a mapfile with one point layer, and that it contains references to three query templates.
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Templates

In MapServer, the query header and footers get processed only once. The main query template, ‘bodytemplate.html’
in this example, gets processed once for each record in the record set returned by the query.

Point Layers

Here is the query header, ‘imapheader.html’. It creates the opening tag for your html imagemap.

<map id="mymap" name="mymap">

Here is the query template, ‘bodytemplate.html’. It creates the body of the html imagemap.

<area shape="circle" coords="[shpxy precision=0 proj=image yf=",7" xf=","]" href="http://
→˓my.url/mypage.cfm?region=[NAME]" title="[NAME]" alt="[NAME]">

This template is used to create circular imagemap elements for a point layer. NAME is a fieldname in the data source,
the value for NAME for each individual record gets substituted as the template is processed. The href specifies the
URL link if the element is clicked. Title and alt will display the value when an element is moused over.

The resulting html element looks like

<area shape="circle" coords="80,103,7" href="http://my.url/mypage.cfm?region=Northern" >

The key part here is

coords="[shpxy precision=0 proj=image xf="," yf=",7"]"

This is where MapServer will substitute the image coordinates for that query record. With Precision=0, the coordinates
will be integers.

You also see shpxy template formatting options ‘xf’ and ‘yf’. ‘xf=”,” tells MapServer to place a comma after the x
coordinate. ‘yf=”,7” after the y coordinate. This is done to specify a radius of 7 pixels for the circle. More options can
be found in the Template Reference.

The query footer template simply adds the closing tag for the html imagemap

</map>

Polygon Layers

Here is a query template for a polygon layer

<area shape="poly" coords="[shpxy precision=0 proj=image]" href="http://my.url/mypage.
→˓cfm?ID=[SITE_ID]" title="[NAME]" alt="[NAME]">
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Request URL

To get the imagemap, you need to send a GET or POST request to MapServer with several URL variables defined. The
below URL tells MapServer where the mapfile is located, what layer we are querying, and that we are using nquery
mode to return multiple results.

http://myurl/cgi-bin/mapserv?map=/web/maps/demoimap.map&qlayer=sites&mode=nquery&
→˓searchmap=true

Additional Notes

If you use separate map files to generate your imagemap and your map image, make sure that the EXTENT and SIZE
specified in both mapfiles are identical. If they are not, your features will not align properly.

More Information

Steve Lime’s SHPXY Example

9.1.7 Kernel Density Estimation (Dynamic Heatmap)

Author
Thomas Bonfort, Mathieu Coudert
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Introduction

Added in version 7.0.

A heatmap is a popular method for representing sparse data on a regular raster grid, where each pixel on the grid is
influenced inversely to its distance to each sample of the sparse dataset. Heatmaps are usually represented with a color-
ramp where the hue encodes the density of the data sample, optionally along with the intensity of an attribute. The
“heatmap” term itself is used with varying meanings. We will be using it to reference Kernel Density Estimation maps.

Fig. 1: Example Kernel Density Estimation Map (image cc-by-sa wikipedia)

Configuration

First, you must set the LAYER CONNECTIONTYPE parameter to KERNELDENSITY. The heatmap vector-to-raster
takes the following parameters:

• CONNECTION “layername” : reference to the NAME or GROUP of a LAYER to use as an input vector data-
source. NAME takes precedence, followed by the first layer from GROUP who’s minscaledenom/maxscaledenom
matches the current map scale. The referenced layer should be a TYPE POINT layer. Other layer types will result
in one sample being added for each vertex of the input features.

• PROCESSING “KERNELDENSITY_RADIUS=10” : radius in pixels of the gaussian filter to apply to the
bitmap array once all features have been accumulated. Higher values result in increased cpu time needed to
compute the filtered data.

• PROCESSING “KERNELDENSITY_COMPUTE_BORDERS=ON|OFF” : A kernel of radius “r” cannot
be applied to “r” pixels along the borders of the image. The default is to extend the search rectangle of the
input datasource to include features “r” pixels outside of the current map extent so that the computed heatmap
extends to the full extent of the resulting image. This can be deactivated when tiling if the tiling software applies
a metabuffer of “r” pixels to its requests, to avoid the performance overhead of computing this extra information.

• PROCESSING “KERNELDENSITY_NORMALIZATION=AUTO|numeric” : If set to “AUTO”, the cre-
ated raster band will be scaled such that its intensities range from 0 to 255, in order to fully span the configured
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Fig. 2: Result with kerneldensity_radius set to 10 (pixels)

Fig. 3: Result with kerneldensity_radius set to 20 (pixels)
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color ramp. Such behavior may not be desirable (typically for tiling) as the resulting intensity of a pixel at a given
location will vary depending on the extent of the current map request. If set to a numeric value, the samples will
be multiplied by the given value. It is up to the user to determine which scaling value to use to make the resulting
pixels span the full 0-255 range; determining that value is mostly a process of trial and error. Pixels that fall
outside the 0-255 range will be clipped to 0 or 255.

Fig. 4: Fixed scaling applied. Compared to the previous images, the greater number of red areas results from the fact
that the chosen scaling factor made a large number of pixels overshoot the 255 limit.

Fig. 5: Lower fixed scaling applied. No pixels have attained the 255 limit.

Advanced sample weighting and filtering

By default, each feature is assigned a weight of 1.0, and the resulting heatmap will represent the spatial density of the
vector features. If this is not the desired behavior, different weights can be applied on a feature by feature basis by using
regular CLASS / STYLE syntax on the source vector layer. The weight used will be read from the SIZE value of the
matched STYLE. Standard EXPRESSION and MINSCALEDENOM / MAXSCALEDENOM apply; if a feature results in
no matching CLASS and/or STYLE, it is ignored and discarded from the resulting heatmap. The examples at the end
give some examples as to how this can be achieved.
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Fig. 6: Heatmap representing pure feature density when sample weighting or filtering is not applied, the actual vector
points are represented alongside. (The other examples are rendered with attribute weighting on each sample)

Raster Color Ramping

The features added in rfc6 for vector features, and since extended to support raster layers, will be extended in order
to support more complex color ramps. Note that these additions will apply to all raster classifications, not only for
heatmap layers.

• Support for multiple stops : The actual support for ranges for raster layers is limited to a single COLORRANGE
/ DATARANGE. We will support multiple ranges in order to allow multiple color stops, and will also account
for optional alpha values. The following example creates a ramp ranging from fully transparent blue to blue for
values between 0 and 32, then blue to red for values ranging from 32 to 255.

CLASS
STYLE
COLORRANGE "#0000ff00" "#0000ffff"
DATARANGE 0 32

END # STYLE
STYLE
COLORRANGE "#0000ffff" "#ff0000ff"
DATARANGE 32 255

END # STYLE
END # CLASS

Note: A single style block will be used for each pixel value. It is up to the user to ensure that the supplied
DATARANGE`s span 0 to 255 with no overlap, and that the chosen `COLORRANGE stops are continuous from
one stop to the next.

• PROCESSING RANGE_COLORSPACE=RGB|HSL: The current RANGE support interpolates colors be-
tween stops in RGB space, which usually results in washed out colors. The interpolation can be done in HSL
space which usually results in wanted output for heatmaps.
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Fig. 7: washed out colors when interpolating in RGB space.

Example mapfiles

MAP
SIZE 1000 500
EXTENT -180 -90 180 90
NAME "test heat"
IMAGETYPE "png"

WEB
METADATA
"ows_srs" "epsg:4326 epsg:3857 epsg:900913"
"ows_enable_request" "*"

END # METADATA
END # WEB

PROJECTION
"+init=epsg:4326"

END # PROJECTION

LAYER
NAME "heatmap"
TYPE raster
CONNECTIONTYPE kerneldensity
CONNECTION "points"
STATUS on
PROCESSING "RANGE_COLORSPACE=HSL"
PROCESSING "KERNELDENSITY_RADIUS=20"
PROCESSING "KERNELDENSITY_COMPUTE_BORDERS=ON"
PROCESSING "KERNELDENSITY_NORMALIZATION=AUTO"
OFFSITE 0 0 0
CLASS
STYLE
COLORRANGE "#0000ff00" "#0000ffff"
DATARANGE 0 32

END # STYLE
STYLE
COLORRANGE "#0000ffff" "#ff0000ff"

(continues on next page)
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(continued from previous page)

DATARANGE 32 255
END # STYLE

END # CLASS
END # LAYER

LAYER
NAME "points"
STATUS on
TYPE POINT
DATA "pnts.shp"

END # LAYER
END # MAPFILE

The kernel radius can be set dynamically depending on the scale. Note that any other PROCESSING key can be updated
by the same method. In the following example, the kernel radius will be 50 pixels for scales 1/1 to 1/25000000, and 10
pixels for scales 1/25000000 and smaller:

LAYER
NAME "heatmap"
...
PROCESSING "KERNELDENSITY_RADIUS=%radius%"
SCALETOKEN
NAME "%radius%"
VALUES
"0" "50"
"25000000" "10"

END # VALUES
END # SCALETOKEN
...

END # LAYER

Different weights can be applied by using CLASS->`STYLE`->`SIZE` syntax on the source vector layer to apply a non
default weight to each sample:

• Weight read from a feature attribute:

LAYER
NAME "points"
STATUS on
TYPE POINT
DATA "pnts.shp"
CLASS
STYLE
SIZE [attribute]

END # STYLE
END # CLASS

END # LAYER

• Weight read from a non numeric attribute:

LAYER
NAME "points"
STATUS on

(continues on next page)
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(continued from previous page)

TYPE point
DATA "pnts.shp"
CLASSITEM "risk"
CLASS
EXPRESSION "high"
STYLE
SIZE 5

END # STYLE
END # CLASS
CLASS
EXPRESSION "medium"
STYLE
SIZE 3

END # STYLE
END # CLASS
CLASS
EXPRESSION "low"
STYLE
SIZE 1

END # STYLE
END # CLASS

END # LAYER

9.1.8 OGR Output
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– Return Packaging

– Test Suite Example

Introduction

OGR output support was added to MapServer 6.0. It provides an output driver to produce feature style output suitable
as a return result from WMS GetFeatureInfo or WFS GetFeature requests. OGR feature output depends on MapServer
being built against the GDAL/OGR library. The OGR output driver should be enabled in MapServer 6.0 or newer when
INPUT=OGR appears in the version string.

OUTPUTFORMAT Declarations

Details of OGR output formats allowed are controlled by an OUTPUTFORMAT declaration. The declarations define
the OGR format driver to be used, creation options specific to that driver, and more general instructions to MapServer
on how to package multi-file results and whether to try and build the result on disk or in memory.

Examples:

OUTPUTFORMAT
NAME "CSV"
DRIVER "OGR/CSV"
MIMETYPE "text/csv"
FORMATOPTION "LCO:GEOMETRY=AS_WKT"
FORMATOPTION "STORAGE=memory"
FORMATOPTION "FORM=simple"
FORMATOPTION "FILENAME=result.csv"

END

OUTPUTFORMAT
NAME "OGRGML"
DRIVER "OGR/GML"
FORMATOPTION "STORAGE=filesystem"
FORMATOPTION "FORM=multipart"
FORMATOPTION "FILENAME=result.gml"

END

OUTPUTFORMAT
NAME "SHAPEZIP"
DRIVER "OGR/ESRI Shapefile"
FORMATOPTION "STORAGE=memory"
FORMATOPTION "FORM=zip"
FORMATOPTION "FILENAME=result.zip"

END

OUTPUTFORMAT
NAME "SPATIALITEZIP"
DRIVER "OGR/SQLITE"
MIMETYPE "application/zip"
FORMATOPTION "DSCO:SPATIALITE=YES"
FORMATOPTION "STORAGE=memory"
FORMATOPTION "FORM=zip"

(continues on next page)
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(continued from previous page)

FORMATOPTION "FILENAME=result.db.zip"
END

OUTPUTFORMAT
NAME "application/json"
DRIVER "OGR/GEOJSON"
MIMETYPE "application/json"
FORMATOPTION "FORM=SIMPLE"
FORMATOPTION "STORAGE=memory"

END

OUTPUTFORMAT
NAME "OGRFLATGEOBUF"
DRIVER "OGR/FlatGeoBuf"
FORMATOPTION "STORAGE=filesystem"
FORMATOPTION "FORM=simple"
FORMATOPTION "FILENAME=result.fgb"
FORMATOPTION "LCO:VERIFY_BUFFERS=NO"

END

The OGR format driver to be used is determined by the name appearing after “OGR/” in the DRIVER argument.
This name should match one of the formats listed as supported for the “-f” argument to ogr2ogr in the ogr2ogr usage
message.

The IMAGEMODE for OGR output is FEATURE, but this is implicit and does not need to be explicitly stated for OGR
output driver declarations.

The OGR renderer will support the following FORMATOPTION declarations:

DSCO:*
Anything prefixed by DSCO: is used as a dataset creation option with the OGR driver. See the OGR web page
for the particular format driver to see layer creation options available.

LCO:*
Anything prefixed by LCO: is used as a layer creation option. See the OGR web page for the particular format
driver to see layer creation options available.

FORM=simple/zip/multipart
Indicates whether the result should be a simple single file (simple), a mime multipart attachment (multipart) or
a zip file (zip). “zip” is the default.

STORAGE=memory/filesystem/stream
Indicates where the datasource should be stored while being written. “filesystem” is the default.

If “memory” then it will be created in /vsimem/ - but this is only suitable for drivers supporting VSI*L which
we can’t easily determine automatically.

If “filesystem”, then a directory for temporary files (specified using WEB TEMPPATH or MS_TEMPPATH) will
be used for writing and reading back the file(s) to stream to the client.

If “stream” then the datasource will be created with a name “/vsistdout” as an attempt to write directly to stdout.
Only a few OGR drivers will work properly in this mode (ie. CSV, perhaps kml, gml).

FILENAME=name
Provides a name for the datasource created, default is “result.dat” for single file or multipart form, or “result.zip”
for zip form. In the case of zip form, the filename can be of the format basename.ext.zip where basename.ext
will be used as the actual OGR datasource name (i.e. generally the filename that will be put inside the zip file).
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USE_FEATUREID=true/false
Starting from MapServer v7.0.2. Defaults to false. Include feature ids in the generated output, if the
ows_featureid metadata key is set at the layer level. The featureid column to use should be an integer column.
Useful if you need to include an “id” attribute to your geojson output. Use with caution as some OGR output
drivers may behave strangely when fed with random FIDs.

LAYER Metadata

The OGR output driver utilizes several items from the LAYER level METADATA object. Some of these were originally
intended for GML output or are primarily intended to support WFS.

wfs_getfeature_formatlist
(Optional) A comma delimited list of formats supported for WFS GetFeature responses. The OUTPUTFORMAT
NAME values should be listed.

"wfs_getfeature_formatlist" "OGRGML,SHAPEZIP,CSV"

wfs_additional_files_in_output
(Optional) A comma delimited list of filenames that should be included as additional files in the response to a
WFS GetFeature request for this layer, for output formats whose FORM FORMATOPTION is “zip” or “multi-
part”. This is typically used to add technical information, metadata or licensing information. The filenames can
also be directory names, in which case all the files contained in the directory will be taken into account. Rela-
tive filenames will be evaluated against the mapfile directory, and the SHAPEPATH value if defined. Filenames
can also be URLs (starting with http:// or https://). For that latter capability, note that this requires OGR to be
compiled with Curl support.

"wfs_additional_files_in_output" "license.pdf,my_layer_metadata.xml"

gml_include_items
(Optional) A comma delimited list of items to include, or keyword “all”. You can enable full exposure by using
the keyword “all”.

"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias
(Optional) An alias for an attribute’s name. The resulting file will refer to this attribute by the alias. Here is an
example:

"gml_province_alias" "prov"

gml_[item name]_type
(Optional) Specifies the type of the attribute. Valid values are Inte-
ger|Long|Real|Character|Date|Time|DateTime|Boolean.

Note: Long is to be used for 64-bit integers, starting with MapServer 7.0.1. If MapServer is built against GDAL
2.0 or later, Long will be translated as a OGR 64-bit integer. For earlier versions, it will be translated as a OGR
double-precision floating point value.
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Note: Time and DateTime have been added in MapServer 8. And since MapServer 8, Date semantics is a date,
without time, whereas in previous versions, it was used indifferently for Date, Time or DateTime.

gml_[item name]_width
(Optional) Specifies the width of the indicated field for formats where this is significant, such as Shapefiles.

gml_[item name]_precision
(Optional) Specifies the precision of the indicated field for formats where this is significant, such as Shapefiles.
Precision is the number of decimal places, and is only needed for “Real” fields.

gml_types
(Optional) If this field is “auto” then some input feature drivers (ie. OGR, and native shapefiles) will automatically
populate the type, width and precision metadata for the layer based on the source file.

"gml_types" "auto"

ows/wfs_geomtype
(Optional, metadata shared with WFS server GML output) Set the geometry type of OGR layers created from
this MapServer LAYER. One of “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString”, “Multi-
Polygon”, “GeometryCollection”, “Geometry”, or “None”. Most are fairly obvious, but “Geometry” can be
used to represent a mix of geometry types, and “None” is sometimes suitable for layers without geometry. Note
that layers which are a mix of polygon and multipolygon would normally have to be described as “Geometry”.
To produce 2.5D output append “25D” to the geometry type (ie. “Polygon25D”). Note that Z values are only
carried by MapServer if built with USE_POINT_Z_M support.

"ows_geomtype" "Polygon"

MAP / WEB Metadata

wms_feature_info_mime_type
In order for WMS GetFeatureInfo to allow selection of OGR output formats, the mime type associated with the
OUTPUTFORMAT must be listed in this metadata item.

"wms_feature_info_mime_type" "text/csv"

wfs_additional_files_in_output
(Optional) A comma delimited list of filenames that should be included as additional files in the response to
a WFS GetFeature request, for any layer of the mapfile, for output formats whose FORM FORMATOPTION
is “zip” or “multipart”. This is typically used to add technical information, metadata or licensing information.
The filenames can also be directory names, in which case all the files contained in the directory will be taken
into account. Relative filenames will be evaluated against the mapfile directory, and the SHAPEPATH value if
defined. Filenames can also be URLs (starting with http:// or https://). For that latter capability, note that this
requires OGR to be compiled with Curl support.

"wfs_additional_files_in_output" "license.pdf"
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Geometry Types Supported

In MapServer we have POINT, LINE and POLYGON layers which also allow for features with multiple points, lines or
polygons. However, in the OGC Simple Feature geometry model used by OGR a point and multipoint layer are quite
distinct. Likewise for a LineString and MultiLineString and Polygon an MultiPolygon layer type.

To work around the mismatches between the MapServer and OGR geometry models, there is a mechanism to specify
the geometry type to be used when exporting through OGR. This is the “wfs/ows_geomtype” metadata item on the
layer. It may be one of one of “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString”, “MultiPolygon”,
“GeometryCollection”, “Geometry”, or “None”.

If this item is not specified, then “Point”, “LineString” or “Polygon” will be used depending on the TYPE of the LAYER.
In cases of mixed geometry types (ie. polygons and multipolygons) the geometry type should be set to “Geometry”
which means any geometry type.

"ows_geomtype" "Geometry"

In order 2.5D support (geometries with Z coordinates) to be enabled, the “25D” suffix must be add to the value of the
“ows_geomtype” metadata item (i.e. “Polygon25D”), and MapServer must be built with USE_POINT_Z_M support.

Attribute Field Definitions

For OGR output it is highly desirable to be able to create the output fields with the appropriate datatype, width and
precision to reflect the source feature definition.

It is possible to set the gml_[item]_type, gml_[item]_width and gml_[item]_precision metadata on the layer to provide
detailed field definitions:

METADATA
"gml_ID_type" "Integer"
"gml_ID_width" "8"
"gml_AREA_type" "Real"
"gml_AREA_width" "15"
"gml_AREA_precision" "6"
"gml_NAME_type" "Character"
"gml_NAME_width" "64"
...

However, doing this manually is tedious and error prone. For that reason some feature sources (at least OGR, Shapefiles,
POSTGIS and ORACLESPATIAL) support a mechanism to automatically populate this information from the source
datastore. To accomplish this specify:

"gml_types" "auto"

If no effort is made to set type, width and precision information for attribute fields, they will all be treated as variable
length character fields when writing through OGR.
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Return Packaging

One of the challenges returning generalized feature formats is that many such formats consists of multiple files which
must be returned in the result. There are three approaches taken to this based on the FORM FORMATOPTION in the
OUTPUTFORMAT declaration.

simple
In this case a single result is returned. This is suitable for format drivers that produce a single file. The return
result will have the mimetype listed in the OUTPUTFORMAT declaration. Note that if the OGR driver actually
returns multiple files, only the primary one (the one with a name matching the filename passed into the OGR Cre-
ateDataSource call) will be returned. The return result will have a suggested filename based on the FILENAME
FORMATOPTION.

multipart
In this case all the files produced are returned as a multipart mime result. In this case the MIMETYPE of the
OUTPUTFORMAT is ignored. All component files are returned with a mime type of “application/binary” and
the whole package is “multipart/mixed”.

zip
In this case all the files produced are bundled into one .zip file and this zip file is returned with a mimetype of
“application/zip”. The OUTPUTFORMAT MIMETYPE is ignored.

One caveat with “zip” results is that this option is only available if the GDAL/OGR version is 1.8 or newer (or a 1.8
development later than approximately Oct 15, 2010). Earlier versions of GDAL/OGR lacked the zipping capability
needed.

Test Suite Example

The MSAutoTest test suite contains a test case for use of OGR Output from WFS. The mapfile is at:

https://github.com/MapServer/MapServer/blob/main/msautotest/wxs/wfs_ogr.map

The comments at the start of the file have a variety of sample requests that can be run against the map, as long as [MAP-
FILE] is replaced with the mapfile name. They requests should be run against mapserv sitting in the msautotest/wxs
directory.

9.1.9 PDF Output
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– PHP/MapScript and PDF Output

Introduction

PDF output support was added to MapServer 3.7. Previous versions of MapServer had support for pdf output using a
utility program (shp2pdf) to output a pdf file given a MapServer mapfile.

The difference in this new version is that the output to PDF can now be directly specified in the mapfile using the
IMAGETYPE or the OUTPUTFORMAT parameters in the mapfile. Additionally, raster layers are now supported for
pdf output.

Note: From version 6.0, PDF output is supported through Cairo. This is not reflected in the current documentation.

What is currently supported and not supported

1. Vector Layers

• Layer Point: supported

• Layer Line: supported

• Layer Polygon: supported

• Layer Circle : not supported

Note: Note: Dashed lines are supported with PDFlib version 6 or greater.

Note: Polygons filled with symbols are not supported.

2. Raster Layers

Raster layers are supported. Note that at this point all raster layers are transformed to jpeg format
before being written to the PDF file.

3. WMS Layers

Not yet supported

4. Surround components

Legend, scalebar are not supported.

5. Fonts

Standard PostScript fonts are supported. For use of other fonts (such as truetype), see the pdflib
documentation for use of UPR description files (some notes on it are here).
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Implementing PDF Output

Note that the following instructions were developed for MapServer 3.7 and pdflib 4.0.3, but the general steps should be
similar for recent versions of both.

Build the PDF Library

In order to have access to the PDF support in MapServer, you should download and build the PDF library from http://
www.pdflib.com/products/pdflib/. Please follow the instructions on the PDFLib site to build on your specific platforms.

Here are some quick notes on how to build on windows:

• download and extract the source code from https://www.pdflib.com/products/pdflib-family/pdflib/

• open the project PDFlib.dsw in MS Visual C++

• build the project pdflib_dll

• after a successful build, you should have a pdflib.lib and pdblib.dll under the pdflib directory

• copy the pdflib.dll under your system directory (ex : c:/winnt/system32)

• the pdflib.lib will be used while building mapserver with the PDF support

Build MapServer with PDF support

Windows platform
Edit the makefile.vc and uncomment the following lines (make sure that the paths are adapted to your installation):

PDF_LIB=../pdflib-4.0.3/pdflib/pdflib.lib

PDF_INC=-I../pdflib-4.0.3/pdflib

PDF=-DUSE_PDF

See the Windows Compilation document for general MapServer compile instructions.

Unix platforms
Add with-pdf to your configure command line before compiling.

See the Unix Compilation document for general MapServer compile instructions.

Mapfile definition

The IMAGETYPE parameter in the Mapfile should be set to pdf in order to output to PDF:

NAME pdf-test
STATUS ON
...
IMAGETYPE pdf
..

WEB
...

(continues on next page)
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(continued from previous page)

END

LAYER
...

END

END

You can also specify the output using the OUTPUTFORMAT tag (this tag was introduced in mapserver 3.7) :

OUTPUTFORMAT
NAME pdf
MIMETYPE "application/x-pdf"
DRIVER pdf
FORMATOPTION "OUTPUT_TYPE=RASTER" ##not mandatory

END

If the OUTPUT_TYPE=RASTER all the layers will be rendered as rasters. Note that when WMS layers are included
in the mapfile, this option should be set since there is a problem with transparency and wms layers. See the OUTPUT-
FORMAT object in the Mapfile reference for parameter explanations.

Testing

The easiest way to test your pdf output mapfile is with the MapServer shp2img utility. Windows users can find this
utility in MS4W, as well as FWTools.

You simply pass a mapfile to the executable and a name for the output pdf, and a pdf file is generated:

shp2img -m gmap_pdf.map -o test.pdf

Possible Errors

PDFlib I/O error: Resource configuration file 'pdflib.upr' not found

This is related to fonts. If you remove the LABEL object from your mapfile you will see this error go away. The pdf
error is described here. Basically, until this issue is ‘fixed’, if you want to use a font other than the included standard
PostScript fonts in pdf output (such as truetype fonts), consult the PDFlib documentation.

PHP/MapScript and PDF Output

MapServer can render to PDF directly, another option is to render to a PNG and insert that into a PDF document. This
is not the only way to create a PDF document of course. You will need to have support for PDFLib compiled into your
PHP install.

This example shows the key parts of the process, you will need to furnish parts of the script yourself (depending on
your app) and repeat the process for each map element that you want to include.

Refer to the PHP/MapScript Reference wherever necessary.
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How does it work?

In brief, we will pass parameters required to render a map to a PHP script that will:

• create a PDF document

• render a PNG view at a suitably higher resolution

• insert the PNG

• buffer it and send it to the user

Create the PDF document

Here is an example similar to the one given on the PHP website to create a new PDF document:

$my_pdf = pdf_new();
...

Get this stage and section 4.5 working before you try inserting MapServer elements.

Render PNG views at a suitable resolution

Work back from the assumption that you will need no more than 300 dpi on your page for your map to look presentable.
For an A4 map, I am using 150 dpi for an 8’ x 8’ main map, which is 1200 x 1200 pixels.

$map->set(width,1200);
$map->set(height,1200);

Of course, our map will not be very useful unless it is zoomed in to the extent our user requested, and the layers they
selected are switched on. Maintain arrays in your application that record:

- The current extent (say $ext[])
- Layer status (say $layer[])

Open your map file and pass these back through to set the map file into the state the user is expecting, something like:

$map->setextent($ext[0], $ext[1], $ext[2], $ext[3]);

while($layer[]) {
$layer=$map->getLayer($n);
if($layer[$n]==1) {

$layer->set(status,1);
} else {

$layer->set(status,0);
}

}

Now you will need to save a rendered view to a PNG file.

$img = $map->draw();
$url = $img->saveWebImage(MS_PNG, 0, 0, 0);

Use the same method for all your map elements, such as drawReferenceMap?(), drawScaleBar?() and drawLegend().
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Insert the PNG elements into your PDF document

This is really easy, use the pdf_open_image_file() function to import the map elements into your PDF document:

$element = pdf_open_image_file($my_pdf, "png", "$webroot/$url");
pdf_place_image($my_pdf, $element, $xpos, $ypos);
pdf_close_image($my_pdf, $element);

Repeat as needed for any map elements you created.

Buffer the PDF and send it to the user

Assuming we have been creating the document $my_pdf, when we are done, we merely buffer it and send it to the user
using echo():

<?php

....
pdf_close($my_pdf);

$data = pdf_get_buffer($my_pdf);

header('Content-type: application/pdf');
header('Content-disposition: inline; filename=my_pdf.pdf');
header('Content-length: ' . strlen($data) );

echo $data;

?>

Gotcha: remember that you cannot send headers if you have at any stage outputed text to the browser.

Additional stuff to try

Rendering everything as PNG can look ugly, so I step through the key and extract labels so I can render them using
PDF’s text functions.

This can be done for other map element, such as map titles, layer descriptions, or anything else that can be read from
the mapfile.

9.1.10 SVG
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Introduction

SVG (or Scalable Vector Graphics) is a standardized XML language for describing 2D graphics via vector graphics,
text and raster graphics. As of version 4.5, MapServer can output SVG v1.1 maps. The following documentation is
based on the World Wide Web Consortium’s (W3C) Scalable Vector Graphics (SVG) 1.1 Specification.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up map files.

Note: From version 6.0, SVG output is supported through Cairo. This is not reflected in the current documentation.

Links to SVG-Related Information

• SVG 1.1 specification

• SVG Discussion Paper

• SVG Tiny Profile

• MapFile Reference Doc

Feature Types and SVG Support Status

Circle Layers

Circle layers are not yet supported.

Line Layers

The following items describe how line layers are handled by MapServer for SVG output:

• Lines are converted to SVG polyline elements.

• The STYLE object’s WIDTH parameter is used for SYMBOL 0 for line thickness.

• The STYLE object’s SIZE parameter is used for other symbols for line thickness.

• All lines are drawn without symbols - only line thickness changes.
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• If a style uses a symbol and this symbol has a dashed style, it will be transformed into an SVG stroke-dasharray
element.

Point Layers

The following items describe how point layers are handled by MapServer for SVG output:

• VECTOR, ELLIPSE, and TRUETYPE symbols are supported.

• PIXMAP symbols are not currently supported.

• Labels attached with the symbols are supported (see the Text Features section below for details).

Polygon Layers

The following items describe how polygon layers are handled by MapServer for SVG output:

• Polygons are converted to SVG polygon elements.

• The STYLE’s COLOR is used for the fill.

• The STYLE’s OUTLINECOLOR is used for the stroke.

• SVG patterns are not currently supported.

Raster Layers

The following items describe how raster layers are handled by MapServer for SVG output:

• Temporary image is created through the GD library, and GD functions are used to draw the layer.

• You must have at least PNG or JPEG support compiled in MapServer.

• You must have the WEB object’s IMAGEPATH and IMAGEURL set properly in your mapfile.

Text Features

The following items describe how text features are handled by MapServer for SVG output:

• Text is converted to SVG text element.

• Only TRUETYPE fonts are supported.

• Supports labels with ENCODING (output as UTF-8 hexadecimal values).

• The FONT name used in MapServer is parsed to form the SVG font-family, font-style, and font-weight.
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WMS Layers

You can configure OUTPUTFORMAT in your WMS server mapfile, to allow a GetMap request for an SVG output, as
follows.

Setting up a Mapfile for SVG Output

• You must have valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.

• To be able to output a valid SVG file, the user needs to define an OUTPUTFORMAT object in the map file and
set the IMAGETYPE parameter to svg. Here is an example:

MAP
...
IMAGETYPE svg
...
OUTPUTFORMAT
NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "COMPRESSED_OUTPUT=TRUE"
FORMATOPTION "FULL_RESOLUTION=TRUE"

END
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
LAYER
...

END
END

Note:
If FORMATOPTION “COMPRESSED_OUTPUT=TRUE” is set MapServer will produce a compressed SVG
file (svgz). By default this option is FALSE. Note that to be able to create compressed output, MapServer must
be built with the compile flag USE_ZLIB.

If FORMATOPTION “FULL_RESOLUTION=TRUE” is set MapServer will not eliminate duplicate points and
collinear lines when outputting SVG. By default this option is set to FALSE.

Testing your SVG Output

• The easiest way to test your SVG mapfile is to use MapServer CGI . For example, you might enter the following
URL in a browser:

http://127.0.0.1/cgi-bin/mapserv.exe?map=my/path/to/my-svg.map&mode=map&
→˓layers=layer1 layer2

• You can also use PHP/MapScript to test your SVG mapfile. Your php file might look like the following:
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<?php

dl("php_mapscript_45.dll");

$oMap = ms_newmapObj("my/path/to/my-svg.map");

$img = $oMap->draw();

header("Content-type: image/svg+xml");

$url = $img->saveImage("");

?>

An SVG file should be created in your IMAGEPATH directory. If you open the SVG file in a text editor you can see
that it is an XML file. Below is a sample SVG file of a point layer with labels:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/
→˓svg11-flat.dtd">
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.org/2000/svg"␣
→˓xmlns:xlink="http://www.w3.org/1999/xlink">

<!-- START LAYER popplace -->
<ellipse cx="252" cy="130" rx="3" ry="3" fill="#000000" />
<ellipse cx="37" cy="227" rx="3" ry="3" fill="#000000" />
<ellipse cx="127" cy="239" rx="3" ry="3" fill="#000000" />
<ellipse cx="255" cy="282" rx="3" ry="3" fill="#000000" />
<polygon fill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,
→˓263 273,265 274,268 271,266 268,268 269,265"/>
<ellipse cx="288" cy="247" rx="3" ry="3" fill="#000000" />
<ellipse cx="313" cy="243" rx="3" ry="3" fill="#000000" />
<ellipse cx="328" cy="233" rx="3" ry="3" fill="#000000" />
<ellipse cx="331" cy="245" rx="3" ry="3" fill="#000000" />
<ellipse cx="366" cy="196" rx="3" ry="3" fill="#000000" />
<ellipse cx="161" cy="246" rx="3" ry="3" fill="#000000" />
<ellipse cx="92" cy="208" rx="3" ry="3" fill="#000000" />
<ellipse cx="40" cy="125" rx="3" ry="3" fill="#000000" />
<ellipse cx="108" cy="146" rx="3" ry="3" fill="#000000" />
<text x="40" y="143" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Yellowknife</text>
<text x="43" y="121" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Whitehorse</text>
<text x="34" y="205" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Edmonton</text>
<text x="164" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Winnipeg</text>
<text x="316" y="190" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >St. John's</text>
<text x="334" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Halifax</text>
<text x="249" y="230" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Charlottetown</text>

(continues on next page)
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(continued from previous page)

<text x="241" y="242" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Quebec</text>
<text x="223" y="260" font-family="fritqat-italic" font-size="8pt" fill="#ff0000"␣
→˓stroke="#ffffff" stroke-width="0.5" >Ottawa</text>
<text x="210" y="279" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Toronto</text>
<text x="82" y="234" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Regina</text>
<text x="40" y="223" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Victoria</text>
<text x="214" y="125" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Iqaluit</text>
</svg>

You can now view the SVG file in a supported browser (see the official list of SVG implementations for possible SVG
viewers). The Adobe Viewer plugin is very popular.

goSVG

goSVG is now supported as a vector output format in MapServer 4.5 (and later).

Definition

This definition of goSVG was obtained from here.

goSVG is short for “G-XML over SVG” and “g-contents over SVG”. This is a subset for mobiles specified within
the G-XML (a Japanese Spatial Information Format which is an XML based protocol with the ability to describe,
communicate and exchange Spatial Information and Electric Maps), and is a Spatial Information Exchanging format
that determines the method to expand spatial information and connect to the backend system(G-XML standard mark
format). goSVG is an expanded SVG Tiny profile (a Mobile profile of SVG 1.1. suited for cellular phones) that adds
functions that are useful for Spatial Information Services (SVG Map Service).

Support for Specific goSVG Elements

• Name space extension: supported

• Content Area Definition (bounding box): supported

• Geographic Coordinate System: supported

• Map Request Protocol: supported
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Setting up a Mapfile for goSVG Output

Requirements

• A valid MapServer Mapfile.

• Valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.

• A PROJECTION object defined beneath the MAP object, using an EPSG code. For example:

MAP
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
PROJECTION
"init=epsg:3978"

END
...
LAYER
...
END

END

Setting the OUTPUTFORMAT

To be able to output a valid goSVG file, you must define an OUTPUTFORMAT object in the mapfile and set the
IMAGETYPE to svg. Here is an example:

MAP
...
IMAGETYPE svg
...
OUTPUTFORMAT
NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "GOSVG=TRUE"
FORMATOPTION "GOSVG_ZoomInTH=20"
FORMATOPTION "GOSVG_ZoomOutTH=40"
FORMATOPTION "GOSVG_ScrollTH=60"

END
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...
PROJECTION
"init=epsg:3978"

(continues on next page)
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END
...
LAYER
...
END

END

Specific FORMATOPTIONs Related to goSVG

GOSVG
should be set to TRUE. The default is false.

GOSVG_ZoomInTH
controls the zoomin threshold when outputting the Map Request Protocol. If it is not defined the default value is
set to 70.

GOSVG_ZoomOutTH
controls the zoomout threshold when outputting the Map R equest Protocol. If it is not defined the default value
is set to 100.

GOSVG_ScrollTH
controls the scrolling threshold when outputting the Map Request Protocol. If it is not defined the default value
is set to 10.

Testing your goSVG Output

Refer to the section Testing your SVG Output to generate and test your goSVG output. goSVG can be read by regular
SVG viewers (they will just ignore the goSVG headers).

Sample goSVG File Produced by MapServer

Below is a sample goSVG file of a point layer with labels:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/
→˓svg11-flat.dtd">
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.org/2000/svg"␣
→˓xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:au="http://www.svgmovile.jp/2004/kddip
→˓" au:boundingBox="0 0 400 300">
<title>DEMO</title>
<metadata>
<rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:crs = "https://www.ogc.org/crs" xmlns:svg="http://wwww.w3.org/2000/svg">
<rdf:Description>
<crs:CoordinateReferenceSystem svg:transform="matrix(0.000066,0.000000,0.000000,-0.
→˓000066,171.243002,253.040495)"
rdf:resource="http://www.opengis.net/gml/srs/epsg.xml#3978"/>
</rdf:Description>
</rdf:RDF>
<au:lbs protocol="maprequest">

(continues on next page)
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<au:zoomin th="20" xlink:href="."/>
<au:zoomout th="40" xlink:href="."/>
<au:scroll th="60" xlink:href="."/>
</au:lbs>
</metadata>

<!-- START LAYER popplace -->
<ellipse cx="252" cy="130" rx="3" ry="3" fill="#000000" />
<ellipse cx="37" cy="227" rx="3" ry="3" fill="#000000" />
<ellipse cx="127" cy="239" rx="3" ry="3" fill="#000000" />
<ellipse cx="255" cy="282" rx="3" ry="3" fill="#000000" />
<polygon fill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,
→˓263 273,265 274,268 271,266 268,268 269,265"/>
<ellipse cx="288" cy="247" rx="3" ry="3" fill="#000000" />
<ellipse cx="313" cy="243" rx="3" ry="3" fill="#000000" />
<ellipse cx="328" cy="233" rx="3" ry="3" fill="#000000" />
<ellipse cx="331" cy="245" rx="3" ry="3" fill="#000000" />
<ellipse cx="366" cy="196" rx="3" ry="3" fill="#000000" />
<ellipse cx="161" cy="246" rx="3" ry="3" fill="#000000" />
<ellipse cx="92" cy="208" rx="3" ry="3" fill="#000000" />
<ellipse cx="40" cy="125" rx="3" ry="3" fill="#000000" />
<ellipse cx="108" cy="146" rx="3" ry="3" fill="#000000" />
<text x="40" y="143" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Yellowknife</text>
<text x="43" y="121" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Whitehorse</text>
<text x="34" y="205" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Edmonton</text>
<text x="164" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Winnipeg</text>
<text x="316" y="190" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >St. John's</text>
<text x="334" y="258" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Halifax</text>
<text x="249" y="230" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Charlottetown</text>
<text x="241" y="242" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Quebec</text>
<text x="223" y="260" font-family="fritqat-italic" font-size="8pt" fill="#ff0000"␣
→˓stroke="#ffffff" stroke-width="0.5" >Ottawa</text>
<text x="210" y="279" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Toronto</text>
<text x="82" y="234" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Regina</text>
<text x="40" y="223" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Victoria</text>
<text x="214" y="125" font-family="fritqat" font-size="8pt" fill="#000000" stroke="
→˓#ffffff" stroke-width="0.5" >Iqaluit</text>
</svg>
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Introduction

MapServer can feed tile-based map clients directly using the CGI “tile mode”. Tile-based map clients work by dividing
the map of the world up into a discrete number of zoom levels, each partitioned into a number of identically sized “tiles”.
Instead of accessing a map by requesting a bounding box, a tile client builds a map by accessing individual tiles.

Configuration

Tile requests are handled by the ‘mapserv’ CGI program. In order to return tiles in the correct projection, MapServer
must be built with the –use-proj option turned on. You can check if your version of ‘mapserv’ has projection support
by running it with the ‘-v’ option and looking for ‘SUPPORTS=PROJ’.

Example 1. On Unix:

$ ./mapserv -v
MapServer version 7.7-dev OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML SUPPORTS=PROJ
SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO SUPPORTS=SVG_SYMBOLS
SUPPORTS=RSVG SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=GEOS SUPPORTS=POINT_Z_M SUPPORTS=PBF INPUT=JPEG
INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Example 2. On Windows:

C:\ms4w> mapserv -v
MapServer version 7.7.0-dev (MS4W 4.0.4) OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO SUPPORTS=SVG_SYMBOLS
SUPPORTS=SVGCAIRO SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER

(continues on next page)
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(continued from previous page)

SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS SUPPORTS=GEOS
SUPPORTS=POINT_Z_M SUPPORTS=PBF INPUT=JPEG INPUT=POSTGIS INPUT=OGR
INPUT=GDAL INPUT=SHAPEFILE

MapServer requires that each LAYER in your .map file (or “mapfile”) have a valid PROJECTION block to support
reprojection. Because the tile mode uses reprojection, you will have to ensure each LAYER has a valid PROJECTION
block.

Note: The MAP-level projection in the mapfile is not required for mode=tile as the output projection will always be
set to the Google Mercator projection EPSG:3857 and its extents, for mode=tile (in other words, the Google Mercator
projection is hard-coded in the underlying MapServer source code, always for the mode=tile case). If your mapfile
is also serving through an OGC service, such as WMS, your MAP-level projection will obviously be required for the
OGC service, but can be any supported EPSG projection (does not have to be 3857).

Configuration checklist:

• MapServer compiled with PROJ support

• Mapfile with a PROJECTION defined for every LAYER

As of MapServer 6.0, there are two extra parameters available for configuring tile mode, that can be set as METADATA
in the WEB object of your mapfile:

• tile_map_edge_buffer renders the tile into a buffered rendering frame, then clips out the final tile. This will
reduce edge effects when large symbols or wide lines are drawn. Recommended value: the size of the largest
symbol or line width in your mapfile.

• tile_metatile_level renders the tiles into a fixed metatile, then clips out the final tile. This will reduce label
repetition, at the expense of much higher rendering cost. Recommended value: 1 if you are doing labelling of
large features in your layer. 0 otherwise.

If you use both tile_map_edge_buffer and tile_metatile_level at the same time, the buffer will be applied at the meta-tile
level.

MAP
..
WEB
METADATA
"tile_map_edge_buffer" "10"
"tile_metatile_level" "0"

END #metadata
END #web

Note: The MapServer 7.6.2 release included a memory leak fix for mode=tile
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Utilization

The MapServer tile support adds three new directives to the CGI interface:

• mode=tile tells the server to generate tiles based on the other tile mode parameters

• tilemode=gmap tells the server use the Google Maps tile scheme for the tiles (this is the default tilemode)

– tile=x+y+z tells the server what tile you want to retrieve, using the Google Maps tile addressing system

• tilemode=ve tells the server use the Bing Maps (formerly “Virtual Earth”) tile naming scheme for the tiles

– tile=10231 tells the server what tile you want to retrieve, using the Bing Maps (formerly “Virtual Earth”)
tile addressing system

A valid mode=tile request might therefore look like:

http://127.0.0.1/cgi-bin/mapserv.exe?
MAP=/ms4w/apps/local-demo/local.map
&MODE=tile
&TILEMODE=gmap
&TILE=0+0+0
&LAYERS=countries

which results in a 256x256 tile (notice that it is in the Google Mercator projection, even though the mapfile has an
output PROJECTION object of “init=epsg:4326”) :

About Spherical Mercator

Spherical Mercator (also called the “web mercator” or “google mercator”) is a world projection that all the major tile-
based map interfaces (Google Maps, Bing Maps [formerly “Virtual Earth”], Yahoo Maps, OpenLayers) use to address
tiles. The associated official EPSG code is EPSG:3857.

A spherical mercator set of tiles has the following properties:

• The map has been reprojected to mercator using a spherical mercator algorithm

• There is one tile in the top zoom level, zoom level zero

• Each successive zoom level (z) has 2^z tiles along each axis

• Tiles are 256x256 in size
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Google Maps and Bing Maps (formerly “Virtual Earth”) both use spherical mercator as their underlying tile projection,
but use different formats to address the individual tiles.

Google Maps uses an “x”, “y”, “zoom” format. The zoom indicates which level to pull tiles from, and the “x” and “y”
indicate while tile in that zoom level to pull.

Bing Maps (formerly “Virtual Earth”) uses a single string to address each tile. The top zoom level in Bing Maps has four
tiles (equivalent to Google’s zoom level 1). The top left tile in the Bing Maps top zoom level is addressed as “0”, top right
as “1”, bottom left as “2” and bottom right as “3”. Each tile the next level is addressed by first referencing the top level
tile that contains it, then its address relative to that tile. So the top left tile in the second zoom level is “00” and the bottom
right one is “33”. See the Bing Maps site for more details: http://msdn.microsoft.com/en-us/library/bb545006.aspx

Using Google Maps

The Google Maps API includes support for using alternative tile sets as overlays, or as alternate base maps. Here is an
example of an GTileLayerOverlay

1 <!DOCTYPE html
2 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5 <head>
6 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
7 <title>Google/MapServer Tile Example</title>
8 <script src="http://maps.google.com/maps?file=api&v=2&key=[YOUR KEY HERE]"
9 type="text/javascript"></script>

10 <script type="text/javascript">
11

12 function load() {
13 if (GBrowserIsCompatible()) {
14 var urlTemplate = 'http://localhost/cgi-bin/mapserv?';
15 urlTemplate += 'map=/var/map.map&';
16 urlTemplate += 'layers=layer1 layer2&';
17 urlTemplate += 'mode=tile&';
18 urlTemplate += 'tilemode=gmap&';
19 urlTemplate += 'tile={X}+{Y}+{Z}';
20 var myLayer = new GTileLayer(null,0,18,{
21 tileUrlTemplate:urlTemplate,
22 isPng:true,
23 opacity:1.0 });
24 var map = new GMap2(document.getElementById("map"));
25 map.addControl(new GLargeMapControl());
26 map.addControl(new GMapTypeControl());
27 map.setCenter(new GLatLng(35.35, -80.55), 15);
28 map.addOverlay(new GTileLayerOverlay(myLayer));
29 }
30 }
31

32 </script>
33 </head>
34 <body onload="load()" onunload="GUnload()">
35 <div id="map" style="width: 500px; height: 500px"></div>
36 </body>
37 </html>
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Note the format of the tileUrlTemplate: a valid URL, with {X}, {Y} and {Z} substitution tokens that Google Maps
will replace with the tile coordinates and zoom level on the fly to retrieve tiles from your server.

You can also use a MapServer tile layer as an alternate base map:

1 <!DOCTYPE html
2 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml">
5 <head>
6 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
7 <title>Google/MapServer Tile Example</title>
8 <script src="http://maps.google.com/maps?file=api&v=2&key=[YOUR KEY HERE]"
9 type="text/javascript"></script>

10 <script type="text/javascript">
11

12 function load() {
13 if (GBrowserIsCompatible()) {
14 var urlTemplate = 'http://localhost/cgi-bin/mapserv?';
15 urlTemplate += 'map=/var/map.map&';
16 urlTemplate += 'layers=layer1 layer2&';
17 urlTemplate += 'mode=tile&';
18 urlTemplate += 'tilemode=gmap&';
19 urlTemplate += 'tile={X}+{Y}+{Z}';
20 var myLayer = new GTileLayer(null,0,18,{
21 tileUrlTemplate:urlTemplate,
22 isPng:true,
23 opacity:0.3 });
24 var map = new GMap2(document.getElementById("map"));
25 map.addControl(new GLargeMapControl());
26 map.addControl(new GMapTypeControl());
27 map.setCenter(new GLatLng(35.35, -80.55), 15);
28 var myMapType = new GMapType([myLayer], new GMercatorProjection(18), 'MapServer');
29 map.addMapType(myMapType);
30 }
31 }
32

33 </script>
34 </head>
35 <body onload="load()" onunload="GUnload()">
36 <div id="map" style="width: 500px; height: 500px"></div>
37 </body>
38 </html>

The only change from the previous example is that we don’t create a GTileLayerOverlay, we create a GMapType, and
use addMapType(), instead of addOverlay().
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Using Bing Maps (formerly “Virtual Earth”)

The Bing Maps API also includes support for using alternative tile sets as overlays, or as alternate base maps. Here is
an example:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/
→˓DTD/xhtml1-strict.dtd">

2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>
5 <title>Virtual Earth Example</title>
6 <script type="text/javascript" src="http://dev.virtualearth.net/mapcontrol/mapcontrol.

→˓ashx?v=6.1"></script>
7 <script type="text/javascript">
8

9 var map = null;
10

11 function OnLoadMap () {
12 map = new VEMap("myMap");
13 map.LoadMap();
14

15 var url = "http://localhost/cgi-bin/mapserv?";
16 url += "map=/var/map.map&";
17 url += "mode=tile&";
18 url += "layers=layer1 layer2&";
19 url += "tilemode=ve&";
20 url += "tile=%4";
21

22 var tileSourceSpec = new VETileSourceSpecification( "myLayer", url );
23 tileSourceSpec.Opacity = 0.3;
24 map.AddTileLayer(tileSourceSpec, true);
25 }
26

27 </script>
28 </head>
29 <body onload="OnLoadMap();">
30 <div id="myMap" style="position:relative; width:500px; height:500px;"></div>
31 </body>
32 </html>

9.1.12 Template-Driven Output
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Introduction

RFC 36 added support for defining template-driven OUTPUTFORMATs for use with feature queries, including WMS
GetFeatureInfo and WFS GetFeature. This allows for custom text-oriented output such as GeoJSON, KML, or XML.
The templates are essentially the same as with the standard MapServer query Templating, however there are some
additional tags to allow for template definition in a single file instead of the standard header/template/footer.

Note: There are other, simpler, ways to output some of these formats using MapServer. However, template-driven
output provides maximal flexibility and customization of the output, at the cost of additional complexity and configu-
ration.

Note: In order for template-driven output to work, layers that are to be output need to have the TEMPLATE key word
included:

TEMPLATE "dummy"

Note: In order for template-driven output to work through WFS, the format needs to be listed in
wfs_getfeature_formatlist in the WEB METATDATA section or the LAYER METATDATA section (the geojson format
from the example below):

"wfs_getfeature_formatlist" "gml,geojson"
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OUTPUTFORMAT Declarations

Details of template-driven output formats are controlled by an OUTPUTFORMAT declaration. The declarations define
the template file to be used, as well as other standard OUTPUTFORMAT options.

Examples:

OUTPUTFORMAT
NAME "kayml"
DRIVER "TEMPLATE"
MIMETYPE "application/vnd.google-earth.kml+xml"
FORMATOPTION "FILE=myTemplate.kml"
FORMATOPTION "ATTACHMENT=queryResults.kml"

END

OUTPUTFORMAT
NAME "geojson"
DRIVER "TEMPLATE"
FORMATOPTION "FILE=myTemplate.js"

END

OUTPUTFORMAT
NAME "customxml"
DRIVER "TEMPLATE"
FORMATOPTION "FILE=myTemplate.xml"

END

The template file to be used is determined by the “FILE=. . . ” FORMATOPTION. The template filename is relative to
the mapfile’s path. As is standard with MapServer template files, the file must contain the magic string ‘mapserver
template’ in the first line of the file, usually within a comment, but this line is not output to the client.

Note: Valid suffixes for the template file are: .xml, .wml, .html, .htm, .svg, .kml, .gml, .js, .tmpl.

The MIMETYPE and FORMATOPTION “ATTACHMENT=. . . ” parameters are very useful for controlling how a web
browser handles the output file.

Template Substitution Tags

These tags only work in query result templates, and their purpose is primarily to simplify the templating to a single file
for custom output formats.

[include src=”otherTemplate.txt”]
Includes another template file; the path to the template file is relative to the mapfile path.

Attributes:

• src: The file to be included.

[resultset layer=layername]. . . [/resultset]
Defines the location of the results for a given layer.

Attributes:

• layer: The layer to be used

• nodata: (optional) A string to return if no results are returned.
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[feature]. . . [/feature]
Defines the loop around the features returned for a given layer.

Attributes:

• limit: (optional) Specifies the maximum number of features to output for this layer.

• trimlast: (optional) Specifies a string to be trimmed off of the end of the final feature that is output. This is
intended to allow for trailing record delimiters to be removed. See the examples below.

[join name=join1]. . . [/join]
defines the loop around the features join from another layer.

See also:
Templating

Examples

Below are some examples of the different kind of outputs that can be achieved with templates.

Header, Body, Footer

This example shows how to emulate the old 3-file system using the new system, to compare the usage:

<!-- mapserver template -->
[include src="templates/header.html"]
[resultset layer=lakes]
... old layer HEADER stuff goes here, if a layer has no results

this block disappears...
[feature]
...repeat this block for each feature in the result set...
[join name=join1]
...repeat this block for each joined row...

[/join]
[/feature]
...old layer FOOTER stuff goes here...

[/resultset]
[resultset layer=streams]
... old layer HEADER stuff goes here, if a layer has no results

this block disappears...
[feature]
...repeat this block for each feature in the result set...

[/feature]
...old layer FOOTER stuff goes here...

[/resultset]
[include src="templates/footer.html"]
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GML3

<!-- mapserver template -->
<?xml version="1.0" encoding="ISO-8859-1"?>
[resultset layer=mums]
<MapServerUserMeetings xmlns="http://localhost/ms_ogc_workshop"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://localhost/ms_ogc_workshop ./mums.xsd">

<gml:description>This is a GML document which provides locations of
all MapServer User Meeting that have taken place</gml:description>

<gml:name>MapServer User Meetings</gml:name>
<gml:boundedBy>
<gml:Envelope>
<gml:coordinates>-93.093055556,44.944444444 -75.7,45.4166667</gml:coordinates>
</gml:Envelope>

</gml:boundedBy>
[feature]
<gml:featureMember>
<Meeting>
<gml:description>[desc]</gml:description>
<gml:name>[name]</gml:name>
<gml:location>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:pos>[x] [y]</gml:pos>

</gml:Point>
</gml:location>
<year>[year]</year>
<venue>[venue]</venue>
<website>[url]</website>
</Meeting>

</gml:featureMember>
[/feature]
<dateCreated>2007-08-13T17:17:32Z</dateCreated>
</MapServerUserMeetings>
[resultset]

GeoJSON

Could be called using . . .&layer=mums&mode=nquery&qformat=geojson

Or by adding &outputformat=geojson to a WFS getfeature request:

// mapserver template
[resultset layer=mums]
{
"type": "FeatureCollection",
"features": [
[feature trimlast=","]
{
"type": "Feature",
"id": "[myuniqueid]",

(continues on next page)
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(continued from previous page)

"geometry": {
"type": "PointLineString",
"coordinates": [
{
"type": "Point",
"coordinates": [[x], [y]]

}
]

},
"properties": {
"description": "[description]",
"venue": "[venue]",
"year": "[year]"

}
},
[/feature]

]
}
[/resultset]

KML

A more complicated KML example. Note the use of [shpxy] to support multipolygons with holes, and also that a point
placemark is included with each feature using [shplabel]:

<!--MapServer Template-->
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2"

xmlns:gx="http://www.google.com/kml/ext/2.2"
xmlns:kml="http://www.opengis.net/kml/2.2"
xmlns:atom="http://www.w3.org/2005/Atom">

<Document>
<Style id="parks_highlight">
<IconStyle>
<scale>1.4</scale>
<Icon>
<href>http://maps.google.com/mapfiles/kml/shapes/parks.png</href>

</Icon>
<hotSpot x="0.5" y="0" xunits="fraction" yunits="fraction"/>

</IconStyle>
<LineStyle>
<color>ffff5500</color>
<width>4.2</width>

</LineStyle>
<PolyStyle>
<color>aaaaaaaa</color>

</PolyStyle>
<BalloonStyle>
<text>
<![CDATA[
<p ALIGN="center"><b>$[name]</b></p>

(continues on next page)
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$[description]
]]>

</text>
</BalloonStyle>

</Style>
<Style id="parks_normal">
<IconStyle>
<scale>1.2</scale>
<Icon>
<href>http://maps.google.com/mapfiles/kml/shapes/parks.png</href>

</Icon>
<hotSpot x="0.5" y="0" xunits="fraction" yunits="fraction"/>

</IconStyle>
<LineStyle>
<color>ffff5500</color>
<width>4.2</width>

</LineStyle>
<PolyStyle>
<color>ff7fff55</color>

</PolyStyle>
<BalloonStyle>
<text>
<![CDATA[
<p ALIGN="center"><b>$[name]</b></p>
$[description]

]]>
</text>

</BalloonStyle>
</Style>
<StyleMap id="parks_map">
<Pair>
<key>normal</key>
<styleUrl>#parks_normal</styleUrl>

</Pair>
<Pair>
<key>highlight</key>
<styleUrl>#parks_highlight</styleUrl>

</Pair>
</StyleMap>

[resultset layer=parks]
<Folder>
<name>Parks</name>

[feature trimlast="," limit=1]
<Placemark>
<name>[NAME]</name>
<Snippet/>
<description>
<![CDATA[
<p>Year Established: [YEAR_ESTABLISHED]</p>
<p>Area: [AREA_KILOMETERS_SQUARED] sq km</p>

]]>
</description>

(continues on next page)
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<styleUrl>#parks_map</styleUrl>
<ExtendedData>
<Data name="Year Established">[YEAR_ESTABLISHED]</Data>
<Data name="Area">[AREA_KILOMETERS_SQUARED]</Data>

</ExtendedData>
<MultiGeometry>
<Point>
<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>

</Point>
[shpxy ph="<Polygon><tessellate>1</tessellate>" pf="</Polygon>"

xf="," xh=" " yh=" " yf=",0 "
orh="<outerBoundaryIs><LinearRing><coordinates>"
orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"
irf="</coordinates></LinearRing></innerBoundaryIs>"
proj=epsg:4326 precision=10]

</MultiGeometry>
</Placemark>

[/feature]
</Folder>

[/resultset]
</Document>
</kml>

reStructuredText Table

This example creates a reStructuredText table from feature records, making use of the padding formatting option. To
test from the command line use syntax similar to below:

mapserv -nh "QUERY_STRING=map=./msautotest/query/query.map&mode=nquery&qlayer=bdry_
→˓counpy2&qformat=formattmpl"

# MapServer Template
[resultset layer=bdry_counpy2]
==================== ============
City Name Abbreviation
==================== ============
[feature][item name="cty_name" padding="20"] [item name="cty_abbr" uc="true" padding="12
→˓"]
[/feature]
==================== ============
[/resultset]

The RST output can then be rendered as a table.
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City Name Abbreviation
Lake of the Woods LOTW
Kittson KITT
Roseau ROSE
Koochiching KOOC
Marshall MARS
St. Louis STLO

Warning: For templates (Templating), there are a number of reserved words. If you have want to expose an
attribute with a name that is equal to a reserved word, you can not use the shorthand [attribute_name], but will have
to use construct [item name=attribute_name] instead. For example, in a template, [id] is a system generated unique
session id (see Templating). So if you have an attribute named “id” that you want to expose, you will either have to
rename it or use the construct [item name=id].

9.1.13 KML Output
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Introduction

This purpose of this document is to describe KML/KMZ output support that was initially added in the MapServer 6.0
release.

The main goal of the KML driver is to generate KML output used mainly by Google Earth application.

General Functionality

KML support is provided by using a kml or kmz image type in the map file. Output can then be generated using
MapServer cgi (example mode=map) or through a WMS request.
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Output format

The default name of the output format is kml or kmz, and this name can be used to set the imagetype parameter in the
map file.

The format can also be defined in the map file:

OUTPUTFORMAT
NAME kml
DRIVER "KML"
MIMETYPE "application/vnd.google-earth.kml+xml"
IMAGEMODE RGB
EXTENSION "kml"
FORMATOPTION 'ATTACHMENT=gmap75.kml' #name of kml file returned
FORMATOPTION "maxfeaturestodraw=100"

END

OUTPUTFORMAT
NAME kmz
DRIVER "KMZ"
MIMETYPE "application/vnd.google-earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"
FORMATOPTION 'ATTACHMENT=gmap75.kmz' #name of kmz file returned

END

Build

• On Windows: there is a flag KML in nmake.opt

• On Linux: –with-kml

• AGG driver is necessary for the KML driver

• To be able to get kmz support, MapServer needs to be built against GDAL 1.8 at least

Limiting the number of features

The number of vector features drawn by default is set to 1000 per layer. To control the number of features, users can
set:

• layer level metadata that only applies to the layer: “maxfeaturestodraw” “100”

• map level metada that applies to all layers: “maxfeaturestodraw” “100”

• output format option that applies to all layers: FORMATOPTION “maxfeaturestodraw=100”
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Map

In terms of the KML object, the MapServer KML output will produce a <Document> element to include all the layers
that are part of the MapServer map file. Features supported for the Document are:

Doc-
u-
ment
ele-
ment

Sup-
ported

MapServer equivalence/Notes

name Yes Name in the map file
visi-
bility

No Can be supported if needed. Default is 1

open No Can be supported if needed. Default is 0
ad-
dress

No Could be supported for example using ows_address if available

Ad-
dress-
De-
tails

No

pho-
neNum-
ber

No Could be supported using ows_contactvoicetelephone is available

Snip-
pet

No

de-
scrip-
tion

No

Ab-
stractView

No

TimePrim-
itive

No

styleURLNo
Style-
Se-
lector

Yes Style element will be supported. All different styles from the layers will be stored here and referenced
from the folders using a styleUrl.In addition to the Styles related to features, there is a ListStyle
element added at the document level. This allows to control the way folders are presented.See Layers
section (styleUrl) setting for more details.

Re-
gion

No

Meta-
data

No

Ex-
tended-
Data

No
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Layers

Each layer of the MapServer map file will be inside a KML <Folder> element. Supported Folder elements are:

Folder element Sup-
ported

MapServer equivalence/Notes

name Yes Name of the layer. If not available the name will be Layer concatenated with
the layer’s index (Layer1)

visibility Yes Always set to 1
open No Default is 0
atom:authoratom:linkaddressAddressDetailsphoneNumberSnippetNo
description No Could be supported using ows_description
AbstarctView No
TimePrimitive No
styleUrl Yes The user can use the kml_folder_display layer or map level metedata to

choose a setting. Possible values are ‘check’ (default), ‘radioFolder’, ‘check-
OffOnly’, ‘checkHideChildren’.

RegionMetadataExtended-
Data

No

Each element in the Layer will be inside a KML <Placemark> element. As described in the KML reference : “A
Placemark is a Feature with associated Geometry. In Google Earth, a Placemark appears as a list item in the Places
panel. A Placemark with a Point has an icon associated with it that marks a point on the Earth in the 3D viewer. (In
the Google Earth 3D viewer, a Point Placemark is the only object you can click or roll over. Other Geometry objects
do not have an icon in the 3D viewer. To give the user something to click in the 3D viewer, you would need to create a
MultiGeometry object that contains both a Point and the other Geometry object.)”

For Polygon and Line layers, when a feature is associated with a label, a MultiGeometry element containing a point
geometry and the geometry of the feature is created. The point feature will be located in the middle of the polygon or
line

<Folder>
<name>park</name>
<visibility>1</visibility>
<styleUrl>#LayerFolder_check</styleUrl>
<Placemark>
<name>Ellesmere Island National Park Reserve</name>
<styleUrl>#style_line_ff787878_w4.0_polygon_ff00ffc8_label_ff0000ff</styleUrl>
<MultiGeometry>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<coordinates>
...

<Point>
<coordinates>

-70.86810858,82.12291871
</coordinates>
</Point>

</MultiGeometry>
</Placemark>

</Folder>
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Supported Features in the Placemark element are:

Place-
mark
ele-
ment

Sup-
ported

MapServer equivalence/Notes

name Yes Label attached with the feature. If there is no label a default name is assigned using the layer name
and the shape id (ex. park.1)

visibil-
ity

No Is is by default set to true

open No
address No
Ad-
dress-
Details

No

pho-
neNum-
ber

No

Snip-
pet

No This is a short description the feature. If needed It could be supported.

de-
scrip-
tion

Yes This information is what appears in the description balloon when the user clicks on the feature.
The <description> element supports plain text as well as a subset of HTML formatting elements.
Used when KML/OWS_DESCRIPTION is defined

Ab-
stractView

No

TimePrim-
itive

No

styleUrl Yes Refers to a Style defined in the Document
StyleS-
elector

No

Region No
Meta-
data

No

Ex-
tended-
Data

Yes Used when KML/OWS_INCLUDE_ITEMS is defined

Geom-
etry

Yes Depends on the layer type

General notes on layers

• Labelcache is turned off on each layer

• Projection block should be set. If not set It will be assumed that the data is in lat/lon projection (a debug message
will be sent to the user: Debug Message 1)

• Possible to output vector layers as raster using metadata: “KML_OUTPUTASRASTER” “true”

• The user can use the KML_FOLDER_DSIPLAY layer or map level metedata to choose a setting. Possible values
are ‘check’ (default), ‘radioFolder’, ‘checkOffOnly’, ‘checkHideChildren’.

• The user can use metadata KML/OWS_DESCRIPTION or KML/OWS_INCLUDE_ITEMS to define the de-
scription attached to each feature. If KML/OWS_DESCRIPTION are defined, the <description> tag of the
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Placemark will be used. If KML/OWS_INCLUDE_ITEMS, the <ExtendedData> tag will be used.

• The user can use the metadata KML_NAME_ITEM to indicate the field name to be used a a name tag for each
feature.

• The user can use metadata KML_ALTITUDEMODE to specify how altitude components in the <coordinates>
element are interpreted. Possible values are: absolute, relativeToGround, clampToGround. http://code.google.
com/apis/kml/documentation/kmlreference.html#altitudemode

• The user can use metedata KML_EXTRUDE to specify whether to connect the LinearRing to the ground. http:
//code.google.com/apis/kml/documentation/kmlreference.html#tessellate

• The user can use metedata KML_TESSELLATE to specify whether to allow the LinearRing to follow the terrain.
http://code.google.com/apis/kml/documentation/kmlreference.html#extrude

• The user can specify an attribute to be used as the elevation value using a layer level metedata:
‘kml_elevation_attribute’ ‘<Name of attribute>’. The value will be used as the z value when the coordinates
are written.

Point Layers

• Each layer will be inside a Folder element.

• Each feature will be represented by a Placemark.

• The Geometry element for a Point layer would be represented as a Point geometry element in KML. Supported
elements are:

Line Layers

• Each layer will be inside a Folder element.

• Each feature in the layer would be represented by a Placemark.

• If a label is attached to the line, the Geometry element would be represented as a MultiGeometry that includes a
LineString element and a Point element representing the position of the label. If no label is attached to a feature,
the Geometry element will be a LineString.

Polygon Layers

• Each layer will be inside a Folder element.

• Each feature will be represented by a Placemark.

• If a label is attached to the polygon, the Geometry element would be represented as a MultiGeometry that includes
a Polygon element and a Point element representing the position of the label.
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Raster Layers

• Each layer will be inside a Folder element.

• A GroundOverlay feature is created for the layer, that includes an href link to the raster image generated and
LatLongBox for the extents (map extents).

• The href is generated using the imagepath and imageurl settings in the map file.

Styling

As described in Section 4, all different styles from the layers will be stored at the Document level and referenced from
the folders using a styleUrl.

Point Layers

Point layers will be styled using the IconStyle styling element of KML. An image representing the symbol will be
created and referenced from the IconStyle object. If a label is attached to the point, a LabelStyle element will also be
used. The LabelStyle will have the color parameter set.

<Style id="style_label_ff0000ff_symbol_star_13.0_ff000000">
<IconStyle>
<Icon>
<href>>http://localhost/ms_tmp/4beab862_19bc_0.png</href>

</Icon>
</IconStyle>
<LabelStyle>
<color>ff0000ff</color>

</LabelStyle>
</Style>

Line Layers

Line layers will be styled using the LineStyle styling element of KML. Color and width parameters of the LineStyle
will be used. If a label is attached to the layer, a LabelStyle element will also be used.

Polygon Layers

Polygon layers will be styled using the PolyStyle styling element of KML. Color parameter of the PolyStyle will be
used. If an outline is defined in the map file, an addition LineStyle will be used. If a label is attached to the layer, a
LabelStyle element will also be used.
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Attributes

As described in section on Layers, two ways of defining the description:

• kml/ows_description

• kml/ows_include_items

Coordinate system

The map level projection should be set to epsg:4326. If not set, the driver will automatically set it. Layers are expected
to have projection block if their projection is different from epsg:4326.

Warning and Error Messages

• When the projection of the map file is not set or is different from a a lat/lon projection, the driver automati-
cally sets the projection to espg:4326. If the map is is debug mode, the following message is sent: “KmlRen-
derer::checkProjection: Mapfile projection set to epsg:4326”

• If imagepath and imageurl are not set in the web object, the following message is sent in debug mode: “KmlRen-
derer::startNewLayer: imagepath and imageurl should be set in the web object”

9.1.14 UTFGrid Output

Author
Francois Desjarlais

Contact
fdesjarlais1 at gmail.com

Last Updated
2020-07-23

Table of Contents

• UTFGrid Output

– Introduction

– Functionality

– Build

– Setting the OutputFormat

– Exposing Feature Properties
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Introduction

UTFGrid is an output format that was added in MapServer version 7. This howto assumes that you have basic knowledge
of the mapfile syntax (see Mapfile).

Functionality

UTFGrid output will allow more interaction with maps by allowing data to be exposed via an invisible UTF-8 character
grid.

See also:
rfc93

Build

• Iconv is required.

• AGG is required.

Setting the OutputFormat

Adding the following to the mapfile will allow mapserver to use generate UTFGrid output. For this example, the output
generated will be a grid with each pixel corresponding to a 4x4 pixels square in the original image. Also, it will not
allow duplicates which means different shapes with the same IDs will be considered as a single shape.

OUTPUTFORMAT
NAME "utfgrid"
DRIVER UTFGRID
MIMETYPE "application/json"
EXTENSION "json"
FORMATOPTION "UTFRESOLUTION=4"
FORMATOPTION "DUPLICATES=false"

END

If no FORMATOPTION is set, default values will be used. Default values are: 4 for UTFRESOLUTION and true for
DUPLICATES.

Exposing Feature Properties

Two LAYER parameters are used to choose which data to expose. To use them, add these to your LAYER in the mapfile.

UTFITEM "id"
UTFDATA "{\"id\":\"[id]\",\"name\":\"[name]\"}"

The items can be used separately. If UTFITEM is not set, a sequence number (based on the rendering order) will be
used as the grid ID. If UTFDATA is not set, no data beyond the UTFITEM will be exposed.

Note: UTFGrids can be set on multiple layers, but only one UTFGrid can be rendered at a time. If you wish to add
multiples UTFGrids, with for example OpenLayers, you need to add a new layer for each of them.
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Note: Due to upcoming changes in text rendering the UTFGrid driver doesn’t support Truetype symbol rendering.
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OGC

10.1 OGC Support and Configuration

Interoperability is increasingly becoming a focus point for organizations that distribute and share data over the Internet.
The Open Geospatial Consortium (OGC) focuses on the development of publicly available geospatial web standards.
MapServer supports numerous OGC standards, allowing users to publish and consume data and services in an appli-
cation neutral implementation manner.

10.1.1 MapServer OGC Specification support

• Web Map Service (OGC:WMS) 1.0.0, 1.0.7, 1.1.0, 1.1.1, 1.3.0

• Web Feature Service (OGC:WFS) 1.0.0, 1.1.0, 2.0

• Web Coverage Service (OGC:WCS) 1.0.0, 1.1.0, 2.0.0, 2.0.1

• Geography Markup Language (OGC:GML) 2.1.2, 3.1.0 Level 0 Profile, 3.2.1

• GML Application Schema - Coverages (OGC:GMLCOV) 1.0.0, 1.0.1

• Web Map Context Documents (OGC:WMC) 1.0.0, 1.1.0

• Styled Layer Descriptor (OGC:SLD) 1.0.0

• Filter Encoding Specification (OGC:FES) 1.0.0

• Sensor Observation Service (OGC:SOS) 1.0.0

• Observations and Measurements (OGC:OM) 1.0.0

• SWE Common (OGC:SWE) 1.0.1

• OWS Common (OGC:OWS) 1.0.0, 1.1.0, 2.0.0

10.1.2 Accessing OGC services over HTTPS

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Original Author
Normand Savard
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Table of Contents

• Accessing OGC services over HTTPS

– Introduction

– Requirements

– Verify Installation

– CA Bundle

– Mapfile Setup

– Remote Server with a Self-Signed SSL Certificate

Introduction

The following documentation explains how to set up MapServer as a client to access a WMS/WFS server through a
secure SSL connection using the HTTPS protocol. It describes the common problems a user could encounter and how
to solve them.

Requirements

MapServer 5.4.1 or more recent, compiled with cURL. cURL must be built with SSL support. You should also follow
the full steps for configuring your related OGC client support, through:

• WMS Client Howto

• WFS Client Howto

Verify Installation

cURL executable

First check that cURL is found locally, and was built with SSL support:

curl --version

On Linux systems the response should be similar to (notice the ssl protocol):

curl 7.68.0 (x86_64-pc-linux-gnu) libcurl/7.68.0 OpenSSL/1.1.1g zlib/1.2.8
Release-Date: 2020-01-08
Protocols: dict file ftp ftps gopher http https imap imaps pop3 pop3s rtsp smb smbs smtp␣
→˓smtps telnet tftp
Features: AsynchDNS HTTPS-proxy Largefile libz NTLM NTLM_WB SSL TLS-SRP UnixSockets

On Windows the response should be similar to (notice the ssl protocol):
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curl 7.68.0 (i386-pc-win32) libcurl/7.68.0 OpenSSL/1.1.1d zlib/1.2.7 WinIDN
Release-Date: 2020-01-08
Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtsp␣
→˓smb smbs smtp smtps telnet tftp
Features: AsynchDNS HTTPS-proxy IDN IPv6 Kerberos Largefile NTLM SPNEGO SSL SSPI␣
→˓UnixSockets libz

Tip: MS4W users can execute curl by first executing setenv.bat

Next, verify your connection with the cURL commandline, to a remote HTTPS service such as:

curl https://demo.mapserver.org/cgi-bin/wms?

You should receive a result such as:

No query information to decode. QUERY_STRING is set, but empty.

If you receive an error message such as the following, you likely have not pointed to the local CA bundle properly:

curl: (60) SSL certificate problem: unable to get local issuer certificate
More details here: https://curl.haxx.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

CA Bundle

The cURL CA (certificate authority) bundle file must be located on your local machine/server.

Download the CA bundle file “cacert.pem” found at http://curl.haxx.se/docs/caextract.html or if you have the cURL
source you could create the CA bundle by executing “make ca-bundle” or “make ca-firefox” (if you have Firefox and
the certutil tool installed). If you used the second choice, the bundle file will be named ca-bundle.crt and will be found
in the lib directory under the cURL root directory. See http://curl.haxx.se/docs/caextract.html for more details. Store
this file in the location pointed to by the CURL_CA_BUNDLE environment variable.

Set the CURL_CA_BUNDLE environment variable to point to the bundle file (e.g. export
CURL_CA_BUNDLE=/path/to/my-ca-bundle.ext where my-ca-bundle.ext could be cacert.pem or ca-bundle.crt).

Note: MS4W comes with HTTPS already configured for Windows users, and the configuration is explained at https:
//ms4w.com/README_INSTALL.html#certificates-for-https
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Mapfile Setup

Edit your map file to add the WMS connection URL. For example:

CONNECTION "https://demo.mapserver.org/cgi-bin/wms?"
CONNECTIONTYPE WMS

Test with the shp2img utility, to verify that MapServer can connect through HTTPS and generate a valid map image,
such as the command:

shp2img -m test.map -o ttt.png -map_debug 3

If you receive an error from MapServer similar to the following, it means that you have not pointed to your local CA
bundle properly:

msDrawMap(): WMS connection error. Failed to draw WMS layer named 'country_bounds'. This␣
→˓most likely happened because the remote WMS server returned an invalid image, and XML␣
→˓exception or another unexpected result in response to the GetMap request. Also check␣
→˓and make sure that the layer's connection URL is valid. <br>
msDrawWMSLayerLow(): WMS server error. WMS GetMap request failed for layer 'country_
→˓bounds' (Status -60: SSL certificate problem: unable to get local issuer certificate).
→˓<br>
msHTTPExecuteRequests(): HTTP request error. HTTP: request failed with curl error code␣
→˓60 (SSL certificate problem: unable to get local issuer certificate) for https://demo.
→˓mapserver.org/cgi-bin/wms?LAYERS=country_bounds&REQUEST=GetMap&SERVICE=WMS&
→˓FORMAT=image/gif&STYLES=&HEIGHT=300&VERSION=1.1.1&SRS=EPSG:4326&WIDTH=400&BBOX=-180.
→˓451127819549,-135.338345864662,180.451127819549,135.338345864662&TRANSPARENT=TRUE <br>

Remote Server with a Self-Signed SSL Certificate

If you get the following error, it means that your remote server probably use a self-signed SSL certificate and the server
certificate is not included in your CA bundle file.

curl: (60) SSL certificate problem, verify that the CA cert is OK. Details:
error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
More details here: http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by default, using a "bundle"
of Certificate Authority (CA) public keys (CA certs). If the default
bundle file isn't adequate, you can specify an alternate file
using the --cacert option.
If this HTTPS server uses a certificate signed by a CA represented in
the bundle, the certificate verification probably failed due to a
problem with the certificate (it might be expired, or the name might
not match the domain name in the URL).
If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

To get the remote server certificate you have to execute this command:

openssl s_client -connect domainname:port

Copy everything from the “—–BEGIN CERTIFICATE—–” tag to “—–END CERTIFICATE—–” tag. Paste it at the
end of the my-ca-bundle.ext file.
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If you get the error “Verification error: unable to get local issuer certificate” you may be missing an intermediate
certificate. If you have saved locally the certificate file you can supply this file as a parameter to openssl as follows:

openssl s_client -CAfile C:\Certs\curl-ca-bundle.crt -connect domainname:port

Verify your connection with the cURL command line:

curl https://demo.mapserver.org/cgi-bin/wms?

Note: If you get the following error, it means that the domain name in the URL request is not corresponding to the
one that was declared when creating the remote server certificate.

curl: (51) SSL: certificate subject name 'domainname' does not match target host name
→˓'domainname'

You have to use the exact same domain name as the one appearing in the “Common Name” prompt used when generating
the remote server certificate. You cannot use the remote server ip for instance. It means that the following URL is not
acceptable.

CONNECTION "https://xxx.xxx.xxx.xxx:port/cgi-bin/mapserv?map=/path/to/wms.map"
CONNECTIONTYPE WMS

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable, by
setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as recom-
mended in the document Limit Mapfile Access. All possible environment variables to secure your server are listed in
Environment Variables.

10.1.3 WMS Server

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2022-05-20

Table of Contents

• WMS Server

– Introduction

∗ Links to WMS-Related Information

∗ How does a WMS Work

– Setting Up a WMS Server Using MapServer

∗ Install the Required Software
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∗ Setup a Mapfile For Your WMS

∗ Test Your WMS Server

∗ GetLegendGraphic Request

– Changing the Online Resource URL

∗ Apache ReWrite rules (using Apache mod_rewrite)

∗ Apache environment variables - MS_MAPFILE

∗ Apache SetEnvIf

∗ ASP script (IIS - Microsoft Windows)

∗ Mapscript wrapper

∗ Wrapper script (Unix)

– WMS 1.3.0 Support

∗ Major features related to the WMS 1.3.0 support

∗ Coordinate Systems and Axis Orientation

∗ Example of requests

∗ Other notable changes

∗ Some Missing features

∗ OCG compliance tests

– Reference Section

∗ Web Object Metadata

∗ Layer Object Metadata

∗ Layer Metadata API

∗ Vendor specific WMS parameters

∗ Cascading WMS Requests

∗ Sample WMS Server Mapfile

– FAQ / Common Problems

Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation of a
network of Map Servers from which clients can build customized maps. The following documentation is based on the
Open Geospatial Consortium’s (OGC) Web Map Server Interfaces Implementation Specification v1.1.1.

MapServer v3.5 or more recent is required to implement WMS features. At the time this document was written,
MapServer supports the following WMS versions: 1.0.0, 1.0.7, 1.1.0 (a.k.a. 1.0.8), 1.1.1 and 1.3.0.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included in the
“WMS-Related Information” section below.
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Links to WMS-Related Information

• MapServer WMS Client Howto

• WMS 1.3.0 specification

• WMS 1.1.1 specification

• OGC’s WMS homepage

• WMS Cookbook

• MapServer OGC Web Services Workshop package

• MapServer Styled Layer Descriptor (SLD) Howto

• MapServer WMS Time Support Howto

How does a WMS Work

WMS servers interact with their clients via the HTTP protocol. In most cases, a WMS server is a CGI program. This
is also the case with MapServer.

The WMS specification defines a number of request types, and for each of them a set of query parameters and associated
behaviors. A WMS-compliant server MUST be able to handle at least the following 2 types of WMS requests:

1. GetCapabilities: return an XML document with metadata of the Web Map Server’s information

2. GetMap: return an image of a map according to the user’s needs.

And support for the following types is optional:

1. GetFeatureInfo: return info about feature(s) at a query (mouse click) location. MapServer supports 3 types of
responses to this request:

• text/plain output with attribute info.

• text/html output using MapServer query templates (see Templating) specified in the CLASS TEMPLATE
parameter (the filename has to have an .html extension). The MIME type returned by the Class templates
defaults to text/html and can be controlled using the metadata “wms_feature_info_mime_type”.

• application/vnd.ogc.gml, GML.1 or GML for GML features.

2. DescribeLayer: return an XML description of one or more map layers. To execute this:

• for vector layers: to have a valid return the user needs to setup wfs_onlineresource (or ows_onlineresource)
metadata either at the map level or at the layer level (the layer level metadata is the one which is used if
both are defined) - for raster layers: the metadata is wcs_onlineresource with the same logic as above.

3. GetLegendGraphic: returns a legend image (icon) for the requested layer, with label(s). More information on
this request can be found in the GetLegendGraphic section later in this doc.

With respect to MapServer specifically, it is the “mapserv” CGI program that knows how to handle WMS requests. So
setting up a WMS server with MapServer involves installing the mapserv CGI program and a setting up a mapfile with
appropriate metadata in it. This is covered in the rest of this document.
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Setting Up a WMS Server Using MapServer

Install the Required Software

WMS requests are handled by the mapserv CGI program. Not all versions of the mapserv program do include WMS
support (it is included by default when you compile together with the PROJ library), so the first step is to check that
your mapserv executable includes WMS support. One way to verify this is to use the “-v” command-line switch and
look for “SUPPORTS=WMS_SERVER”.

(Unix users should refer to the Compiling on Unix document for any compiling instructions, and Windows users might
want to use MS4W, which comes ready with WMS/WFS support)

Example 1. On Unix:

$ ./mapserv -v
MapServer version 7.7-dev OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=SVG_SYMBOLS SUPPORTS=RSVG SUPPORTS=ICONV SUPPORTS=FRIBIDI
SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER
SUPPORTS=GEOS SUPPORTS=POINT_Z_M SUPPORTS=PBF INPUT=JPEG
INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Example 2. On Windows:

C:\ms4w> mapserv -v
MapServer version 7.7.0-dev (MS4W 4.0.5) OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=SVG_SYMBOLS SUPPORTS=SVGCAIRO SUPPORTS=ICONV SUPPORTS=FRIBIDI
SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER
SUPPORTS=FASTCGI SUPPORTS=THREADS SUPPORTS=GEOS SUPPORTS=POINT_Z_M
SUPPORTS=PBF INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Setup a Mapfile For Your WMS

Each instance of WMS server that you setup needs to have its own mapfile. It is just a regular MapServer mapfile in
which some parameters and some metadata entries are mandatory. Most of the metadata is required in order to produce
a valid GetCapabilities output.

Here is the list of parameters and metadata items that usually optional with MapServer, but are required (or strongly
recommended) for a WMS configuration:
At the MAP level:

• Map NAME

• Map PROJECTION

• Map Metadata (in the WEB Object):

– wms_title

– wms_onlineresource

– wms_srs (unless PROJECTION object is defined using “init=epsg:. . . ”)

– wms_enable_request
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And for each LAYER:
• Layer NAME

• Layer PROJECTION

• Layer METADATA

– wms_title

– wms_srs (optional since the layers inherit the map’s SRS value)

• Layer STATUS

– Layers set to STATUS DEFAULT will always be sent to the client.

– Layers set to STATUS ON or STATUS OFF can be requested by the client.

• Layer TEMPLATE (required for GetFeatureInfo requests - see Templating)

Let’s go through each of these parameters in more detail:

• Map Name and wms_title:
WMS Capabilities requires a Name and a Title tag for every layer. The Map’s NAME and wms_title metadata
will be used to set the root layer’s name and title in the GetCapabilities XML output. The root layer in the WMS
context corresponds to the whole mapfile. You can suppress the root layer’s name by setting wms_rootlayer_name
to “”.

• Layer Name and wms_title metadata:
Every individual layer needs its own unique name and title. Layer names are also used in GetMap and GetFea-
tureInfo requests to refer to layers that should be included in the map output and in the query. Layer names must
start with a letter when setting up a WMS server (layer names should not start with a digit or have spaces in
them).

• Map PROJECTION and wms_srs metadata:
WMS servers have to advertise the projection in which they are able to serve data using EPSG projection codes
(see The EPSG web page for more background on EPSG codes). The PROJ library come with a table of EPSG
initialization codes and allows users to define a projection like this:

PROJECTION
"init=epsg:4269"

END

(Note that “epsg” has to be in lowercase when used in the PROJ ‘init’ directive.)

If the MAP PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will also use this
information to generate a <BoundingBox> tag for the top-level layer in the WMS capabilities document. Bound-
ingBox is a mandatory element of WMS capabilities for WMS 1.3.0 (for WMS 1.1.0 it is optional, but it is good
practice to allow MapServer to include it when possible).

The above is sufficient for MapServer to recognize the EPSG code and include it in SRS tags in the capabilities
output (wms_srs metadata is not required in this case). However, it is often impossible to find an EPSG code
to match the projection of your data. In those cases, the “wms_srs” metadata is used to list one or more EPSG
codes that the data can be served in, and the PROJECTION object contains the real PROJ definition of the data’s
projection.

Here is an example of a server whose data is in a Lambert Conformal Conic projection (3978). Its capabili-
ties output will advertise EPSG:3857 (web mercator), EPSG:4269 and EPSG:4326 projections (lat/lon), but the
PROJECTION object is set to the real projection that the data is in:
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NAME "DEMO"
...

WEB
...
METADATA
"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=/path/to/your-

→˓mapfile.map" #must change mapfile path
"wms_srs" "EPSG:3857 EPSG:4269 EPSG:4326"

END
END

PROJECTION
"init=epsg:3978"

END
...
END

In addition to EPSG:xxxx projections, a WMS server can advertise projections in the AUTO:xxxx namespace.
AUTO projections 42001 to 42005 are internally supported by MapServer. However, AUTO projections are
useful only with smart WMS clients, since the client needs to define the projection parameters in the WMS
requests to the server. For more information see Annex E of the WMS 1.1.1 specification and section 6.5.5.2 of
the same document. See also the FAQ on AUTO projections at the end of this document.

• Layer PROJECTION and wms_srs metadata:
By default layers inherit the SRS of their parent layer (the map’s PROJECTION in the MapServer case). For
this reason it is not necessary (but still strongly recommended) to provide PROJECTION and wms_srs for every
layer. If a layer PROJECTION is not provided then the top-level map projection will be assumed.

Layer PROJECTION and wms_srs metadata are defined exactly the same way as the map’s PROJECTION and
wms_srs metadata.

For vector layers, if a PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will
also use this information to generate a <BoundingBox> tag for this layer in the WMS capabilities document.
BoundingBox is a mandatory element of WMS capabilities for WMS 1.3.0 (for WMS 1.1.0 it is optional, but it
is good practice to allow MapServer to include it when possible).

• “wms_onlineresource” metadata:
The wms_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should be
used to access your server. This is required for the GetCapabilities output. If wms_onlineresource is not provided
then MapServer will try to provide a default one using the script name and hostname, but you shouldn’t count on
that too much. It is strongly recommended that you provide the wms_onlineresource metadata.

See section 6.2.2 of the WMS 1.1.1 specification for the whole story about the online resource URL. Basically,
what you need is a complete HTTP URL including the http:// prefix, hostname, script name, potentially a “map=”
parameter, and terminated by “?” or “&”.

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=/path/to/your-mapfile.map" #must change␣
→˓mapfile path

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and then
your server’s online resource URL could be something like:
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http://my.host.com/cgi-bin/mywms?

This is covered in more detail in the section “More About the Online Resource URL” below.

• “wms_enable_request” metadata:
Specify which requests to enable. If not specified, no requests will be enabled! See the explanation below.

• Configuring for GetFeatureInfo Requests:
You must set the layer TEMPLATE parameter for the layer to be queryable by GetFeatureInfo requests (see
Templating), with a value such as “empty” or the name of your html template file. For requests of type “text/html”
you should also set the layer HEADER and FOOTER parameters.

MAP
...
LAYER
...
TEMPLATE "empty"
...

END #layer
END #map

As of MapServer 4.6 you must set the gml_* metadata for the layer attributes to be served (see the Layer
Object metadata in the Reference Section later in this document). To include geometry, gml_geometries and
gml_[geometry name]_type has to be specified.

Here are working examples of GetFeatureInfo requests: text/plain / text/html / gml (for gml, your browser might
ask you to save the file, if so save it locally as a .gml file and view it in a text editor)

Test Your WMS Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure nothing
is missing.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=/path/to/your-mapfile.map&SERVICE=WMS&VERSION=1.1.
→˓1

&REQUEST=GetCapabilities

Here is a working GetCapabilities request (note that the SERVICE parameter is required for all GetCapabilities re-
quests):

https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

This should return a document of MIME type application/vnd.ogc.wms_xml, so your browser is likely going to prompt
you to save the file. Save it and open it in a text editor (Emacs, Notepad, etc.), and you will see the returned XML from
the WMS server.

If you get an error message in the XML output then take necessary actions. Common problems and solutions are listed
in the FAQ at the end of this document.

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”. . . MapServer inserts XML comments starting with “<!–WARNING: “ in the XML output if it detects missing
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mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix all of them
before you can register your server with a WMS client, otherwise things are likely not going to work.

Note that when a request happens, it is passed through WMS, WFS, and WCS in MapServer (in that order) until one
of the services respond to it.

Test With a GetMap Request

OK, now that we know that our server can produce a valid XML GetCapabilities response we should test the GetMap
request. MapServer only checks for a few of the required GetMap parameters, so both of the minimum MapServer
parameters and a valid GetMap request will be explained below.

The following is a list of the required GetMap parameters according to the WMS spec:

VERSION=version: Request version

REQUEST=GetMap: Request name

LAYERS=layer_list: Comma-separated list of one or more map layers. Optional if SLD parameter is
present.

STYLES=style_list: Comma-separated list of one rendering style per requested layer. Optional if SLD
parameter is present. Set “STYLES=” with an empty value to use default style(s). Named styles are also
supported and are controlled by CLASS GROUP names in the mapfile.

Note: As of the MapServer 8.0 release, MapServer will strictly require the “STYLES=” parameter
(unless SLD & SLD_BODY are specified). To avoid this requirement, version 8.0 will allow setting
“wms_allow_getmap_without_styles” “true” in MAP.WEB.METADATA).

SRS=namespace:identifier: Spatial Reference System.

BBOX=minx,miny,maxx,maxy: Bounding box corners (lower left, upper right) in SRS units.

WIDTH=output_width: Width in pixels of map picture.

HEIGHT=output_height: Height in pixels of map picture.

FORMAT=output_format: Output format of map.

Note: WMS Servers only advertise supported formats that are part of the gd / gdal libraries.

A valid example would therefore be:

http://my.host.com/cgi-bin/mapserv?
map=/path/to/your-mapfile.map
&SERVICE=WMS&VERSION=1.1.1
&REQUEST=GetMap&LAYERS=prov_bound&STYLES=&SRS=EPSG:4326
&BBOX=-173.537,35.8775,-11.9603,83.8009&WIDTH=400&HEIGHT=300
&FORMAT=image/png

Here is a working valid request.
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Test with a Real Client

If you have access to a WMS client, then register your new server’s online resource with it and you should be off and
running.

If you don’t have your own WMS client installed already, here are a few pointers:

• MapServer itself can be used as a WMS client, see the MapServer WMS Client Howto.

• QGIS is a full GIS package which includes WMS client support. (recommended)

Tip: You can/should use the QGIS Network Logger to get the exact GetMap or GetCapabilities requests sent
by QGIS.

• OpenJUMP is a desktop GIS package which includes WMS client support.

• uDig is a desktop package that allows users to add WMS layers.

• Deegree provides a WMS client.

This list is not exhaustive, there are several Open Source or proprietary packages that offer WMS support and could be
used to interact with your new MapServer WMS server instance.

GetLegendGraphic Request

This request returns a legend image (icon) for the specified layer. The request will draw an icon and a label for all
classes defined on the layer. If the requested layername is a GROUP-name, all included layers will be returned in the
legend-icon.

Requirements

The following are required in the WMS server mapfile to enable this GetLegendGraphic request:

• a LEGEND object.

• a CLASS object for each layer.

• a NAME in the CLASS object.

• the STATUS of each LAYER must be set to ON.

Parameters

The following are valid parameters for this GetLegendGraphic request:

• LAYER - (Required) Name of the WMS layer to return the legend image of. Note that this is the <Name>
parameter of the Layer in the GetCapabilities.

• FORMAT - (Required) Format of the legend image (e.g. “image/png”).

• WIDTH - (Optional) Width of the legend image. Note that the Width parameter is only used when the Rule
parameter is also used in the request.

• HEIGHT - (Optional) Height of the legend image. Note that the Height parameter is only used when the Rule
parameter is also used in the request.
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• SLD - (Optional) The URL to the SLD. Applies the SLD on the layer and the legend is drawn after the SLD is
applied (using the classes specified by the SLD). Note here that you need to put a <Name>class1</Name> inside
the Rule element so that a class name is created from the SLD and therefore a correct legend image.

• SLD_BODY - (Optional) The body (code) of the SLD, instead of specifying a URL (as in the ‘SLD’ parameter).

• SLD_VERSION - (Optional) The SLD version.

• SCALE - (Optional) Specify a scale so that only layers that fall into that scale will have a legend.

• STYLE - (Optional) The style.

• RULE - (Optional) Specify the name of the CLASS to generate the legend image for (as opposed to generating
an icon and label for ALL classes for the layer).

Note: All rules that are used to draw the legend in normal CGI mode apply here. See the CGI Reference doc if
necessary.

The CLASS object’s KEYIMAGE parameter can also be used to specify a legend image for a CLASS. See the MapFile
Reference doc if necessary. Example Request

An example request might look like:

http://127.0.0.1/cgi-bin/mapserv.exe?map=/path/to/your-mapfile.map&SERVICE=WMS&VERSION=1.
→˓1.1&layer=park&
REQUEST=getlegendgraphic&FORMAT=image/png

Content Dependent Legends

Support for content dependent legends is supported (since the MapServer 6.4 release) for WMS GetLegendGraphic
calls on POINT, LINE and POLYGON layers, when the client includes the (non-standard) BBOX, SRS/CRS and
WIDTH/HEIGHT parameters in the request URL (such as a GetMap request). If these parameters are not present,
the normal legend rendering will occur. For more information, please see rfc101.

Changing the Online Resource URL

As mentioned in the section “Setup a Mapfile / wms_onlineresource metadata” above, the following Online Resource
URL is perfectly valid for a MapServer WMS according to section 6.2.2 or the WMS 1.1.1 specification:

http://my.host.com/cgi-bin/mapserv?map=/path/to/your-mapfile.map

However, some people will argue that the above URL contains mandatory vendor-specific parameters and that this is
illegal. First we would like to point that “map=. . . ” is not considered a vendor-specific parameter in this case since it
is part of the Online Resource URL which is defined as an opaque string terminated by “?” or “&” (See WMS 1.1.1
section 6.2.2).

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable, by
setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as recom-
mended in the document Limit Mapfile Access. All possible environment variables to secure your server are listed in
Environment Variables.

But anyway, even if it’s valid, the above URL is still ugly. And you might want to use a nicer URL for your WMS
Online Resource URL. Here are some suggestions:
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Apache ReWrite rules (using Apache mod_rewrite)

One can use Apache’s mod_rewrite to avoid specifying the map, or any other default parameter in the mapserver URL.
This task consist of three steps, specifying the mod_rewrite module to be loaded, enabling the mod_rewrite module for
the selected directories and at last to write a .htaccess file to do the rewriting.

In the httpd.conf file, the mod_rewrite module is per default disabled. To enable it, remove the opening # in the line

#LoadModule rewrite_module modules/mod_rewrite.so

To be able to use the module, it must be enabled, using the directive AllowOverride. This can be done per server
or per directory. If you just have one server, add an “AllowOverride All” line in the httpd.conf file (see the Apache
documentation to be sure about the security implications of this). Per directory is the easiest way to make it work on
virtual hosts. Within the <virtualHost> section of the httpd.conf insert:

<Directory myhtdocsdir>
AllowOverride All

</Directory>

Where myhtdocsdir is the directory defined as documentroot for the actual virtual server.

When the directives are set to load and enable the mod_rewrite module, Apache has to be restarted.

In a web-accessible directory make a .htaccess file like the following:

RewriteEngine on
RewriteRule wmsmap?(.*) /cgi-bin/mapserv?map=/home/www/mapserverstuff/mymapfile.map&$1

The rewriteRule says: given a webpage starting with wmsmap, pick out the query parameters, make a new page request
starting with /cgi-bin/mapserv?map=(. . . )? and add on whatever was the query parameters in the original page request.

e.g, the URL wmsmap?mode=map will be rewritten as

/cgi-bin/mapserv?map=/home/www/mapserverstuff/mymapfile.map&mode=map

If just the URL wmsmap is given (without any parameters) a page not found error will show up as that does not match
the wmsmap? expression.

Apache environment variables - MS_MAPFILE

A default mapfile can be specified using the MS_MAPFILE environment variable:

Alias /mywms /usr/lib/cgi-bin/mapserver
<Location /mywms>

SetHandler cgi-script
Options ExecCGI
SetEnv MS_MAPFILE /path/to/mymapfile.map

</Location>
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Apache SetEnvIf

Another option is to use the “setenvif” feature of Apache: use symbolic links that all point to a same mapserv binary,
and then for each symbolic link test the URL, and set the MAP environment accordingly.

For Windows and Apache users the steps are as follows (this requires Apache 1.3 or newer):

• Copy mapserv.exe to a new name for your WMS, such as “mywms.exe”.

• In httpd.conf, add:

SetEnvIf Request_URI "/cgi-bin/mywms" MS_MAPFILE=/path/to/mymap.map

ASP script (IIS - Microsoft Windows)

On IIS servers (Windows), you can use the following ASP script:

Note: The script below, while functional, is intended only as an example of using ASP to filter MapServer requests.
Using ASP in a production WMS server will likely require additional ASP especially in the area of error handling and
setting timeouts.*

<%
Server.ScriptTimeout = 360

Select Case Request.ServerVariables("REQUEST_METHOD")
Case "GET" strRequest = Request.QueryString
Case "POST" strRequest = Request.Form

End Select

strURL = "http://myserver/cgi-bin/mapserv.exe?
map=C:\Inetpub\wwwroot\workshop\itasca.map&" & strRequest

Dim objHTTP
Set objHTTP = Server.CreateObject("MSXML2.ServerXMLHTTP")
objHTTP.open "GET", strURL, false
objHTTP.send ""

Response.ContentType = objHTTP.getResponseHeader("content-type")
Response.BinaryWrite objHTTP.responseBody

Set objHTTP = Nothing
%>
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Mapscript wrapper

Some OGC services (WFS, SOS) support both GET and POST requests. Here, you can use a minimal MapScript WxS
wrapper. Here’s a Python example:

#!/usr/bin/python

import mapscript

req = mapscript.OWSRequest()
req.loadParams()
map = mapscript.mapObj('/path/to/config.map')
map.OWSDispatch(req)

Wrapper script (Unix)

On Unix servers, you can setup a wrapper shell script that sets the MS_MAPFILE environment variable and then passes
control to the mapserv executable. . . that results on a cleaner OnlineResource URL:

#! /bin/sh
MS_MAPFILE=/path/to/demo.map
export MS_MAPFILE
/path/to/mapserv

Note: Using a /bin/sh wrapper script causes an overhead on system resources as two processes have to be spawned
instead of one, and is therefore not recommended.

WMS 1.3.0 Support

MapServer 5.4 adds support for WMS 1.3.0. Although the general mechanism in MapServer to support this new
specification are the same, there are some notable upgrades.

Major features related to the WMS 1.3.0 support

• Support WMS 1.3.0 basic operations: GetCapabilities, GetMap and GetFeatureInfo.

• Implement the Styled Layer Descriptor profile of the Web Map Service Implementation Specification. This
specification extends the WMS 1.3.0 and allows to advertise styling capabilities (Styled Layer Descriptor (SLD)
support). It also defines two additional operations, GetLegendGraphic and DescribeLayer.

• Implement the Symbology Encoding Implementation Specification, which is the new version of the SLD. Read
support was added for Point, Line, Polygon, Raster symbolizers.

• Upgrade the generation of SLD to version 1.1.0 (SLD generated through through the GetStyles operation or
through MapScript).
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Coordinate Systems and Axis Orientation

The most notable changes introduced in WMS 1.3.0 are the:

• the axis changes

• the introduction of new coordinate reference systems

• the use of CRS parameter (instead of SRS)

The axis order in previous versions of the WMS specifications was to always use easting (x or lon ) and northing (y or
lat). WMS 1.3.0 specifies that, depending on the particular CRS, the x axis may or may not be oriented West-to-East,
and the y axis may or may not be oriented South-to-North. The WMS portrayal operation shall account for axis order.
This affects some of the EPSG codes that were commonly used such as ESPG:4326. MapServer 5.x makes sure that
coordinates passed to the server (as part of the GetMap BBOX parameter) as well as those advertised in the capabilities
document reflect the inverse axe orders for EPSG codes between 4000 and 5000.

MapServer 6.0 and up holds a list of EPSG codes with inverted axis order. It is currently based on EPSG database
version 7.6. It is also possible to define the axis order at build time for a specific ESPG code (see issue #3582). This
allows for example to use the “normal” axis order for some of EPSG codes between 4000 and 5000.

In addition, the WMS 1.3.0 defines a series of new coordinate system. These are the ones that are currently supported
in MapServer:

• CRS:84 (WGS 84 longitude-latitude)

• CRS:83 (NAD83 longitude-latitude)

• CRS:27 (NAD27 longitude-latitude)

• AUTO2:42001 (WGS 84 / Auto UTM )

• AUTO2:42002 (WGS 84 / Auto Tr. Mercator)

• AUTO2:42003 (WGS 84 / Auto Orthographic)

• AUTO2:42004 (WGS 84 / Auto Equirectangular)

• AUTO2:42005 (WGS 84 / Auto Mollweide)

Example of requests

Users can use the CRS:84 coordinate system and order the BBOX coordinates as long/lat:

• . . .&CRS=CRS:84&BBOX=-180.0,-90.0,180.0,90.0&. . . (example request)

Users can also use the ESPG:4326 coordinates and use the axis ordering of lat/long:

• . . .&EPSG:4326&BBOX=-90.0,-180.0,90,180.0&. . . (example request)

Other notable changes

• valid values for the EXCEPTIONS parameter in a GetMap request are XML, INIMAGE, BLANK

• valid value for the EXCEPTIONS parameter in a GetFeatureInfo request is XML

• LayerLimit is introduced, allowing a server to advertise and limit the number of layers a client is allowed to
include in a GetMap request
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Some Missing features

• WMS 1.3.0 Post request should be an XML document containing the different operations and parameters.

• SLD documents containing elements from the Feature Encoding 1.1 specification could potentially use ESPG
projections with some filters. It is not yet clear nor implemented if the axis ordering should be taken into account
in these specific cases.

OCG compliance tests

As of version 5.4, MapServer passes all the basic and query tests of the OGC CITE test suite for WMS 1.3.0.

Reference Section

The following metadata are available in the setup of the mapfile:

(Note that each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer tries the
‘wms_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of
duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere
for common metadata items shared by multiple OGC interfaces.)

Web Object Metadata

ows_allowed_ip_list (or wms_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or wms_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_http_max_age
• Description: (Optional) an integer (in seconds) to specify how long a given map response should be considered

new. Setting this directive allows for aware WMS clients to use this resulting HTTP header value as a means
to optimize (and minimize) requests to a WMS Server. More info is available at https://www.mnot.net/cache_
docs/#CACHE-CONTROL

ows_schemas_location
• Description: (Optional) (Note the name ows_schemas_location and not wms_. . . this is because all OGC Web

Services (OWS) use the same metadata) Root of the web tree where the family of OGC WMS XMLSchema files
are located. This must be a valid URL where the actual .xsd files are located if you want your WMS output to
validate in a validating XML parser. Default is http://schemas.opengis.net.
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ows_sld_enabled
• Description: (Optional) A value (true or false) which, when set to “false”, will ignore SLD and SLD_BODY

parameters in order to disable remote styling of WMS layers. Also, SLD is not advertised in WMS Capabilities
as a result

ows_updatesequence
• Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a client

cache of the contents of a service metadata document. The parameter value can be an integer, a timestamp in
[ISO 8601:2000] format, or any other number or string.

wms_abstract
• WMS TAG Name: Abstract (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) A blurb of text providing more information about the WMS server.

wms_accessconstraints
• WMS TAG Name: AccessConstraints (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Access constraints information. Use the reserved word “none” if there are no access
constraints.

wms_addresstype, wms_address, wms_city, wms_stateorprovince, wms_postcode, wms_country
• WMS TAG Name: ContactAddress and family (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact address information. If provided then all six metadata items are required.

wms_allow_getmap_without_styles

Note: wms_allow_getmap_without_styles will be included in the MapServer 8.0 release.

• Description: (Optional) “true” or “false”. If true, the “STYLES=” GetMap parameter will not be required in
the request. If false (the default as of MapServer 8.0) the “STYLES=” GetMap parameter will be required in the
request.

wms_attribution_logourl_format
• Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other

wms_attribution_logourl_* metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_height
• Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*

metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_href
• Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata must

also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_width
• Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_* meta-

data must also be specified.
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• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_onlineresource
• Description: (Optional) The data provider’s URL.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_title
• Description: (Optional) Human-readable string naming the data

provider.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_bbox_extended:
• Description: (Optional) “true” or “false”. If true, bounding boxes are reported for all supported SRS / CRS in

the capabilities document. If false, only the bounding box of the first SRS / CRS is reported.

• Introduced in 6.0.

wms_contactelectronicmailaddress
• WMS TAG Name: ContactElectronicMailAddress (WMS1.1.1,

sect. 7.1.4.2)

• Description: Optional contact Email address.

wms_contactfacsimiletelephone
• WMS TAG Name: ContactFacsimileTelephone (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact facsimile telephone number.

wms_contactperson, wms_contactorganization, wms_contactposition
• WMS TAG Name: ContactInformation, ContactPerson, ContactOrganization, ContactPosition (WMS1.1.1, sect.

7.1.4.2)

• Description: Optional contact information. If provided then all three metadata items are required.

wms_contactvoicetelephone
• WMS TAG Name: ContactVoiceTelephone (WMS1.1.1, sect. 7.1.4.2)

• Description: Optional contact voice telephone number.

wms_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be

enabled: GetCapabilities, GetMap, GetFeatureInfo and GetLegendGraphic. A “!” in front of a request will
disable the request. “*” enables all requests.

• Examples:

To enable only GetMap and GetFeatureInfo:

"wms_enable_request" "GetMap GetFeatureInfo"

To enable all requests except GetFeatureInfo

"wms_enable_request" "* !GetFeatureInfo"

wms_encoding
• WMS TAG Name: Encoding
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• Description: Optional XML capabilities encoding type. The default is ISO-8859-1.

wms_feature_info_mime_type
• WMS TAG Name: Feature_info_mime_type

• Description:

– Used to specify an additional MIME type that can be used when responding to the GetFeature request.

For example if you want to use the layer’s HTML template as a base for its response, you need to add
“WMS_FEATURE_INFO_MIME_TYPE” “text/html”. Setting this will have the effect of advertising
text/html as one of the MIME types supported for a GetFeature request. You also need to make sure
that the layer points to a valid html template (see Templating). The client can then call the server with
INFO_FORMAT=text/html.

– If not specified, MapServer by default has text/plain and GML implemented.

wms_fees
• WMS TAG Name: Fees (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Fees information. Use the reserved word “none” if there are no fees.

wms_getcapabilities_version
• Description: (Optional) Default version to use for GetCapabilities requests that do not have a version parameter.

If not set, the latest supported version will be returned.

wms_getlegendgraphic_formatlist
• Description: (Optional) A comma-separated list of valid formats for a WMS GetLegendGraphic request.

wms_getmap_formatlist
• Description: (Optional) A comma-separated list of valid formats for a WMS GetMap request.

wms_keywordlist
• WMS TAG Name: KeywordList (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching. As
of WMS 1.1.0 no controlled vocabulary has been defined.

wms_keywordlist_vocabulary
• WMS Attribute Name: vocabulary of KeywordList -> Keyword

• Description: (Optional) Name of vocabulary used in wms_keywordlist_[vocabulary’s name]_items as de-
scribed below.

wms_keywordlist_[vocabulary’s name]_items
• WMS TAG Name: KeywordList -> Keyword

• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching for
given vocabulary.

wms_languages
• Description: (Optional) A comma-separated list of supported languages. For details please refer to the section

Multi-language support for certain capabilities fields in the INSPIRE View Service documentation.

wms_layerlimit
• WMS TAG Name: LayerLimit (WMS1.3.0, sect. 7.2.4.3)
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• Description: (Optional) The maximum number of layers a WMS client can specify in a GetMap request. If not
set, then no limit is imposed.

wms_onlineresource
• WMS TAG Name: OnlineResource (WMS1.1.1, sect. 6.2.2)

• Description: (Recommended) The URL that will be used to access this WMS server. This value is used in the
GetCapabilities response.

See also:
Sections “Setup a Mapfile / wms_onlineresource metadata” and “More About the Online Resource URL” above.

wms_remote_sld_max_bytes
• Description: (Optional) Maximum size in bytes authorized when fetching a remote SLD through http. Defaults

to 1 MegaByte (1048596).

wms_resx, wms_resy
• WMS TAG Name: BoundingBox (WMS1.1.1, sect. 6.5.6)

• Description: (Optional) Used in the BoundingBox tag to provide info about spatial resolution of the data, values
are in map projection units.

wms_rootlayer_abstract
• WMS TAG Name: Abstract (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Same as wms_abstract, applied to the root Layer element. If not set, then wms_abstract
will be used.

wms_rootlayer_keywordlist
• WMS TAG Name: KeywordList (WMS1.1.1, sect. 7.1.4.2)

• Description: (Optional) Same as wms_keywordlist, applied to the root Layer element. If not set, then
wms_keywordlist will be used.

wms_rootlayer_name
• WMS TAG Name: Name (WMS1.1.1, sect. 7.1.4.1)

• Description: (Optional) Same as MAP.NAME, applied to the root Layer element. If not set, then MAP.NAME
will be used. If set to “”, then Name element is suppressed and the root layer name will not be advertised as a
GetMap capable layer.

wms_rootlayer_title
• WMS TAG Name: Title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Optional) Same as wms_title, applied to the root Layer element. If not set, then wms_title will be
used.

wms_service_onlineresource
• Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if pro-

vided) in the following order:

1. wms_service_onlineresource

2. ows_service_onlineresource

3. wms_onlineresource (or automatically generated URL, see the onlineresource section of this document)

wms_srs
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• WMS TAG Name: SRS (WMS1.1.1, sect. 6.5.5)

• Description: (Recommended) Contains a list of EPSG projection codes that should be advertised as being avail-
able for all layers in this server. The value can contain one or more EPSG:<code> pairs separated by spaces (e.g.
“EPSG:4269 EPSG:4326”) This value should be upper case (EPSG:3978. . . ..not epsg:3978) to avoid problems
with case sensitive platforms.

• See Also: section “Setup a Mapfile / Map PROJECTION and wms_srs metadata” above.

wms_timeformat
• Description: The time format to be used when a request is sent. (e.g. “wms_timeformat” “%Y-%m-%d %H,

%Y-%m-%d %H:%M”). Please see the WMS Time Support Howto for more information.

wms_title
• WMS TAG Name: Title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Required) A human-readable name for this Layer.

Layer Object Metadata

gml_exclude_items
• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to ex-

clude. As of MapServer 4.6, you can control how many attributes (fields) you expose for your data layer with
metadata. The previous behaviour was simply to expose all attributes all of the time. The default is to expose no
attributes at all. An example excluding a specific field would be:

"gml_include_items" "all"
"gml_exclude_items" "Phonenum"

gml_geometries
• Description: (Optional, applies only to GetFeatureInfo GML requests) Provides a name for geometry elements.

The value is specified as a string to be used for geometry element names. By default, GML geometries are not
written in GML GetFeatureInfo output, unless gml_geometries and gml_[geometry name]_type are both set. By
default, only the bounding box is written. If gml_geometries is set to “none”, neither the bounding box nor the
geometry are written.

gml_groups
• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of group names

for the layer.

gml_[group name]_group
• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of attributes in

the group. Here is an example:

"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items
• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to in-

clude, or keyword “all”. As of MapServer 4.6, you can control how many attributes (fields) you expose for your
data layer with this metadata. The previous behaviour was simply to expose all attributes all of the time. You
can enable full exposure by using the keyword “all”, such as:
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"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias
• Description: (Optional, applies only to GetFeatureInfo GML requests) An alias for an attribute’s name. The

served GML will refer to this attribute by the alias. Here is an example:

"gml_province_alias" "prov"

gml_[item name]_type
• Description: (Optional) Specifies the type of the attribute. Valid values are the OGR data types: Inte-

ger|Long|Real|Character|Date|Time|DateTime|Boolean. MapServer translates these to valid GML data types.

Note: Long is to be used for 64-bit integers, starting with MapServer 7.0.1.

Note: Time and DateTime have been added in MapServer 8. And since MapServer 8, Date semantics is a date,
without time, whereas in previous versions, it was used indifferently for Date, Time or DateTime.

gml_[geometry name]_type
• Description: (Optional, applies only to GetFeatureInfo GML requests) When employing gml_geometries, it

is also necessary to specify the geometry type of the layer. This is accomplished by providing a value for
gml_[geometry name]_type, where [geometry name] is the string value specified for gml_geometries, and a
value which is one of:

– point

– multipoint

– line

– multiline

– polygon

– multipolygon

gml_xml_items
• Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items that

should not be XML-encoded.

ows_allowed_ip_list
Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list
Same as ows_denied_ip_list in the Web Object.

wms_abstract
Same as wms_abstract in the Web Object.

wms_attribution_logourl_format
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• Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other
wms_attribution_logourl_* metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_height
• Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*

metadata must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_href
• Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata must

also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_logourl_width
• Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_* meta-

data must also be specified.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_onlineresource
• Description: (Optional) The data provider’s URL.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_attribution_title
• Description: (Optional) Human-readable string naming the data

provider.

• refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.

wms_authorityurl_name, wms_authorityurl_href
• Description: (Optional) AuthorityURL is used in tandem with Identifier values to provide a means of linking

identifier information back to a web service. The wms_identifier_authority should provide a string that matches
a declared wms_authorityurl_name. Both wms_authorityurl_name and wms_authorityurl_href must be present
for an AuthorityURL tag to be written to the capabilities.

• refer to section 7.1.4.5.12 of the WMS 1.1.1 spec.

wms_bbox_extended:
• Description: (Optional) “true” or “false”. If true, bounding boxes are reported for all supported SRS / CRS in

the capabilities document. If false, only the bounding box of the first SRS / CRS is reported.

• Introduced in 6.0.

wms_dataurl_format
• Description: (Optional) Non-standardized file format of the metadata. The layer metadata wms_dataurl_href

must also be specified.

• refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.

wms_dataurl_href
• Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_dataurl_format must also be

specified.

• refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.
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wms_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be

enabled: GetCapabilities, GetMap, GetFeatureInfo and GetLegendGraphic. A “!” in front of a request will
disable the request. “*” enables all requests.

• Examples:

To enable only GetMap and GetFeatureInfo:

"wms_enable_request" "GetMap GetFeatureInfo"

To enable all requests except GetFeatureInfo

"wms_enable_request" "* !GetFeatureInfo"

wms_exclude_items
• Description: (Optional, applies only to GetFeatureInfo text/plain requests) A comma delimited list of items to

exclude, or keyword “all”.

See gml_exclude_items above.

wms_extent
• WMS TAG Name: BoundingBox (WMS1.1.1, sect. 6.5.6)

• Description: (Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very inefficient)
for MapServer to probe the data source to figure its extents (such as with databases). The value for this metadata
is “minx miny maxx maxy” separated by spaces, with the values in the layer’s projection units. If wms_extent is
provided then it has priority and MapServer will NOT try to read the source file’s extents.

See also:
Vector Data Management & Optimization

For Rasters served through WMS, MapServer can now use the wms_extent metadata parameter to register the
image. If a .wld file cannot be found, MapServer will then look for the wms_extent metadata parameter and use
the extents of the image and the size of the image for georegistration.

See also:
Raster Management & Optimization

wms_getfeatureinfo_formatlist
• Description: (Optional) Comma-separated list of formats that should be valid for a GetFeatureInfo request. If

defined, only these formats are advertised through in the Capabilities document.

wms_getlegendgraphic_formatlist
• Description: (Optional) Comma-separated list of image formats that should be valid for a GetLegendGraphic

request. If defined, only these formats are advertised through in the Capabilities document.

wms_getmap_formatlist
• Description: (Optional) Comma-separated list of image formats that should be valid for a GetMap request. If

defined, only these formats are advertised through in the Capabilities document.

wms_group_abstract
• Description: (Optional) A blurb of text providing more information about the group. Only one layer for the

group needs to contain wms_group_abstract, MapServer will find and use the value. The value found for the first
layer in the group is used. So if multiple layers have wms_group_abstract set then only the first value is used.
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wms_group_title
• WMS TAG Name: Group_title (WMS1.1.1, sect. 7.1.4.1)

• Description: (Optional) A human-readable name for the group that this layer belongs to. Only one layer for the
group needs to contain wms_group_title, MapServer will find and use the value. The value found for the first
layer in the group is used. So if multiple layers have wms_group_title set then only the first value is used.

wms_identifier_authority, wms_identifier_value
• Description: (Optional) Identifier is used in tandem with AuthorityURL end points to provide a means of linking

identifier information back to a web service. The wms_identifier_authority should provide a string that matches
a declared wms_authorityurl_name. Both wms_identifier_authority and wms_identifier_value must be present
for an Identifier tag to be written to the capabilities.

• refer to section 7.1.4.5.12 of the WMS 1.1.1 spec.

wms_include_items
• Description: (Optional, applies only to GetFeatureInfo text/plain requests) A comma delimited list of items to

include, or keyword “all”.

See gml_include_items above.

wms_keywordlist
Same as wms_keywordlist in the Web Object.

wms_keywordlist_vocabulary
Same as wms_keywordlist_vocabulary in the Web Object.

wms_keywordlist_[vocabulary’s name]_items
Same as wms_keywordlist_[vocabulary’s name]_items in the Web Object.

wms_layer_group
• Description: (Optional) Can be used to assign a layer to a number of hierarchically nested groups. This grouped

hierarchy will be expressed in the capabilities.

From MapServer 7.2, WMS_LAYER_GROUP is similar to the GROUP keyword in that it always publishes the
name and the tile of the group in the capabilities. As a consequence the groups set with WMS_LAYER_GROUP
can always be requested with a GetMap or GetFeatureInfo request (see section 7.1.4.5.2 of the WMS implemen-
tation specification version 1.1.1. (OGC 01-068r2)).

A difference with GROUP is that GROUP does not support nested groups. The purpose of this metadata setting
is to enable making a WMS client aware of layer grouping.

All group names should be preceded by a forward slash (/). It is not allowed to use both the
WMS_LAYER_GROUP setting and the GROUP keyword for a single layer. GROUP can be seen as deprecated!

LAYER
NAME "mylayer"
DATA "mylayer"
TYPE LINE
CLASS
STYLE
COLOR 100 100 255

END
END
METADATA
"WMS_LAYER_GROUP" "/rootgroup/subgroup"
END

END
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wms_metadataurl_format
• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The layer metadata

wms_metadataurl_type and wms_metadataurl_href must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

• To output several MetadataURL elements, use wms_metadataurl_list

wms_metadataurl_href
• Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_metadataurl_format and

wms_metadataurl_type must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

• To output several MetadataURL elements, use wms_metadataurl_list

wms_metadataurl_list

Note: wms_metadataurl_list will be included in the MapServer 8.0 release.

• Description: (Optional) Space-separated list of parts of metadata keys, to be able to specify several
MetadataURL. If the value of wms_metadataurl_list is “foo bar”, then wms_metadataurl_foo_href,
wms_metadataurl_foo_format, wms_metadataurl_foo_type, wms_metadataurl_bar_href,
wms_metadataurl_bar_format, wms_metadataurl_bar_type will be queried with the semantics of the
wms_metadataurl_href, wms_metadataurl_format and wms_metadataurl_type items.

Example:

"wms_metadataurl_list" "xml html"

"wms_metadataurl_xml_format" "text/xml"
"wms_metadataurl_xml_type" "TC211"
"wms_metadataurl_xml_href" "http://example.com/testXML"

"wms_metadataurl_html_format" "text/html"
"wms_metadataurl_html_type" "TC211"
"wms_metadataurl_html_href" "http://example.com/testHTML"

wms_metadataurl_type
• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:

“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The layer metadata
wms_metadataurl_format and wms_metadataurl_href must also be specified.

• refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.

• To output several MetadataURL elements, use wms_metadataurl_list

wms_opaque
• WMS TAG Name: Opaque (WMS1.1.1, sect. 7.1.4.6.3)

• Description: (Optional) Set this metadata to “1” to indicate that the layer represents an area-filling coverage of
space (e.g. a bathymetry and elevation layer). This should be taken by the client as a hint that this layer should
be placed at the bottom of the stack of layers.

wms_srs
Same as wms_srs in the Web Object .

wms_style
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• Description: (Optional) The LegendURL style name. Requires the following meta-
data: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height,
wms_style_[style’s_name]_legendurl_format, wms_style_[style’s_name]_legendurl_href

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_format
• Description: (Optional) The file format MIME type of the legend image. Requires the follow-

ing metadata: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height, wms_style,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_height
• Description: (Optional) The height of the legend image in pixels. Requires the following meta-

data: wms_style_[style’s_name]_width, wms_style, wms_style_[style’s_name]_legendurl_format,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_href
• Description: (Optional) The URL to the layer’s legend. Requires the following

metadata: wms_style_[style’s_name]_width, wms_style_[style’s_name]_legendurl_height,
wms_style_[style’s_name]_legendurl_format, wms_style.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_[style’s_name]_legendurl_width
• Description: (Optional) The width of the legend image in pixels. Requires the following meta-

data: wms_style_[style’s_name]_format, wms_style_[style’s_name]_legendurl_height, wms_style,
wms_style_[style’s_name]_legendurl_href.

• refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_timedefault
• Description: (Optional for Time Support) This value is used if it is defined and the Time value is missing in the

request. Please see the WMS Time Support Howto for more information.

wms_timeextent
• Description: (Mandatory for Time Support) This is used in the capabilities to return the valid time values for the

layer. The value defined here should be a valid time range. Please see the WMS Time Support Howto for more
information.

wms_timeitem
• Description: (Mandatory for Time Support) This is the name of the field in the DB that contains the time values.

Please see the WMS Time Support Howto for more information.

wms_title
Same as wms_title in the Web Object.
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Layer Metadata API

If wms_metadataurl_href is not defined, MapServer will provide a link to the Layer Metadata API for the given layer
in the <MetadataURL> element See the Layer Metadata API documentation for more information.

Vendor specific WMS parameters

angle
• Angle (in degrees) to rotate the map.

Note: The angle value is in degrees clockwise.

radius
• This parameter accepts two types of input:

– An integer that specifies the search radius in pixels.

– The special value bbox that will change the query into a bbox query based on the bbox given in the request
parameters.

bbox_pixel_is_point
• If this parameter is “TRUE”, MapServer will treat the BBOX received in WMS GetMap requests as if it was

provided in pixel_is_point mode. Essentially disabling the conversion from pixel_is_area (WMS model) to
pixel_is_point that is present in mapwms.c for that specific mapfile.

Cascading WMS Requests

Currently, there are 3 requests that support WMS cascading:

• GetMap

• GetFeatureInfo

• GetLegendGraphic

Before MapServer 6.2, a GetLegendGraphic request was not cascaded. A legend was returned using the layer
classes. To preserve that behavior, a GetLegendGraphic request will be cascaded only if :

1. The GetLegendGraphic request is enabled via the _enable_request metadata.

2. The layer does not contain any class with the name property set. ie:

CLASS
NAME "Parks"
STYLE
COLOR 0 255 0

END
END

This layer won’t be cascaded because it contains at least a class with the property NAME set.
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Note: If you know that the remote WMS server does not support a given WMS request, you should disable this
request explicitly for your layer using the (ows/wms)_enable_request metadata. Otherwise, you will simply get the
XML exception from the cascaded server.

Sample WMS Server Mapfile

The following is a very basic WMS Server mapfile:

1 MAP
2 NAME "WMS-test" ##no special characters or spaces
3 STATUS ON
4 SIZE 400 300
5 EXTENT -2200000 -712631 3072800 3840000
6 UNITS METERS
7 SHAPEPATH "./data"
8 IMAGECOLOR 255 255 255
9 FONTSET "../etc/fonts.txt"

10

11 WEB
12 IMAGEPATH "/ms4w/tmp/ms_tmp/"
13 IMAGEURL "/ms_tmp/"
14 METADATA
15 "wms_title" "WMS Demo Server" ##required
16 "wms_abstract" "Longer description of your service" ##recommended
17 "wms_onlineresource" "http://yourpath/cgi-bin/mapserv.exe?map=/path/to/your-

→˓mapfile.map" ##required (must change mapfile path)
18 "wms_srs" "EPSG:3978 EPSG:3857 EPSG:4269 EPSG:4326" ##recommended
19 "wms_enable_request" "*" ##required
20 "wms_getfeatureinfo_formatlist" "text/plain,text/html,application/vnd.ogc.gml,gml"

→˓##recommended
21 END
22 END # Web
23

24 PROJECTION
25 "init=epsg:3978" ##required
26 END
27

28 SYMBOL
29 NAME "circle"
30 TYPE ellipse
31 POINTS 1 1 END
32 END # Symbol
33

34 #
35 # Start of layer definitions
36 #
37

38 LAYER
39 NAME "park" ##no special characters or spaces
40 METADATA

(continues on next page)
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(continued from previous page)

41 "wms_title" "Parks" ##required
42 "wms_abstract" "Longer description of your layer" ##recommended
43 "wms_include_items" "all" ##optional
44 "gml_include_items" "all" ##optional
45 "gml_featureid" "ogc_fid" ##optional
46 "gml_geometries" "msgeom" ##optional
47 "gml_msgeom_type" "multipolygon" ##optional
48 END
49 TYPE POLYGON
50 STATUS ON
51 DATA "park.shp"
52 PROJECTION
53 "init=epsg:3978" ##recommended
54 END
55 CLASS
56 NAME "Parks"
57 STYLE
58 COLOR 200 255 0
59 OUTLINECOLOR 120 120 120
60 END # Style
61 END # Class
62 TEMPLATE "empty" ##recommended (enable GetFeatureInfo / can point to valid .html␣

→˓template)
63 END # Layer
64

65 LAYER
66 NAME "cities" ##no special characters or spaces
67 METADATA
68 "wms_title" "Cities" ##required
69 "wms_abstract" "Longer description of your layer" ##recommended
70 "wms_include_items" "all" ##optional
71 "gml_include_items" "all" ##optional
72 "gml_featureid" "ogc_fid" ##optional
73 "gml_geometries" "msgeom" ##optional
74 "gml_msgeom_type" "point" ##optional
75 END
76 TYPE POINT
77 STATUS ON
78 DATA "popplace.shp"
79 PROJECTION
80 "init=epsg:3978" ##recommended
81 END
82 CLASS
83 NAME "Cities"
84 STYLE
85 SYMBOL "circle"
86 SIZE 8
87 COLOR 0 0 0
88 END # Style
89 END # Class
90 TEMPLATE "empty" ##recommended (enable GetFeatureInfo / can point to valid .html␣

→˓template)

(continues on next page)
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91 END # Layer
92

93 END # mapfile

FAQ / Common Problems

Q
How can I find the EPSG code for my data’s projection?

A
If you know some of the parameters of your data’s projection, then you can use the search tool at
https://epsg.io/ to find your data’s associated EPSG code. The EPSG official home now also allows
you to perform a text or map search for a projection: https://epsg.org/

For PROJ version >= 6: the EPSG codes are stored in a SpatiaLite database proj.db usually located
in /usr/local/share/proj/ on Unix systems and in C:/PROJ/ or C:/PROJ/NAD in Windows systems
(depending on the installation), specifically /MS4W/proj/nad/ for MS4W users.

For PROJ version < 6: you can browse the “epsg” file that comes with PROJ and look for a projection
definition that matches your data’s projection. It’s a simple text file and the EPSG code is inside brack-
ets (<. . .>) at the beginning of every line. The “epsg” file is usually located in /usr/local/share/proj/ on
Unix systems and in C:/PROJ/ or C:/PROJ/NAD in Windows systems (depending on the installation).
MS4W users will find the epsg file in /MS4W/proj/nad/.

Q
My WMS server produces the error “msProcessProjection(): no system list, errno: ..”

A
That’s likely PROJ complaining that it cannot find the epsg projection definition file (for PROJ version
< 6), or the proj.db file (for PROJ version >= 6). Make sure you have installed PROJ and that the
proj.db file (or epsg depending on your local PROJ version) is installed at the right location. On
Unix it should be under /usr/local/share/proj/, and on Windows PROJ looks for it under C:/PROJ/ or
C:/PROJ/NAD (depending on the installation), MS4W users will find the file in /MS4W/proj/nad/.
You should also check the error documentation to see if your exact error is discussed.

If you don’t have the proj.db file (or epsg file) then you can get it as part of the PROJ distribution
at https://proj.org/ Alternatively, you can manually download the PROJ < 6 epsg file at http://www.
maptools.org/dl/proj4-epsg.zip.

Q
How do AUTO projections work?

A
When a WMS client calls a WMS server with an auto projection, it has to specify the SRS in the
form: AUTO: proj_id,unit_id,lon0,lat0 where:

• proj_id is one of 42001, 42002, 42003, 42004, or 42005 (only five auto projections are currently
defined).

• unit_id is always 9001 for meters. (It is uncertain whether anyone supports any other units.)

• lon0 and lat0 are the coordinates to use as the origin for the projection.
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When using an AUTO projection in WMS GetCapabilities, you include only the “AUTO:42003”
string in your wms_srs metadata, you do not include the projection parameters. Those are added by
the application (client) at runtime depending on the map view. For example:

NAME "DEMO"
...

WEB
...
METADATA
"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=/path/

→˓to/your-mapfile.map" #must change mapfile path
"wms_srs" "AUTO:42001 AUTO:42002"
"wms_enable_request" "*" ##necessary

END # METADATA
END # WEB

The above server advertises the first two auto projections.

10.1.4 INSPIRE View Service

Author
Stephan Meissl

Contact
stephan.meissl at eox.at

Last Updated
2012-03-19

Table of Contents

• INSPIRE View Service

– Introduction

– Activation of INSPIRE support

– Multi-language support for certain capabilities fields

– Provision of INSPIRE specific metadata

– Named group layers

– Style section for root layer and possibly existing group layers
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Introduction

INSPIRE is the name of an European directive, establishing an infrastructure for spatial information in Europe to
support Community environmental policies, and policies or activities which may have an impact on the environment.

The INSPIRE View Service is an implementation of the INSPIRE Technical Guidance document on top of the WMS
Server implementation explained in the previous chapter.

In order to achieve INSPIRE View Service compliance, the following enhancements have been implemented in
MapServer:

• Activation of INSPIRE support (two scenarios)

• Multi-language support for certain capabilities fields

• Provision of INSPIRE specific metadata

• Named group layers

• Style section for root layer and possibly existing group layers

Support for INSPIRE View Service in MapServer uses a syntax identical to the one used for INSPIRE Download
Service. Consequently, it is possible to define shared metadata items between Download and View services by using
the ows_ prefix instead of wms_.

Activation of INSPIRE support

INSPIRE specific metadata can either be referenced in an external INSPIRE service metadata document (scenario 1)
or can be directly embedded in the capabilities document (scenario 2). MapServer supports both scenarios.

Activation of the corresponding scenario for INSPIRE support takes place in the WEB.METADATA section of the
mapfile through wms_inspire_capabilities. If activated, the corresponding INSPIRE namespace as well as appropriate
validation warnings are generated in the capabilities document.

Scenario 1 - activate INSPIRE support using a reference to external service metadata:

WEB
METADATA
"wms_inspire_capabilities" "url"
...

END
END

Scenario 2 - activate INSPIRE support using embedded service metadata:

WEB
METADATA
"wms_inspire_capabilities" "embed"
...

END
END
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Multi-language support for certain capabilities fields

INSPIRE requires multi-language support and requests a list of all supported languages as well as the default language
in the capabilities document. Based on the language parameter in the GetCapabilities request, certain specific metadata
values, namely

• wms_title

• wms_abstract

• wms_rootlayer_title

• wms_rootlayer_abstract

• wms_group_title

• wms_group_abstract

• wms_style_title

• wms_style_<name>_title

as well as language dependent reference data like

• DATA “road_eng”

• CONNECTION “db_ger”

need to be provided in the requested language. If the language is not supported (or no language parameter is present),
the default language has to be used.

All supported languages have to be specified as comma separated list (first language is default) through wms_languages
in the WEB.METADATA section of the mapfile. This language parameter is also added to the OnlineResource in the
GetCapabilities output:

WEB
METADATA
...
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
...

END
END

For language specific metadata values, a key extension method is applied:

WEB
METADATA
...
"wms_title.eng" "myservicetitle"
"wms_title.ger" "myservicetitleger"
"wms_abstract" "mylayerabstract" #fallback
"wms_abstract.ger" "mylayerabstractger"
...

END
END

For language dependent reference data, a similar approach like the run-time substitution feature of MapServer has been
followed (only DATA and CONNECTION values with %language% are substituted):
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...
LAYER
NAME TN.RoadTransportNetwork.RoadLink
DATA "road_%language%"
...
END

...

If the language is not supported (or no language parameter is present), the default language is substituted.

Provision of INSPIRE specific metadata

Depending on the scenario, additional metadata information is required to support the specification. The INSPIRE
related fields are provided below.

Scenario 1 - INSPIRE related fields using referenced external service metadata:

WEB
METADATA
"wms_inspire_capabilities" "url"
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
"wms_inspire_metadataurl_href" "http://INSPIRE.service/metadata"
"wms_inspire_metadataurl_format" "application/vnd.ogc.csw.capabilities.response_xml"
"wms_keywordlist_ISO_items" "infoMapAccessService" #value according "classification of␣

→˓spatial data services"
"wms_keywordlist_vocabulary" "ISO"
"wms_title" "myservicetitle"
"wms_abstract" "myabstract"
"wms_fees" "conditions unknown" #value either "no conditions apply"|default

→˓"conditions unknown"|<specific conditions>
"wms_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode␣

→˓codelist) or default "None"
"wms_contactorganization" "MapServer" #responsible organization
"wms_contactposition" "owner" #responsible organization, value according

→˓"INSPIRE Metadata Regulation" (part D6)
...
END

END

Scenario 2 - INSPIRE related fields using embedded service metadata:

WEB
METADATA
"wms_inspire_capabilities" "embed"
"wms_languages" "eng,ger" #first default, values according ISO 639-2/B
"wms_inspire_temporal_reference" "2011-09-19" #date of last revision, value according␣

→˓YYYY-MM-DD
"wms_inspire_mpoc_name" "mympocname" #point of contact
"wms_inspire_mpoc_email" "mympoc@e.mail" #point of contact
"wms_inspire_metadatadate" "2011-09-19" #value according YYYY-MM-DD
"wms_inspire_resourcelocator" "http://myinspireresource" #URL for ResourceLocator
"wms_inspire_keyword" "infoMapAccessService" #value according "classification of␣

→˓spatial data services"
(continues on next page)
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"wms_keywordlist_ISO_items" "infoMapAccessService"
"wms_keywordlist_vocabulary" "ISO"
"wms_title" "myservicetitle"
"wms_abstract" "myabstract"
"wms_fees" "conditions unknown" #value either "no conditions apply"|default

→˓"conditions unknown"|<specific conditions>
"wms_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode␣

→˓codelist) or default "None"
"wms_contactorganization" "MapServer" #responsible organization
"wms_contactposition" "owner" #responsible organization, value according

→˓"INSPIRE Metadata Regulation" (part D6)
...

END
END

Notes:

• several fields require certain values, these values are not validated by MapServer itself, instead a manual valida-
tion against the INSPIRE schemas and the WMS INSPIRE tester is recommended

• as suggested in this document regarding scenario 2, <inspire_common:ResourceType> is always set to service
and <inspire_common:SpatialDataServiceType> is always set to view, both values can’t be altered through the
mapfile

• conformity is always set to not evaluated, based on the latest INSPIRE Metadata Implementing Rules (page 7),
a specification document, the specification date and a specification URI or URL need to be provided for degree
conformant/not conformant, which is currently not implemented

Named group layers

INSPIRE mandates usage of named group layers. Thus the functionality of wms_layer_group is extended to support
named group layers. If a layer with the same name as used in wms_layer_group is found it is treated as named group
and if no layer with this name is found as unnamed group as before.

Provided that ability, a hierarchy of any level can be achieved. See for example the grouping used in the
wms_inspire.map mapfile in msautotest:

TN
+--- TN.CommonTransportElements

+--- TN.CommonTransportElements.TransportArea
+--- TN.CommonTransportElements.TransportLink
+--- TN.CommonTransportElements.TransportNode

+--- TN.RoadTransportNetwork
+--- TN.RoadTransportNetwork
+--- TN.RoadTransportNetwork.VehicleTrafficArea
+--- TN.RoadTransportNetwork.RoadServiceArea
+--- TN.RoadTransportNetwork.RoadArea

+--- TN.RailTransportNetwork
+--- TN.RailTransportNetwork.RailwayLink
+--- TN.RailTransportNetwork.RailwayStationArea
+--- TN.RailTransportNetwork.RailwayYardArea
+--- TN.RailTransportNetwork.RailwayArea
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Style section for root layer and possibly existing group layers

For regular layers, the concept of GROUP and CLASSGROUP can be used to set the layer style name to the according
value. Additionally the layer style titles can be overwritten through wms_style_<stylename>_title and the layer style
legendURLs through wms_style_<stylename>_legendurl_* (width, height, format, and href need to be provided):

...
LAYER
NAME TN.RoadTransportNetwork.RoadLink
DATA "road"
METADATA
"wms_title.eng" "Transport networks: Road Link"
"wms_title.ger" "Verkehrsnetze: Strassensegment"
...
"wms_style_inspire_common:DEFAULT_title" "mylayerstyletitle" #style title
"wms_style_inspire_common:DEFAULT_legendurl_width" "85" #override style␣

→˓legendurl (mandatory: width, height, format, href)
"wms_style_inspire_common:DEFAULT_legendurl_height" "40"
"wms_style_inspire_common:DEFAULT_legendurl_format" "image/png"
"wms_style_inspire_common:DEFAULT_legendurl_href" "http://path/to/onlineresource...

→˓roadlink"
END
...
END
...
CLASSGROUP "inspire_common:DEFAULT"
CLASSITEM "NAME_E"

CLASS
NAME "myclass1"
GROUP "inspire_common:DEFAULT"
EXPRESSION "Trans-Canada Highway"
COLOR 255 0 0
END

CLASS
NAME "myclass2"
GROUP "inspire_common:DEFAULT"
COLOR 0 255 0
END

...

The following method is implemented to support (customizable) style sections in the root layer:

• use wms_style_name in the WEB.METADATA section to add a style section to the root layer

• use wms_style_title to override the style title (optional)

• use wms_style_legendurl_* to override width, height, format and href of the legendURL (optional)

and possibly existing group layers:

• use wms_group_style_name in the first corresponding LAYER.METADATA section to add a style section to the
group layer

• use wms_group_style_title to override the style title (optional)

• use wms_group_style_legendurl_* to override width, height, format and href of the legendURL (optional)
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...
WEB
METADATA
...
"wms_style_name" "inspire_common:DEFAULT" #style name
"wms_style_title" "myroadarealayerstyletitle" #style title
"wms_style_legendurl_width" "85" #override style legendurl (mandatory:␣

→˓width, height, format, href)
"wms_style_legendurl_height" "40"
"wms_style_legendurl_format" "image/png"
"wms_style_legendurl_href" "http://path/to/onlineresource...roadarea"

END
END

LAYER
NAME TN.RailTransportNetwork.RailwayLink
GROUP TN.CommonTransportElements.TransportLink
DATA "road"
METADATA
"wms_group_title.eng" "Transport networks: Generic Transport Link"
"wms_group_title.ger" "Verkehrsnetze: Generisches Verkehrssegment"
"wms_group_abstract" "mygenerictransportlinklayerabstract" #fallback
"wms_group_abstract.ger" "mygenerictransportlinklayerabstract"
"wms_group_style_name" "inspire_common:DEFAULT" #style name
"wms_group_style_title" "mygenerictransportlinklayerstyletitle" #style title
"wms_group_style_legendurl_width" "85" #override style legendurl (mandatory:␣

→˓width, height, format, href)
"wms_group_style_legendurl_height" "40"
"wms_group_style_legendurl_format" "image/png"
"wms_group_style_legendurl_href" "http://path/to/onlineresource...

→˓generictransportlink"
"wms_title.eng" "Transport networks: Railway Link"
"wms_title.ger" "Verkehrsnetze: Eisenbahnverbindung"
"wms_abstract" "myrailwaylinklayerabstract" #fallback
"wms_abstract.ger" "myrailwaylinklayerabstractger"
...
END

...
END

...

Provided that ability, 3 levels of hierarchy can be achieved as done in the example mapfiles wms_inspire_scenario1.map
and wms_inspire_scenario2.map in msautotest:

TN.RoadTransportNetwork.RoadArea
+--- TN.RoadTransportNetwork.RoadLink
+--- TN.CommonTransportElements.TransportLink

+--- TN.RailTransportNetwork.RailwayLink
+--- TN.AirTransportNetwork.AirLink
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10.1.5 WMS Client
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• WMS Client

– Introduction

∗ WMS-Related Information

– Compilation / Installation

∗ Check your MapServer executable

– MapFile Configuration

∗ Storing Temporary Files

∗ Configuring for HTTPS Connections

∗ Adding a WMS Layer

· Required Layer Parameters and Metadata

· Optional Layer Parameters and Metadata

· Old CONNECTION parameter format from version 3.5 and 3.6 (deprecated)

– Limitations/TODO

Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation of a
network of Map Servers from which clients can build customized maps. The following document contains information
about using MapServer’s WMS connection type to include layers from remote WMS servers in MapServer applications.

MapServer supports the following WMS versions when acting as client: 1.0.0, 1.0.7, 1.1.0, 1.1.1, 1.3.0 (see MapServer
OGC Specification support for an updated list).

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included below.
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WMS-Related Information

• MapServer WMS Server HowTo

• WMS 1.3.0 specification

• WMS 1.1.1 specification

• OGC’s WMS homepage

• MapServer OGC Web Services Workshop package

Compilation / Installation

The WMS connection type is enabled by the –with-wmsclient configure switch. It requires PROJ, GDAL and libcurl
version 7.10.1 or more recent. Windows users who do not want to compile MapServer should use MS4W (which comes
ready for WMS/WFS client and server use), or check for the availability of other Windows binaries with WMS support.

• For PROJ and GDAL installation, see the MapServer Compilation HowTo (Compiling on Unix / Compiling on
Win32)

• For libcurl, make sure you have version 7.10.1 or more recent installed on your system. You can find out your
libcurl version using curl-config –version. (if your system came with an older version of libcurl preinstalled then
you MUST uninstall it prior to installing the new version)

Once the required libraries are installed, then configure MapServer using the –with-wmsclient switch (plus all the other
switches you used to use) and recompile. This will give you a new set of executables (and possibly php_mapscript.so
if you requested it). See the MapServer Compilation HowTo (links above) for installation details.

Check your MapServer executable

To check that your mapserv executable includes WMS support, use the “-v” command-line switch and look for “SUP-
PORTS=WMS_CLIENT”.

Example 1. Mapserv Version Info on Unix:

$ ./mapserv -v
MapServer version 7.7-dev OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=SVG_SYMBOLS SUPPORTS=RSVG SUPPORTS=ICONV SUPPORTS=FRIBIDI
SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER
SUPPORTS=GEOS SUPPORTS=POINT_Z_M SUPPORTS=PBF INPUT=JPEG
INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Example 2. Mapserv Version Info on Windows:

C:\ms4w> mapserv -v
MapServer version 7.6.0-dev (MS4W 4.0.3) OUTPUT=PNG OUTPUT=JPEG
OUTPUT=KML SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE
SUPPORTS=CAIRO SUPPORTS=SVG_SYMBOLS SUPPORTS=SVGCAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS SUPPORTS=POINT_Z_M SUPPORTS=PBF
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE
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MapFile Configuration

Note: A PROJECTION must be set in the mapfile for the MAP unless you are sure that all your WMS layers support
only a single projection which is the same as the PROJECTION of the map. The MAP PROJECTION can be set using
“init=epsg:xxxx” codes or using regular PROJ parameters. Failure to set a MAP PROJECTION may result in blank
maps coming from remote WMS servers (because of inconsistent BBOX+SRS combination being used in the WMS
connection URL).

Storing Temporary Files

Since MapServer version 6.0 when wms_cache_to_disk metadata is turned on (and for MapServer < 6.0), you have to
set the IMAGEPATH value in the WEB object of your mapfile to point to a valid and writable directory. MapServer will
use this directory to store temporary files downloaded from the remote servers. The temporary files are automatically
deleted by MapServer so you won’t notice them.

Example 3. Setting IMAGEPATH Parameter in Mapfile

MAP
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL ...

END
...

END

MS4W Users Should Specify the Following for IMAGEPATH and IMAGEURL:

MAP
...
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
...

END

If you want to keep this temporary file for debugging purposes, you should add the following statement to the LAYER
object of your mapfile:

LAYER
....
DEBUG ON
...

END

See also:
Debugging MapServer
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Configuring for HTTPS Connections

Follow the Accessing OGC services over HTTPS document to make sure that your local server can connect through
HTTPS secured connections.

Adding a WMS Layer

WMS layers are accessed via the WMS connection type in the Mapfile. Here is an example of a layer using this
connection type:

LAYER
NAME "country_bounds"
TYPE RASTER
STATUS ON
CONNECTION "https://demo.mapserver.org/cgi-bin/wms?"
CONNECTIONTYPE WMS
METADATA
"wms_srs" "EPSG:4326"
"wms_name" "country_bounds"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

END
END

You can also combine remote WMS layers from a server into one layer, separated by a comma (,) such as:

LAYER
NAME "census_tracts"
TYPE RASTER
STATUS ON
CONNECTION "http://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_ACS2015/

→˓MapServer/WMSServer?"
CONNECTIONTYPE WMS
METADATA

"wms_srs" "EPSG:4326"
"wms_name" "Census Tracts,Census Tracts Labels"
"wms_server_version" "1.1.1"
"wms_format" "image/png24"

END
END

Note: Layer names must be separated by a comma, without any spaces around the comma
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Required Layer Parameters and Metadata

CONNECTIONTYPE WMS
CONNECTION

• Description: This is the remote server’s online resource URL, just the base URL without any of the WMS
parameters. The server version, image format, layer name, etc. will be provided via metadata, see below.

Note: Note that if the CONNECTION parameter value is not set the the value of the “wms_onlineresource”
metadata will be used. If both CONNECTION and “wms_onlineresource” are set then the
“wms_onlineresource” metadata takes precedence.

“wms_format” metadata
• Description: The image format to use in GetMap requests.

Note: If wms_formatlist is provided then wms_format is optional and MapServer will pick the first supported
format in wms_formatlist for use in GetMap requests. If both wms_format and wms_formatlist are provided then
wms_format takes precedence. Also note that WMS Servers only advertize supported formats that are part of
the GD/GDAL libraries.

“wms_name” metadata
• Description: Comma-separated list of layers to be fetched from the remote WMS server. This value is used to set

the LAYERS and QUERY_LAYERS WMS URL parameters. Note that when specifying multiple layers there
must not be any spaces between the comma and the layer name.

“wms_server_version” metadata
• Description: The version of the WMS protocol supported by the remote WMS server and that will be used for

issuing GetMap requests.

“wms_srs” metadata
• Description: Space-delimited list of EPSG projection codes supported by the remote server. You normally get

this from the server’s capabilities output. This value should be upper case (EPSG:4236. . . ..not epsg:4236) to
avoid problems with case sensitive platforms. The value is used to set the SRS WMS URL parameter.

Optional Layer Parameters and Metadata

MINSCALE, MAXSCALE
• Description: If the remote server’s capabilities contains a ScaleHint value for this layer then you might want to

set the MINSCALE and MAXSCALE in the LAYER object in the mapfile. This will allow MapServer to request
the layer only at scales where it makes sense

PROJECTION object
• Description: It is optional at this point. MapServer will create one internally if needed. Including one may allow

MapServer to avoid looking up a definition in the PROJ init files.

“wms_auth_username” metadata
• Description: msEncrypt-style authorization string. Empty strings are also accepted.
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METADATA
"wms_auth_username" "foo"
"wms_auth_password" "{FF88CFDAAE1A5E33}"

END

“wms_auth_type” metadata
• Description: Authorization type. Supported types include:

– basic

– digest

– ntlm

– any (the underlying http library picks the best among the opotions supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wms_auth_type" "ntlm"

END

“wms_connectiontimeout” metadata
• Description: The maximum time to wait for a remote WMS layer to load, set in seconds (default is 30 seconds).

This metadata can be added at the layer level so that it affects only that layer, or it can be added at the map level
(in the web object) so that it affects all of the layers. Note that wms_connectiontimeout at the layer level has
priority over the map level.

METADATA
...
"wms_connectiontimeout" "60"
...

END

“wms_essential” metadata
Added in version 7.6.0.

• Description: Set this to “1” to mark this WMS layer as essential. Normally, when a request to a WMS layer fails,
this layer will be skipped and the map is rendered without the layer. If the layer is essential and fails, the map
will not be rendered and an exception is thrown.

Note: enabling wms_essential means that if there is a problem with the connection, (such as the CONNECTION
url cannot be reached, or an incorrect wms_name or wms_format) an XML error will be returned in the browser.
If you are calling MapServer through commandline, your MAP setting for CONFIG “ON_MISSING_DATA” will
still be leveraged for how that error is handled locally.

METADATA
...
"wms_essential" "1"
...

END

“wms_exceptions_format” metadata
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• Description: Set the format for exceptions (as of MapServer 4.6). MapServer defaults to applica-
tion/vnd.ogc.se_inimage (the exception will be in a picture format). You can check the GetCapabilities of the
server to see what formats are available for exceptions. The application/vnd.ogc.se_inimage exception format
is actually a non-required exception format in the WMS 1.1.1 spec, so there are servers out there which don’t
support this format. In that case you would use:

LAYER
...
METADATA
"wms_exceptions_format" "application/vnd.ogc.se_xml"

END
...

END

Which would return this xml exception in the MS_ERRORFILE:

Tue Jan 17 18:05:13 2006 - msDrawWMSLayerLow(): WMS server error.
WMS GetMap request got XML exception for layer 'prov_bound':
<?xml version='1.0' encoding="ISO-8859-1" standalone="no" ?>
<!DOCTYPE ServiceExceptionReport SYSTEM
"http://schemas.opengis.net/wms/1.1.1/exception_1_1_1.dtd">
<ServiceExceptionReport version="1.1.1"><ServiceException
code="LayerNotDefined">
msWMSLoadGetMapParams(): WMS server error. Invalid layer(s)
given in the LAYERS parameter.
</ServiceException>
</ServiceExceptionReport>

“wms_force_separate_request” metadata
• Description: Set this to “1” to force this WMS layer to be requested using its own separate GetMap request. By

default MapServer will try to merge multiple adjacent WMS layers from the same server into a single multi-layer
GetMap request to reduce the load on remote servers and improve response time. This metadata is used to bypass
that behavior.

“wms_formatlist” metadata
• Description: Comma-separated list of image formats supported by the remote WMS server. Note that

wms_formatlist is used only if wms_format is not set. If both wms_format and wms_formatlist are provided
then wms_format takes precedence.

“wms_latlonboundingbox” metadata
• Description: The bounding box of this layer in geographic coordinates in the format “lon_min lat_min lon_max

lat_max”. If it is set then MapServer will request the layer only when the map view overlaps that bounding box.
You normally get this from the server’s capabilities output.

METADATA
"wms_latlonboundingbox" "-124 48 -123 49"

END

“wms_proxy_auth_type” metadata
• Description: The authorization type to use for a proxy connection. Supported types include:

– basic

– digest
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– ntlm

– any (the underlying http library picks the best among the opotions supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wms_proxy_auth_type" "ntlm"

END

“wms_proxy_host” metadata
• Description: The hostname of the proxy to use, in “dot-quad” format, with an optional port component (e.g.

‘192.168.2.10:8080’).

METADATA
"wms_proxy_host" "192.168.2.10"

END

“wms_proxy_port” metadata
• Description: The port to use for a proxy connection.

METADATA
"wms_proxy_port" "8080"

END

“wms_proxy_type” metadata
• Description: The type of the proxy connection. Valid values are ‘http’ and ‘socks5’, which are case sensitive.

METADATA
"wms_proxy_type" "http"

END

“wms_proxy_username” metadata
• Description: msEncrypt-style string for a proxy connection. Empty strings are also accepted.

METADATA
"wms_proxy_username" "foo"
"wms_proxy_password" "{FF88CFDAAE1A5E33}"

END

“wms_sld_body” metadata
• Description: Can be used to specify an inline SLD document.

“wms_sld_url” metadata
• Description: Can be used to specify a link to an SLD document.

“wms_style” metadata
• Description: Name of style to use for the STYLES parameter in GetMap requests for this layer.

“wms_style_<stylename>_sld” metadata
• Description: URL of a SLD to use in GetMap requests. Replace <stylename> in the metadta name with the

name of the style to which the SLD applies.
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METADATA
...
"wms_style" "mystyle"
"wms_style_mystyle_sld" "http://my.host.com/mysld.xml"
...

END

For more information on SLDs in MapServer see the SLD HowTo document.

“wms_time” metadata
• Description: Value to use for the TIME parameter in GetMap requests for this layer. Please see the WMS Time

HowTo for more information.

“wms_bgcolor” metadata
• Description: Specifies the color to be used as the background of the map. The general format of BGCOLOR is

a hexadecimal encoding of an RGB value where two hexadecimal characters are used for each of Red, Green,
and Blue color values. The values can range between 00 and FF for each (0 and 255, base 10). The format is
0xRRGGBB; either upper or lower case characters are allowed for RR, GG, and BB values. The “0x” prefix shall
have a lower case “x”.

“wms_transparent” metadata
• Description: Specifies whether the map background is to be made transparent or not. TRANSPARENT can take

on two values, “TRUE” or “FALSE”. If not specified, MapServer sets default to “TRUE”.

“wms_cache_to_disk” metadata
• Description: Set this to “1” to force MapServer to write fetched images to disk. Writing to disk is necessary to

take advantage of MapServer’s caching logic to avoid refetching WMS requests made previously. This feature is
new to MapServer 6.0 - previously results were always written to disk.

“wms_nonsquare_ok” metadata
• Description: Set this to “0” to indicate that the remote WMS only supports requests for square pixels. In this case

MapServer will be careful to only make square pixel requests even if it means oversampling in one dimension
compared to the resolution of image data required. This feature is new to MapServer 6.0.

“wms_extent” metadata
• Description: If there is exactly one SRS supported by this layer (as listed in the wms_srs metadata), and if the

wms_extent metadata item (or an extent specified via the EXTENT keyword) is set then MapServer will take
care to only making requests within this area. This can short circuit requests completely outside the layer, reduce
processing for layers that only partially overlap the target map area and avoid poor behaviors with reprojection
in some areas. The contents of this metadata item should be of the form “minx miny maxx maxy”. This feature
is new to MapServer 6.0.

“wms_strict_axis_order metadata
• Description: Set this to “1” or “true” to force WMS requests to use strict axis order according to the EPSG code,

or “0” or “false” to force WMS requests to always use xy (or lonlat) axis order. This should only be necessary
if the axis order interpretation of the server for the chosen EPSG code does not conform to the standard: In the
case of WMS 1.0 and 1.1 the assumption is to always use xy (default 0/false), for WMS 1.3.0 the assumption is
strict axis order according to the EPSG database (default 1/true).

Note: Note that each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer tries
the ‘wms_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of
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duplication in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere
for common metadata items shared by multiple OGC interfaces.

Old CONNECTION parameter format from version 3.5 and 3.6 (deprecated)

In MapServer version 3.5 and 3.6, the CONNECTION parameter had to include at a minimum the VERSION, LAY-
ERS, FORMAT and TRANSPARENT WMS parameters. This mode of operation is still supported but is deprecated
and you are encouraged to use metadata items for those parameters as documented in the previous section above.

Here is an example of a layer definition using this deprecated CONNECTION parameter format:

LAYER
NAME "bathymetry_elevation"
TYPE RASTER
STATUS ON
CONNECTIONTYPE WMS
CONNECTION "http://demo.org/cgi-bin/wms?VERSION=1.1.0&LAYERS=bm&FORMAT=image/png"
PROJECTION
"init=epsg:4326"

END
END

Limitations/TODO

1. GetFeatureInfo is not fully supported since the output of getFeatureInfo is left to the discretion of the remote
server. A method layer.getWMSFeatureInfoURL() has been added to MapScript for applications that want to
access featureInfo results and handle them directly.

2. MapServer does not attempt to fetch the layer’s capabilities. Doing so at every map draw would be extremely
inefficient. And caching that information does not belong in the core of MapServer. This is better done at
the application level, in a script, and only the necessary information is passed to the MapServer core via the
CONNECTION string and metadata.

10.1.6 WMS Time
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– Future Additions

– Limitations and Known Bugs

Introduction

A WMS server can provide support to temporal requests. This is done by providing a TIME parameter with a time
value in the request. MapServer 4.4 and above provides support to interpret the TIME parameter and transform the
resulting values into appropriate requests.

Links to WMS-Related Information

• MapServer WMS Server HowTo

• MapServer WMS Client HowTo

• WMS 1.1.1 specification

• MapServer OGC Web Services Workshop

Enabling Time Support in MapServer

Time Patterns

WMS specifies that the basic format used for TIME requests is based on the ISO 8601:1988(E) “extended” format.
MapServer supports a limited set of patterns that are defined in the ISO 8601 specifications, as well as few other
patterns that are useful but not compliant to ISO 8601. Here is a list of patterns currently supported:

Table 1. Supported Time Patterns

Time Patterns Examples
YYYYMMDD 20041012
YYYY-MM-DDTHH:MM:SSZ 2004-10-12T13:55:20Z
YYYY-MM-DDTHH:MM:SS 2004-10-12T13:55:20
YYYY-MM-DD HH:MM:SS 2004-10-12 13:55:20
YYYY-MM-DDTHH:MM 2004-10-12T13:55
YYYY-MM-DD HH:MM 2004-10-12 13:55
YYYY-MM-DDTHH 2004-10-12T13
YYYY-MM-DD HH 2004-10-12 13
YYYY-MM-DD 2004-10-12
YYYY-MM 2004-10
YYYY 2004
THH:MM:SSZ T13:55:20Z
THH:MM:SS T13:55:20
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Setting Up a WMS Layer with Time Support

To have a valid WMS layer with time support, the user has to define the following metadata at the layer level:

• wms_timeextent: (Mandatory) this is used in the capabilities document to return the valid time values for the
layer. The value defined here should be a valid time range. (more on this in ‘Specifying Time Extents’ below)

• wms_timeitem: (Mandatory) this is the name of the field in the DB that contains the time values.

• wms_timedefault: (Optional) this value is used if it is defined and the TIME value is missing in the request.

It is also recommended to set a LAYER FILTER for the time layer to provide a default time also for non-WMS requests.
If the time item is mytime, and the time format is “YYYYMMDD” the following layer filter could be used:

FILTER (`[mytime]` = `2004-01-01 14:10:00`)

Specifying Time Extents

Time Extents can be declared with the following syntax for the wms_timeextent metadata (see Annex C.3 in the WMS
1.1.1 specification document for a full description):

1. value - a single value. This is not directly supported in MapServer but there is an easy workwound by specifying
the same value as min and max.

2. value1,value2,value3,. . . - a list of multiple values.

3. min/max/resolution - an interval defined by its lower and upper bounds and its resolution. This is supported in
MapServer (note that the resolution is not supported however).

4. min1/max1/res1,min2/max2/res2,. . . - a list of multiple intervals.

Example WMS-Server Layer

LAYER
NAME "earthquakes"
METADATA
"wms_title" "Earthquakes"
"wms_timeextent" "2004-01-01/2004-02-01"
"wms_timeitem" "TIME"
"wms_timedefault" "2004-01-01 14:10:00"
"wms_enable_request" "*"

END
TYPE POINT
STATUS ON
DATA "quakes"
FILTER (`[TIME]`=`2004-01-01 14:10:00`)
CLASS
..

END
END
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GetCapabilities Output

If your layer is set up properly, requesting the capabilities on the server outputs a Dimension element. Here is an
example of a GetCapabilities result for a layer configured for time support:

<Layer queryable="0" opaque="0" cascaded="0">
<Name>earthquakes</Name>
<Title>Earthquakes</Title>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<BoundingBox SRS="EPSG:4326"

minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<Dimension name="time" units="ISO8601"/>
<Extent name="time" default="2004-01-01 14:10:00" nearestValue="0">2004-01-01/2004-

→˓02-01</Extent>
</Layer>

Supported Time Requests

When sending a request with the TIME parameter, different types of time values can be specified. The following are
supported by MapServer:

• single value: for example: . . .&TIME=2004-10-12&. . .

• multiple values: for example: . . .&TIME=2004-10-12, 2004-10-13, 2004-10-14&. . .

• single range value: for example: . . .&TIME=2004-10-12/2004-10-13&. . .

• multiple range values: for example: . . .&TIME=2004-10-12/2004-10-13, 2004-10-15/2004-10-16&. . .

Interpreting Time Values

When MapServer receives a request with a TIME parameter, it transforms the time requests into valid expressions that
are assigned to the filter parameter on layers that are time-aware. Here are some examples of how different types of
requests are treated (wms_timeitem is defined here as being “time_field”):

• single value (2004-10-12) transforms to (`[time_field]` eq `2004-10-12`)

• multiple values (2004-10-12, 2004-10-13) transform to (`[time_field]` eq `2004-10-12` OR `[time_field]` eq
`2004-10-13`)

• single range : 2004-10-12/2004-10-13 transforms to ((`[time_field]` ge `2004-10-12`) AND (`[time_field]` le
`2004-10-13`))

• multiple ranges (2004-10-12/2004-10-13, 2004-10-15/2004-10-16) transform to ((`[time_field]` ge `2004-10-12`
AND `[time_field]` le `2004-10-13`) OR (`[time_field]` ge `2004-10-15` AND `[time_field]` le `2004-10-16`))

As shown in the above examples, all fields and values are written inside back tics (`) - this is the general way of
specifying time expressions inside MapServer.

Exceptions to this rule:
1. When dealing with layers that are not Shapefiles nor through OGR, the expression built has slightly different

syntax. For example, the expression set in the filter for the first example above would be ([time_field] = ‘2004-
10-12’).
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2. For PostGIS/PostgreSQL layers, the time expression built uses the date_trunc function available in PostgreSQL.
For example, if the user passes a time value of ‘2004-10-12’, the expression set in the filter is date_trunc(‘day’,
time_field) = ‘2004-10-12’. The use of the date_trunc function allows requests to use the concept of time reso-
lution. In the example above, for a request of ‘2004-10-12’, MapServer determines that the resolution is “day”
by parsing the time string and the result gives all records matching the date 2004-10-12 regardless of the values
set for Hours/Minutes/Seconds in the database. For more information on the date_trunc function, please refer to
the PostgreSQL documentation.

Limiting the Time Formats to Use

The user has the ability to define the time format(s) to be used when a request is sent, in metadata at the WEB level.
For example, the user can define the following two formats:

"wms_timeformat" "YYYY-MM-DDTHH, YYYY-MM-DDTHH:MM"

Another example is for a WMS layer that is based on time data that contains precise time values taken every minute
(e.g., 2004-10-12T13:55, 2004-10-12T13:56, 2004-10-12 T13:57, . . . ). Normally, a valid request on such a layer
would require the time value to be as complete as the data underneath. By defining a set of patterns to use, MapServer
introduces the notion of resolution to be used when doing a query. Using the example above, a request TIME= 2004-
10-12T13:55 would be valid and a request TIME= 2004-10-12T13 would also be valid and would return all elements
taken for that hour.

Note that this functionality is only available on layers based on Shapefiles and OGR.

Example of WMS-T with PostGIS Tile Index for Raster Imagery

This example currently requires latest 4.9 CVS build!

Here is an example mapfile snippet for a raster WMS-T instance using a PostGIS tileindex. This example shows US
Nexrad Base Reflectivity running at Iowa State U at http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-t.cgi?
SERVICE=WMS&request=GetCapabilities

1 # Tile Index
2 LAYER
3 STATUS ON
4 NAME "time_idx"
5 TYPE POLYGON
6 DATA "the_geom from nexrad_n0r_tindex"
7 METADATA
8 "wms_title" "TIME INDEX"
9 "wms_srs" "EPSG:4326"

10 "wms_extent" "-126 24 -66 50"
11 "wms_timeextent" "2003-08-01/2006-12-31/PT5M"
12 "wms_timeitem" "datetime" #column in postgis table of type timestamp
13 "wms_timedefault" "2006-06-23T03:10:00Z"
14 "wms_enable_request" "*"
15 END
16 CONNECTION "dbname=postgis host=10.10.10.20"
17 CONNECTIONTYPE postgis
18 END
19

20 # raster layer
21 LAYER

(continues on next page)
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(continued from previous page)

22 NAME "nexrad-n0r-wmst"
23 TYPE RASTER
24 STATUS ON
25 DEBUG ON
26 PROJECTION
27 "init=epsg:4326"
28 END
29 METADATA
30 "wms_title" "NEXRAD BASE REF WMS-T"
31 "wms_srs" "EPSG:4326"
32 "wms_extent" "-126 24 -66 50"
33 "wms_timeextent" "2003-08-01/2006-12-31/PT5M"
34 "wms_timeitem" "datetime" #datetime is a column in postgis table of type timestamp
35 "wms_timedefault" "2006-06-23T03:10:00Z"
36 "wms_enable_request" "*"
37 END
38 OFFSITE 0 0 0
39 TILEITEM "filepath" #filepath is a column in postgis table with varchar of the filepath␣

→˓to each image
40 TILEINDEX "time_idx"
41 FILTER (`[datetime]` = `2006-06-23T03:10:00Z`)
42 END

You can find more information on Time and tileindexes in the WCS documentation.

Future Additions

• Support for a special time value: “current”.

Limitations and Known Bugs

• Pattern “YYYYMMDD” does not work on Windows. (Bug#970)

10.1.7 WMS Dimension

Author
Yewondwossen Assefa

Contact
yassefa at dmsolutions.ca

Last Updated
2013-10-08

Table of Contents

• WMS Dimension

– Introduction

– Enabling Dimension Support in MapServer
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– GetCapabilities Output

– Supported Dimension Requests

– Processing Dimension Requests

Introduction

A WMS server can provide support for several type of dimensions such as time, elevation or other types of dimensions
(for example, satellite images in different wavelength bands). For temporal dimension, please refer to WMS Time
Support. This document describes support for the elevation dimension and other type of dimensions

Links to WMS-Related Information

• MapServer WMS Server HowTo

• WMS Time Support HowTo

Enabling Dimension Support in MapServer

Setting Up a WMS Layer with dimension support

To have a valid WMS layer with dimension support, the user has to define the following metadata at the layer level:

• wms_dimensionlist: (Mandatory) comma separated list of dimension names available for the layer

• wms_[dimensionname]_item: (Mandatory) this is the name of the field in the DB that contains the dimension
values.

• wms_[dimensionname]_units: (Mandatory) Attribute indicating units of dimensional axis. If the dimensional
quantity has no units (e.g. band number in a multi-wavelength sensor), use the null string: “”. If the dimensional
quantity has units, unit names should be taken from the Unified Code for Units of Measure (UCUM) if UCUM
has an appropriate entry. When UCUM is used, the mandatory units attribute shall be an appropriate entry from
the UCUM “name” column.

• wms_[dimensionname]_extent: (Mandatory) defines a valid set of values for the dimension

• wms_[dimensionname]_default: (Optional) this value is used if it is defined and the dimension value is missing
in the request.

Specifying Dimension Extents

Dimension Extents can be declared with the following syntax for the wms_[dimensionname]_extent metadata (see
Annex C.3 in the WMS 1.1.1 specification document for a full description):

1. value - a single value.

2. value1,value2,value3,. . . - a list of multiple values.

3. min/max/resolution - an interval defined by its lower and upper bounds and its resolution. This is supported in
MapServer (note that the resolution is not supported however).

4. min1/max1/res1,min2/max2/res2,. . . - a list of multiple intervals.
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Example WMS-Server Layer

LAYER
NAME "lakes_elev"
METADATA
"wms_title" "Lakes"
"wms_description" "Lakes"
"wms_dimensionlist" "elevation, text_dimension"
"wms_elevation_item" "ELEV"
"wms_elevation_extent" "500, 490, 480"
"wms_elevation_units" "meters"
"wms_elevation_default" "500"
"wms_text_dimension_item" "text_dimen"
"wms_text_dimension_extent" "first, second, third"
"wms_text_dimension_units" "my_units"
"wms_enable_request" "*"

END
TYPE POLYGON
..

END

GetCapabilities Output

If your layer is set up properly, requesting the capabilities on the server outputs one or several Dimension elements.
Here is an example of a GetCapabilities result for a layer configured for two dimensions (wms 1.3.0):

<Layer queryable="0" opaque="0" cascaded="0">
<Name>lakes_elev</Name>
<Title>Lakes</Title>
<CRS>EPSG:4326</CRS>
<EX_GeographicBoundingBox>
<westBoundLongitude>0.000178263</westBoundLongitude>
<eastBoundLongitude>0.0034202</eastBoundLongitude>
<southBoundLatitude>-0.002134</southBoundLatitude>
<northBoundLatitude>0.000313775</northBoundLatitude>
<BoundingBox CRS="EPSG:4326" minx="-0.002134" miny="0.000178263" maxx="0.000313775"␣

→˓maxy="0.0034202" />
<Dimension name="elevation" units="meters" default="500" multipleValues="1"␣

→˓nearestValue="0">500, 490, 480</Dimension>
<Dimension name="text_dimension" units="my_units" multipleValues="1" nearestValue=

→˓"0">first, second, third</Dimension>
</Layer>
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Supported Dimension Requests

A request parameter name is constructed by concatenating the prefix “dim_” with the sample dimension Name (the
value of the name attribute of the corresponding <Dimension> and <Extent> elements in the Capabilities XML). The
resulting “dim_name” is case-insensitive. The use of the “dim_” prefix is to avoid clashes between server-defined
dimension names and current or future OGC Web Service specifications. (Time and Elevation, being predefined, do
not use the prefix.) (section C.4.2)

• single value: for example: . . .&elevation=500&. . .

• multiple values: for example: . . .&dim_text_dimension=first,second&. . .

• single range value: for example: . . .&elevation=480/490&. . .

• multiple range values: for example: . . .&elevation=480/490,490/500&. . .

Processing Dimension Requests

When MapServer process a valid dimension wms parameter, It will process it into expressions and set it on the LAYER
FILTER object. If there was already a Logical “MapServer expressions”, It will be concatenated with it.

For example a request such as &elevation=490/500&. . . on a MapServer layer (with an empty FILTER) would give ..
code-block:: mapfile

FILTER (([ELEV] >= 490 AND [ELEV] <= 500))

For example a request such as &elevation=600&. . . on a postgis layer with an existing FILTER would give .. code-
block:: guess

• FILTER (elev > 500) #before request

• FILTER ((elev > 500) and (((ELEV = 600)))) #after request

10.1.8 Map Context

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2019-11-21

Contents

• Map Context

– Introduction

– Implementing a Web Map Context
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Introduction

The term ‘map context’ comes from the Open Geospatial Constortium’s (OGC) Web Map Context Specification v1.0.0,
which coincides with the OGC Web Map Server Specification (WMS) v1.1.1. A map context is a XML document
that describes the appearance of layers from one or more WMS servers, and can be transferred between clients while
maintaining startup views, the state of the view (and its layers), and storing additional layer information.

Support for OGC Web Map Context was added to MapServer in version 3.7/4.0. This allows client applications to load
and save a map configuration in a standard XML format. MapServer can read context documents of versions 0.1.2,
0.1.4, 0.1.7, 1.0.0, 1.1.0 and can export contents in versions 0.1.4, 0.1.7, 1.0.0, 1.1.0. Web Map Context 1.1.0 support
was added to MapServer 4.10

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up mapfiles.

• Familiarity with the WMS spec would be an asset. Please see the following section for links to associated sources.

Links to WMS / Map Context Related Information

• MapServer WMS Client HowTo

• Open Geospatial Consortium (OGC) home page

• WMS 1.1.1 specification

• Map Context 1.0.0 specification

• MapServer OGC Web Services Workshop

Implementing a Web Map Context

Special Build Considerations

Map Context support requires PROJ4, GDAL/OGR and PHP support libraries.

Build/install the above libraries on your system and then build MapServer with the ‘–with-wmsclient –with-proj –with-
ogr –with-gdal –with-php’ configure options. Also make sure that your build uses the USE_WMS_LYR and USE_OGR
flags. For more details on MapServer compilation see the appropriate HowTo: Unix / Windows

Windows users can use MS4W, which is ready for Map Context use.

Map Context Mapfile

A map context document can ONLY contain WMS layers (e.g. CONNECTIONTYPE WMS). Please refer to the
MapServer WMS Client HowTo for more information on declaring WMS layers.
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MapFile Metadata

The following mapfile metadata are used by MapServer to handle map context information:

(Note that some parameters have width, height, format, and href, and some only have format and href. This is because
width and height are only used for images and parameters that do not have them are text or html. For consistency with
the spec MapServer supports height and width for all parameters, but they should only be used for images)

Web Object Metadata

• ows_schemas_location : Location of XML schema document. Default is http://schemas.opengis.net. See http:
//ogc.dmsolutions.ca for an example of a valid schema tree.

• wms_abstract : A blurb of text providing more information about the WMS server.

• wms_address : If provided must also then provide wms_addresstype, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_addresstype : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_city : If provided must also then provide wms_address, wms_addresstype, wms_stateorprovince,
wms_postcode, and wms_country)

• wms_contactelectronicmailaddress : contact Email address.

• wms_contactfacsimiletelephone : contact facsimile telephone number.

• wms_contactorganization :

• wms_contactperson :

• wms_contactposition :

• wms_contactvoicetelephone : contact voice telephone number.

• wms_context_fid : the feature id of the context. Set to 0 when saving if not specified.

• wms_context_version : the version of the map context specification.

• wms_country : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_addresstype.

• wms_descriptionurl_format : Format of the webpage which contains relevant information to the view.

• wms_descriptionurl_href : Reference to a webpage which contains relevant information to the view.

• wms_keywordlist : A comma-separated list of keywords or keyword phrases to help catalog searching.

• wms_logourl_width : Width of the context logo.

• wms_logourl_height : Height of the context logo.

• wms_logourl_format : Format of the context logo.

• wms_logourl_href : Location of the context logo.

• wms_postcode : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_addresstype, and wms_country.

• wms_stateorprovince : If provided must also then provide wms_address, wms_city, wms_addresstype,
wms_postcode, and wms_country.

• wms_title : (Required) A human-readable name for this Layer (this metadata does not exist beyond version 0.1.4)
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Layer Object Metadata

• wms_abstract : A blurb of text providing more information about the WMS server.

• wms_dataurl_href : Link to an online resource where data corresponding to the layer can be found.

• wms_dataurl_format : Format of the online resource where data corresponding to the layer can be found.

• wms_dimension :

Added in version 4.10.

Current dimension used.

• wms_dimensionlist :

Added in version 4.10.

List of available dimensions.

• wms_dimension_%s_default :

Added in version 4.10.

Default dimension value. MapServer will check for wms_time and wms_timedefault metadata when this is not
specified. %s = the name of the dimension.

• wms_dimension_%s_multiplevalues :

Added in version 4.10.

Multiple dimension values. %s = the name of the dimension.

• wms_dimension_%s_nearestvalue :

Added in version 4.10.

Nearest dimension value. The default value is 0. %s = the name of the dimension.

• wms_dimension_%s_units :

Added in version 4.10.

Units for the dimension values. The default value is ISO8601. %s = the name of the dimension.

• wms_dimension_%s_unitsymbol :

Added in version 4.10.

Symbol for dimension units. The default value is t. %s = the name of the dimension.

• wms_dimension_%s_uservalue :

Added in version 4.10.

User dimension value. MapServer will check for wms_time and wms_timedefault metadata when this is not
specified. %s = the name of the dimension.

• wms_format : Current format used.

• wms_formatlist : List of available formats for this layer.

• wms_metadataurl_href : Link to an online resource where descriptive metadata of the corresponding layer can
be found.

• wms_metadataurl_format : Format of the online resource where descriptive metadata of the corresponding layer
can be found.

• wms_name : Name of the WMS layer on the server.
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• wms_onlineresource : Required URL to access the server.

• wms_server_version : The version of the web map server specification.

• wms_server_title : The title of the web map server.

• wms_stylelist : Current style used.

• wms_style_%s_legendurl_width : Width of an image describing the style. %s = the name of the style.

• wms_style_%s_legendurl_height : Height of an image describing the style. %s = the name of the style.

• wms_style_%s_legendurl_format : Format of an image describing the style. %s = the name of the style.

• wms_style_%s_legendurl_href : Location of an image describing the style. %s = the name of the style.

• wms_style_%s_sld : URL to the SLD document of this style. %s = the name of the style.

• wms_style_%s_sld_body : SLD_BODY document of this style. %s = the name of the style.

• wms_style_%s_title : Title of the layer. %s = the name of the style.

• wms_title : (Required) A human-readable name for this Layer.

Sample Map Context Mapfile

1 MAP
2

3 NAME "mapcontext"
4 STATUS ON
5 SIZE 400 300
6 SYMBOLSET "../etc/symbols.txt"
7 EXTENT -180 -90 180 90
8 UNITS DD
9 SHAPEPATH "../data"

10 IMAGECOLOR 255 255 255
11 FONTSET "../etc/fonts.txt"
12

13

14 #
15 # Start of web interface definition
16 #
17 WEB
18 IMAGEPATH "/ms4w/tmp/ms_tmp/"
19 IMAGEURL "/ms_tmp/"
20 METADATA
21 "wms_abstract" "Demo for map context document. Blah blah..."
22 "wms_title" "Map Context demo" #### REQUIRED
23 END
24 END
25

26 PROJECTION
27 "init=epsg:4326"
28 END
29

30 #
31 # Start of layer definitions

(continues on next page)

10.1. OGC Support and Configuration 809



MapServer Documentation, Release 7.6.6

(continued from previous page)

32 #
33

34 LAYER
35 NAME "country_bounds"
36 TYPE RASTER
37 STATUS ON
38 CONNECTION "https://demo.mapserver.org/cgi-bin/wms?"
39 CONNECTIONTYPE WMS
40 METADATA
41 "wms_title" "World Country Boundaries" #### REQUIRED
42 "wms_onlineresource" "https://demo.mapserver.org/cgi-bin/wms?" ##

→˓## REQUIRED
43 "wms_srs" "EPSG:4326"
44 "wms_name" "country_bounds"
45 "wms_server_version" "1.1.1"
46 "wms_format" "image/gif"
47 "wms_dimensionlist" "time,width"
48 "wms_dimension" "time"
49 "wms_dimension_time_unitsymbol" "t"
50 "wms_dimension_time_units" "ISO8601"
51 "wms_dimension_time_uservalue" "1310"
52 "wms_dimension_time_default" "1310"
53 "wms_dimension_time_multiplevalues" "1310,1410"
54 "wms_dimension_time_nearestvalue" "0"
55 END
56 END
57

58 END # Map File

Testing Map Context Support

1. The first thing to do is to save your mapfile using the saveMapContext function available from the PHP/MapScript
library. An example script is shown below:

<?php
if (!extension_loaded("MapScript")) dl(MODULE);
$oMap = ms_newMapObj("mapcontext.map");
$oMap->saveMapContext("mapcontext_output.xml");

?>

2. Scan the XML output to look for <!– WARNING: . . . –> comments. Then make the necessary changes to fix
every warning that you encounter. At the end of this you should have a mapfile compatible with the Map Context
specification.

3. Now you can load your new Map Context document into an application using the loadMapContext function from
the PHP/MapScript library.
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Sample Map Context Document

The following is a sample Map Context document:

1 <?xml version='1.0' encoding="ISO-8859-1" standalone="no" ?>
2 <ViewContext version="1.1.0" id="mapcontext" xmlns:xsi="http://www.w3.org/2001/

→˓XMLSchema-instance" xmlns:ogc="http://www.opengis.net/ogc" xmlns:xlink="http://www.w3.
→˓org/1999/xlink" xmlns="http://www.opengis.net/context" xmlns:sld="http://www.opengis.
→˓net/sld" xsi:schemaLocation="http://www.opengis.net/context http://schemas.opengis.net/
→˓context/1.1.0/context.xsd">

3 <General>
4 <Window width="400" height="300"/>
5 <!-- Bounding box corners and spatial reference system -->
6 <BoundingBox SRS="EPSG:4326" minx="-180.000000" miny="-90.000000" maxx="180.

→˓000000" maxy="90.000000"/>
7 <!-- Title of Context -->
8 <Title>Map Context demo</Title>
9 <Abstract>Demo for map context document. Blah blah...</Abstract>

10 <ContactInformation>
11 </ContactInformation>
12 </General>
13 <LayerList>
14 <Layer queryable="0" hidden="0">
15 <Server service="OGC:WMS" version="1.1.1" title="World Country Boundaries">
16 <OnlineResource xlink:type="simple" xlink:href="https://demo.mapserver.org/

→˓cgi-bin/wms?"/>
17 </Server>
18 <Name>country_bounds</Name>
19 <Title>World Country Boundaries</Title>
20 <SRS>EPSG:4326</SRS>
21 <FormatList>
22 <Format current="1">image/gif</Format>
23 </FormatList>
24 <DimensionList>
25 <Dimension name="time" units="ISO8601" unitSymbol="t" userValue="1310"␣

→˓default="1310" multipleValues="1310,1410" nearestValue="0" current="1"/>
26 </DimensionList>
27 </Layer>
28 </LayerList>
29 </ViewContext>
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Map Context Support Through CGI

MapServer CGI allows you to load a map context through the use of a CONTEXT parameter, and you can point this
parameter to a locally stored context file or a context file accessible through a URL. For more information on MapServer
CGI see the CGI Reference.

Support for Local Map Context Files

There is a new cgi parameter called CONTEXT that is used to specify a local context file. The user can then use
MapServer to request a map using the following syntax:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
/path/to/contextfile.xml&LAYERS=layer_name1 layers_name2

Note: All layers created from a context file have their status set to ON. To be able to display layers, the user needs to
add the LAYERS argument in the URL.

Support for Context Files Accessed Through a URL

The syntax of using a web accessible context file would be similar to accessing a local context file:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
http://URL/path/to/contextfile.xml&LAYERS=layers_name1 layer_name2

Due to security concerns loading a file from a URL is disabled by default. To enable this functionality, the user needs
to set a CONFIG parameter called CGI_CONTEXT_URL in the default mapfile that will allow this functionality. Here
is an example of a map file with the CONFIG parameter:

# Start of map file
NAME "map-context"
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
CONFIG "CGI_CONTEXT_URL" "1"
...
WEB
...

END
LAYER
...

END

END
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Default Mapfile

To smoothly run a MapServer CGI application with a Map Context, the application administrator needs to provide a
default mapfile with at least the basic required parameters that will be used with the Context file. This default mapfile
can contain as little information as the imagepath and imageurl or contain a list of layers. Information coming from the
context (e.g.: layers, width, height, . . . ) would either be appended or will replace values found in the mapfile.

Here is an example of a default map file containing the minimum required parameters:

1 NAME "CGI-CONTEXT-DEMO"
2 STATUS ON
3 SIZE 400 300
4 EXTENT -2200000 -712631 3072800 3840000
5 UNITS METERS
6 IMAGECOLOR 255 255 255
7 IMAGETYPE png
8 #
9 # Start of web interface definition

10 #
11 WEB
12 MINSCALE 2000000
13 MAXSCALE 50000000
14 #
15 # On Windows systems, /tmp and /tmp/ms_tmp/ should be created at the root
16 # of the drive where the .MAP file resides.
17 #
18 IMAGEPATH "/ms4w/tmp/ms_tmp/"
19 IMAGEURL "/ms_tmp/"
20 END
21 END # Map File

Map Context Support Through WMS

MapServer can also output your WMS layers as a Context document. MapServer extends the WMS standard by adding
a request=GetContext operation that allows you to retrieve a context for a WMS-based mapfile with a call like:

http://localhost/mapserver.cgi?map=/path/to/mapfile.map&service=WMS&
request=GetContext&version=1.1.0

The VERSION parameter controls the version of context document to return.

GetContext is disabled by default because it could be considered a security issue: it could publicly expose the URLs
of WMS layers used (cascaded) by a mapfile.

To enable it, set the “wms_getcontext_enabled” web metadata to “1” in your WMS server’s mapfile.
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10.1.9 Layer Metadata
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Contents

• Layer Metadata
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– How it Works

– Supported Metadata Formats

– The Layer Metadata API

– Request Example

Introduction

OGC Web Services (OWS) have the ability to advertise content metadata associated with a given resource (WMS
Layer, WFS FeatureType, WCS Coverage, SOS ObservationOffering), both inline to the Capabilities document and as
a reference to a given URL (i.e. ISO metadata XML document).

MapServer supports both inline (e.g. wms_title, wms_abstract) and URL based (e.g. wms_metadataurl_href ) metadata
advertising for OWS Capabilities.

Formal XML metadata in MapServer OGC services Capabilities XML provides value to Catalogue services which
harvest metadata to support discovery.

MapServer 7.2 adds support for dynamic publishing of XML metadata for all OGC Web Services to advertise formal
layer metadata.

How it Works

If a layer does not have associated formal XML metadata configured via ows_metadataurl_* metadata, MapServer
provides a metadata URL link to metadata (i.e. WMS MetadataURL) in the OGC Capabilities XML. The URL itself
points to MapServer’s GetMetadata API. Example:

<MetadataURL type="TC211">
<Format>text/xml</Format>
<OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"␣

→˓xlink:href="http://localhost/path/to/ows?request=GetMetadata&amp;layer=road"/>
</MetadataURL>
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Supported Metadata Formats

MapServer’s layer API supports the ISO 19115-1:2014 geospatial standard, via ISO 19139-1:2019 as the XML repre-
sentation.

The Layer Metadata API

The Layer Metadata API provides formal metadata for any LAYER object in a mapfile, deriving metadata values (title,
abstract, keywords, spatial properties), from a mapfile LAYER object definition. The metadata response contains useful
information (title, abstract, keywords), as well as access links to associated services (WMS, WFS, etc.).

The API supports two parameters:

• request (Mandatory): fixed value of GetMetadata

• layer (Mandatory): single layer name value

Missing parameters will result in an OGC ogc:ExceptionReport XML.

Request Example

http://localhost/path/to/ows?request=GetMetadata&amp;layer=road

Layer Metadata Support Through CGI

10.1.10 WFS Server

Author
Jeff McKenna
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Contents

• WFS Server

– Introduction

– Configuring your MapFile to Serve WFS layers

– Stored queries (WFS 2.0)

– Reference Section

– To-do Items and Known Limitations
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Introduction

A WFS ( Web Feature Service ) publishes feature-level geospatial data to the web. This means that instead of returning
an image, as MapServer has traditionally done, the client now obtains fine-grained information about specific geospatial
features of the underlying data, at both the geometry AND attribute levels. As with other OGC specifications, this
interface uses XML over HTTP as it’s delivery mechanism, and, more precisely, GML (Geography Markup Language),
which is a subset of XML.

In version 7.0, MapServer supports versions 1.0, 1.1 and 2.0 of the WFS specifications.

WFS-Related Information

Here are some WFS related links (including a newly added OGC services workshop with MapServer). Since these are
highly detailed technical specifications, there is no need to read through them in their entirety to get a MapServer WFS
up and running. It is still recommended however to read them over and get familiar with the basics of each of them, in
order to understand how it all works:

• The OGC Web Feature Service Implementation Specification.

• The Geography Markup Language Implementation Specification.

• MapServer OGC Web Services Workshop package.

For WFS 2.0, the following documents apply :

• The OGC WFS 2.0 specification.

• The OGC Filter Encoding 2.0 specification.

• The OGC GML 3.2.1 specification.

Technical details on the implementation of WFS 2.0 in MapServer are given in the rfc105.

Working knowledge of MapServer is of course also required.

Software Requirements

In order to enable MapServer to serve WFS, it MUST be compiled against certain libraries:

• PROJ: The reprojection library. Version 4.4.3 or greater is required.

• GDAL/OGR: I/O support libraries. Version 1.6.0 or greater is required.

Please see the MapServer UNIX Compilation and Installation HowTo for detailed instructions on compiling mapserver
with support for these libraries and features. For Windows users, the MS4W installer comes ready to serve both WFS
and WMS.

Versions of GML Supported

MapServer can output both GML2 and GML3. By default MapServer serves GML2. You can test this by adding an
‘OUTPUTFORMAT’ parameter to a GetFeature request, such as:

• GML2 request output

• GML3 request output

With WFS 2.0, the default OUTPUTFORMAT is “application/gml+xml; version=3.2”.

For a detailed discussion on the versions supported, see bug#884.
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Configuring your MapFile to Serve WFS layers

Much as in the WMS support, WFS publishing is enabled by adding certain magic METADATA keyword/value pairs
to a MapFile.

MapServer will serve and include in its WFS capabilities only the layers that meet the following conditions:

• Data source is of vector type (Shapefile, OGR, PostGIS, SDE, SDO, . . . )

• LAYER NAME must be set. Layer names must start with a letter when setting up a WFS server (layer names
should not start with a digit or have spaces in them).

• LAYER TYPE is one of: LINE, POINT, POLYGON

• The “wfs_onlineresource” metadata:

The wfs_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should be
used to access your server. This is required for the GetCapabilities output. If wfs_onlineresource is not provided
then MapServer will try to provide a default one using the script name and hostname, but you shouldn’t count on
that too much. It is strongly recommended that you provide the wfs_onlineresource metadata.

See section 12.3.3 of the WFS 1.0.0 specification for the whole story about the online resource URL. Basically,
what you need is a complete HTTP URL including the http:// prefix, hostname, script name, potentially a “map=”
parameter, and and terminated by “?” or “&”.

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=mywfs.map&

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and then
your server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mywfs?

This is covered in more detail in the “More About the Online Resource URL” section of the WMS Server docu-
ment.

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable,
by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as
recommended in the document Limit Mapfile Access. All possible environment variables to secure your server
are listed in Environment Variables.

• The “wfs_enable_request” metadata (see below).

Example WFS Server Mapfile

The following is an example of a bare minimum WFS Server mapfile. Note the comments for the required parameters.

MAP
NAME "WFS_server"
STATUS ON
SIZE 400 300
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"

(continues on next page)
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(continued from previous page)

IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
# Start of web interface definition
#
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA
"wfs_title" "WFS Demo Server for MapServer" ## REQUIRED
"wfs_onlineresource" "https://demo.mapserver.org/cgi-bin/wfs?" ## Recommended
"wfs_srs" "EPSG:4326 EPSG:4269 EPSG:3978 EPSG:3857" ## Recommended
"wfs_abstract" "This text describes my WFS service." ## Recommended
"wfs_enable_request" "*" # necessary

END
END

PROJECTION
"init=epsg:4326"

END

#
# Start of layer definitions
#

##################
# World Continents
##################
LAYER
NAME "continents"
METADATA
"wfs_title" "World continents" ##REQUIRED
"wfs_srs" "EPSG:4326" ## REQUIRED
"gml_include_items" "all" ## Optional (serves all attributes for layer)
"gml_featureid" "ID" ## REQUIRED
"gml_types" "auto" ## Optional (automatically populate the type for the␣

→˓attributes)
"wfs_enable_request" "*"
"wfs_use_default_extent_for_getfeature" "false" ## Optional (improves performance␣

→˓of OGR layers)
END
TYPE POLYGON
STATUS ON
DATA "shapefile/countries_area"
# define source projection
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "World Continents"

(continues on next page)
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(continued from previous page)

STYLE
COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END #layer

END #mapfile

Rules for Handling SRS in MapServer WFS

The OGC WFS 1.0 specification doesn’t allow a layer (feature type) to be advertised in more than one SRS. Also,
there is no default SRS that applies to all layers by default. However, it is possible to have every layer in a WFS server
advertised in a different SRS.

The OGC WFS 1.1 and 2.0 specifications allow more than one SRS to be advertised, and one of the SRSs will be
advertised as the default SRS (the default SRS will be the first in the list specified in the METADATA wfs_srs / ows_srs).

Here is how MapServer decides the SRS to advertise and use for each layer in your WFS:

• If a top-level map SRS is defined then this SRS is used and applies to all layers (feature types) in this WFS. In
this case the SRS of individual layers is simply ignored even if it is set.

• If no top-level map SRS is defined, then each layer is advertised in its own SRS in the capabilities.

Note: By “SRS is defined”, we mean either the presence of a PROJECTION object defined using an EPSG code, or
of a wfs_srs / ows_srs metadata at this level.

Note: At the map top-level the wfs_srs / ows_srs metadata value takes precedence over the contents of the PROJEC-
TION block.

Note: The first advertised wfs_srs / ows_srs metadata value will be used as the default projection of the bbox requested
(unless explicitly set) and will be using in spatial filtering the data for those layer types that support spatial filtering. If
the data is in a different projection, the spatial filter BBOX will be projected to match the source data.

At the layer level, if both the wfs_srs / ows_srs metadata and the PROJECTION object are set to different values, then
the wfs_srs / ows_srs metadata defines the projection to use in advertising this layer (assuming there is no top-level
map SRS), and the PROJECTION value is assumed to be the projection of the data. So this means that the data would
be reprojected from the PROJECTION SRS to the one defined in the wfs_srs / ows_srs metadata before being served
to WFS clients.

Confusing? As a rule of thumb, simply set the wfs_srs / ows_srs at the map level (in web metadata) and never set the
wfs_srs / ows_srs metadata at the layer level and things will work fine for most cases.
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Axis Orientation in WFS 1.1 and 2.0

The axis order in previous versions of the WFS specifications was to always use easting (x or lon ) and northing (y or
lat). WFS 1.1 specifies that, depending on the particular SRS, the x axis may or may not be oriented West-to-East, and
the y axis may or may not be oriented South-to-North. The WFS portrayal operation shall account for axis order. This
affects some of the EPSG codes that were commonly used such as ESPG:4326. The current implementation makes
sure that coordinates returned to the server for the GetFeature request reflect the inverse axis orders for EPSG codes
between 4000 and 5000.

Regarding SRS, for WFS 2.0, it will always be reported with the “urn:ogc:def:crs:EPSG::” syntax. This should likely
also be done for WFS 1.1.0. The “wfs_return_srs_as_urn” web metadata item can be set to “true” or “false” to enable
or disable this behaviour. It defaults to “true” for WFS 2.0 and to “false” for older versions.

Test Your WFS Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure nothing
is missing.

Using a web browser, access your server’s online resource URL to which you add the parameter “RE-
QUEST=GetCapabilities” to the end, e.g.

https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”. . . MapServer inserts XML comments starting with “<!–WARNING: “ in the XML output if it detects missing
mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix all of them
before you can register your server with a WFS client, otherwise things are likely not going to work.

Note: The SERVICE parameter is required for all WFS requests. When a request happens, it is passed through WMS,
WFS, and WCS in MapServer (in that order) until one of the services respond to it.

Test With a GetFeature Request

OK, now that we know that our server can produce a valid XML GetCapa-
bilities response we should test the GetFeature request. Simply adding “SER-
VICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=yourlayername1,yourlayername2” to
your server’s URL should return the GML associated with those layers.

https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&
TYPENAME=continents&MAXFEATURES=100

For WFS 2.0, the same request would be :

https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=2.0.0&REQUEST=GetFeature&
TYPENAMES=continents&COUNT=100
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Test with a Real Client

If you have access to a WFS client, then register your new server’s online resource with it and you should be off and
running.

If you don’t have your own WFS client installed already, here are a few pointers:

• MapServer itself can be used as a WFS client, see the WFS Client HowTo.

• QGIS is a full GIS package which includes WFS client support. (recommended)

• Deegree provides a WFS client.

• uDig can add layers from WMS/WFS servers.

Support for GET and POST Requests

Starting from version 4.2 MapServer supports XML-encoded POST requests and GET requests. The default in
MapServer is POST.

Support for Filter Encoding

Starting from version 4.2 MapServer supports Filter Encoding (FE) in WFS GetFeature requests. For more information
on the server side of Filter Encoding see the Filter Encoding HowTo.

Support for Sorting

Sorting is supported for WFS 1.1 and 2.0. WFS clients can add a SORTBY parameter to the query string to order results
based on one or more attribute values e.g. SORTBY=Field1 DESC,Field2 ASC.

The list of drivers that support sorting (sorting was implemented in MapServer 7.0 unless otherwise specified):

• OGR

• PostGIS

• Oracle

• MS SQL Server (version 7.4)

The MapServer Shapefile provider does not support sorting. If this needed, you must use the OGR Shapefile provider.

Further sorting implementation details can be found in rfc105.

MapServer WFS Extensions

STARTINDEX
This is standard in WFS 2.0, and also available as a MapServer extension for WFS 1.0 and 1.1. In addition to the
MAXFEATURES=n keyword (replaced by COUNT in WFS 2.0), MapServer also supports a STARTINDEX=n
keyword in WFS GetFeature requests. This can be used to skip some features in the result set and in combination
with MAXFEATURES (or COUNT) provides for the ability to use WFS GetFeature to page through results.
Note that STARTINDEX=0 means start with the first feature, skipping none.
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OUTPUTFORMAT
Normally OUTPUTFORMAT should be GML2 for WFS 1.0 and either “text/xml; subtype=gml/2.1.2” or
“text/xml; subtype=gml/3.1.1” for WFS 1.1. For WFS 2.0, the default is “application/gml+xml; version=3.2”,
but GML2 and GML3 can also be requested. However as an extension to the specification, it is also possible to
configure MapServer for a variety of other feature output formats. This is discussed in some detail in the OGR
Output document.

Stored queries (WFS 2.0)

Stored queries are queries (<wfs:Query>) stored on the server, potentially with parameters whose value can be assigned
by the client during a GetFeature request.

At WEB.METADATA level, a “wfs_storedqueries” metadata item can be specified with a comma separated list of
stored queries ids.

Then for each stored query id, “wfs_[storedqueryid]_inlinedef” must be specified with a valid <StoredQueryDe-
scription> as value. As it is not always convenient to specify a inline XML content, it is also possible to specify
“wfs_{storedqueryid}_filedef” whose value is a filename that contains the <StoredQueryDescription> XML content.

"wfs_storedqueries" "bboxstoredquery"
"wfs_bboxstoredquery_filedef" "/data/bboxstoredquery.xml"

with /data/bboxstoredquery.xml containing for example:

<?xml version="1.0" encoding="UTF-8"?>
<StoredQueryDescription xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:gml="http://www.opengis.net/gml/3.2"
id="bboxstoredquery">

<Title>query title</Title>
<Abstract>query abstract</Abstract>
<Parameter name="longmin" type="xs:double"/>
<Parameter name="latmin" type="xs:double"/>
<Parameter name="longmax" type="xs:double"/>
<Parameter name="latmax" type="xs:double"/>
<QueryExpressionText isPrivate="false"

language="urn:ogc:def:queryLanguage:OGC-WFS::WFS_QueryExpression"
xmlns:ms="http://mapserver.gis.umn.edu/mapserver"
returnFeatureTypes="ms:firstLayer ms:secondLayer">

<Query xmlns:fes="http://www.opengis.net/fes/2.0" typeNames="ms:firstLayer">
<fes:Filter>

<fes:BBOX>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">

<gml:lowerCorner>${latmin} ${longmin}</gml:lowerCorner>
<gml:upperCorner>${latmax} ${longmax}</gml:upperCorner>

</gml:Envelope>
</fes:BBOX>

</fes:Filter>
</Query>
<Query xmlns:fes="http://www.opengis.net/fes/2.0" typeNames="ms:secondLayer">

<fes:Filter>
<fes:BBOX>

<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>${latmin} ${longmin}</gml:lowerCorner>
<gml:upperCorner>${latmax} ${longmax}</gml:upperCorner>

(continues on next page)
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(continued from previous page)

</gml:Envelope>
</fes:BBOX>

</fes:Filter>
</Query>

</QueryExpressionText>
</StoredQueryDescription>

A corresponding valid GetFeature request can be:

REQUEST=GetFeature&STOREDQUERY_ID=bboxstoredquery&LONGMIN=2&LATMIN=49&LONGMAX=3&LATMAX=50

Predefined urn:ogc:def:query:OGC-WFS::GetFeatureById stored query

WFS 2.0 defines a mandatory “urn:ogc:def:query:OGC-WFS::GetFeatureById” stored query. This query accept a ID
parameter whose value must be a feature id.

A valid request is: REQUEST=GetFeature&STOREDQUERY_ID=urn:ogc:def:query:OGC-
WFS::GetFeatureById&ID=mylayer.3

The definition hardcoded in MapServer is:

<?xml version="1.0" encoding="UTF-8"?>
<StoredQueryDescription id="urn:ogc:def:query:OGC-WFS::GetFeatureById">
<Title>Get feature by identifier</Title>
<Abstract>Returns the single feature whose value is equal to the specified value of␣

→˓the ID argument</Abstract>
<Parameter name="ID" xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:string"/>
<QueryExpressionText isPrivate="true"

language="urn:ogc:def:queryLanguage:OGC-WFS::WFS_QueryExpression"
returnFeatureTypes="">

<Query xmlns:fes="http://www.opengis.net/fes/2.0" typeNames="?">
<fes:Filter>
<fes:ResourceId rid="${ID}"/>

</fes:Filter>
</Query>

</QueryExpressionText>
</StoredQueryDescription>

Comparing to a more standard stored query description, there are 2 oddities : The value of the “returnFeatureTypes”
attribute is replaced at runtime by the name of the valid WFS layers of the mapfile (when issuing the response document
to DescribeStoredQueries request). And the value of the typeNames attribute is deduced at runtime from the value of
the passed ID parameter.

It is possible to override this hardcoded definition by a custom one (for example to provide alter-
nate values for other languages) by defining “wfs_urn:ogc:def:query:OGC-WFS::GetFeatureById_inlinedef” or
“wfs_urn:ogc:def:query:OGC-WFS::GetFeatureById_filedef”. The value of <QueryExpressionText> attributes and
child elements must however be strictly identical to the hard-coded definition for correct execution.

A GetFeature using “urn:ogc:def:query:OGC-WFS::GetFeatureById” seems to be identical to a GetFeature with a
RESOURCEID parameter, but there is a difference. GetFeatureById returns the feature directly as the response :

<?xml version='1.0' encoding="UTF-8" ?>
<ms:province gml:id="province.977" xmlns:ms="http://mapserver.gis.umn.edu/mapserver"

xmlns:gml="http://www.opengis.net/gml/3.2"
(continues on next page)
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xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://mapserver.gis.umn.edu/mapserver
http://localhost/path/to/wfs_simple?myparam=something&amp;
SERVICE=WFS&amp;VERSION=2.0.0&amp;REQUEST=DescribeFeatureType&amp;
TYPENAME=province&amp;
OUTPUTFORMAT=application%2Fgml%2Bxml%3B%20version%3D3.2

http://www.opengis.net/wfs/2.0
http://schemas.opengis.net/wfs/2.0/wfs.xsd
http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/gml.xsd">

<gml:boundedBy>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>47.76789 -61.51051</gml:lowerCorner>
<gml:upperCorner>47.79644 -61.45764</gml:upperCorner>
</gml:Envelope>

</gml:boundedBy>
<ms:msGeometry>
<gml:Polygon gml:id="province.977.1" srsName="urn:ogc:def:crs:EPSG::4326">
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="2">47.77424 -61.51051 47.78860 -61.50894

47.79644 -61.49272 47.78743 -61.45764 47.76789 -61.45998 47.76961
-61.48350 47.77424 -61.51051 </gml:posList>

</gml:LinearRing>
</gml:exterior>

</gml:Polygon>
</ms:msGeometry>
</ms:province>

Reference Section

The following metadata are available in the setup of the WFS Server mapfile:

Note: Each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries the ‘wfs_*’
metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of duplication
in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere for common
metadata items shared by multiple OGC interfaces.

Web Object Metadata

ows_allowed_ip_list (or wfs_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END
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ows_denied_ip_list (or wfs_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_schemas_location
(Optional) (Note the name ows_schemas_location and not wfs/_. . . this is because all OGC Web Services (OWS)
use the same metadata) Root of the web tree where the family of OGC WFS XMLSchema files are located. This
must be a valid URL where the actual .xsd files are located if you want your WFS output to validate in a validating
XML parser. Default is http://schemas.opengis.net.

ows_updatesequence
(Optional) The updateSequence parameter can be used for maintaining the consistency of a client cache of the
contents of a service metadata document. The parameter value can be an integer, a timestamp in [ISO 8601:2000]
format, or any other number or string.

wfs_abstract
(Optional) Descriptive narrative for more information about the server.

WFS TAG Name: Abstract (WFS 1.0.0, sect. 12.3.3)

wfs_accessconstraints
(Optional) Text describing any access constraints imposed by the service provider on the WFS or data retrieved
from this service.

WFS TAG Name: Accessconstraints (WFS 1.0.0, sect. 12.3.3)

wfs_compute_number_matched
(Optional, WFS 2.0 only) When this metadata item is set to “true”, the server will determine the number of
features that match the GetFeature request and return it in the ‘numberMatched’ attribute of the <FeatureCollec-
tion> element in the response. Computing that number might take a very long time, so it is strongly encouraged
to NOT define this item. When it is not defined, the ‘numberMatched’ attribute is set to “unknown”.

See “wfs_maxfeatures_ignore_for_resulttype_hits” for a similar setting affecting resultType=hits GetFeature re-
quest.

wfs_enable_request (or ows_enable_request)
Space separated list of requests to enable. The default is none. The following requests can be enabled: GetCa-
pabilities, GetFeature and DescribeFeatureType. A “!” in front of a request will disable the request. “*” enables
all requests.

Examples:

To enable only GetCapabilities and GetFeature:

"wfs_enable_request" "GetCapabilities GetFeature"

To enable all requests except GetCapabilities

"wfs_enable_request" "* !GetCapabilities"

wfs_feature_collection
Replaces the default name of the feature-containing element (<msFeatureCollection>) with a user-defined value.

wfs_features_cache_count
(Optional, since MapServer 7.2) Maximum number of features retrieved during the first query pass that should
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be cached, so as not to be asked again to the datasource. This might be set to the same value as wfs_maxfeatures,
but not necessarily. If wfs_features_cache_size is also set, the most limiting will be honoured. Note: this is an
advanced setting.

wfs_features_cache_size
(Optional, since MapServer 7.2) Maximum amount of RAM allowed to cache features during the first
query pass, so as not to be asked again to the datasource when geneating the GML or OGR output. If
wfs_features_cache_count is also set, the most limiting will be honoured. By default the value is in bytes, unless
the “ MB” suffix is specified. Note: this is an advanced setting.

wfs_fees
(Optional) Any fees imposed by the service provider for usage of this service or for data retrieved from the WFS.

WFS TAG Name: Fees (WFS 1.0.0, sect. 12.3.3)

wfs_getcapabilities_version
(Optional) Default version to use for GetCapabilities requests that do not have a version parameter. If not set, the
latest supported version will be returned. As of MapServer 7.0, this default version is “2.0.0”. Valid values are
“1.0.0”, “1.1.0” and “2.0.0”.

wfs_keywordlist
(Optional) List of words to aid catalog searching.

WFS TAG Name: Keyword (WFS 1.0.0, sect. 12.3.3)

wfs_languages
• Description: (Optional) A comma-separated list of supported languages. For details please refer to the section

Multi-language support for certain capabilities fields in the INSPIRE Download Service documentation.

wfs_maxfeatures
(Optional) The maximum and default number of elements to be returned by the WFS server. If the user
sets the ‘maxfeatures’ parameter in a GetFeatureRequest, his value will be used, provided it does not exceed
wfs_maxfeatures. If wfs_maxfeatures is not specified, the server will return all the features that match the query,
without limit, which may make the server busy for a long time when layers with big number of features are
served. Sensible values are integers greater than 0. If 0 is specified, no features will be returned. In WFS 2.0,
this item is used to fill the “CountDefault” parameter of the response document to a GetCapabilities request, so
that clients are aware of the server limit. See also the “wfs_maxfeatures_ignore_for_resulttype_hits” item.

wfs_maxfeatures_ignore_for_resulttype_hits
(Optional, added in MapServer 7.2) Controls whether the limit set by “wfs_maxfeatures” is also taken into ac-
count in resultType=hits GetFeature requests.

See “resultType parameter” chapter (OGC WFS 2.0 specification, sect. 7.6.3.6)

When setting this item to “false”, the limit set by “wfs_maxfeatures” will also be taken into account when pro-
cessing a resultType=hits GetFeature request, that is to say the number of hits returned will not be greater than
wfs_maxfeatures. This is the behaviour in MapServer version prior to 7.2, and also the general default behaviour
in later versions. Unless if all the layers that are queried are PostGIS layers, in which case wfs_maxfeatures
is not taken into account when computing the number of hits. The item may be explicitly set to “true” so that
wfs_maxfeatures is not taken into account when computing the number of hits (for any layer type), which may
exhibit performance issues for large layers and/ or backends with slow access.

This item has no effect if wfs_maxfeatures is not set.

wfs_namespace_prefix
(Optional) User defined namespace prefix to be used in the response of a WFS GetFeature request. E.g.
“wfs_namespace_prefix” “someprefix”.

wfs_namespace_uri
(Optional) User defined namespace URI to be used in the response of a WFS GetFeature request. e.g.
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“wfs_namespace_uri” “http://somehost/someurl”.

wfs_onlineresource
(Recommended) The URL prefix for HTTP GET requests.

WFS TAG Name: Onlineresource (WFS 1.0.0, sect. 12.3.3)

wfs_return_srs_as_urn
(Optional) Defaults to “true” in WFS 2.0, and “false” in WFS 1.0 and 1.1. When set to “true”, SRS in GetFeature
response documents will always be reported with the “urn:ogc:def:crs:EPSG::” syntax.

wfs_service_onlineresource
(Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if provided) in the fol-
lowing order:

1. wfs_service_onlineresource

2. ows_service_onlineresource

3. wfs_onlineresource (or automatically generated URL, see the onlineresource section of this document)

wfs_srs
(Recommended) The SRS to use for all layers in this server. (e.g. EPSG:4326) See the note about the SRS rules
in WFS.

wfs_storedqueries
(Optional, WFS 2.0) A comma separated list of stored queries IDs. The definition of each of those stored queries
must be given with wfs_[storedqueryid]_inlinedef or wfs_[storedqueryid]_filedef

wfs_[storedqueryid]_inlinedef
(Optional, WFS 2.0) Inline XML content for a stored query listed in wfs_storedqueries. This content must be a
valid <StoredQueryDescription> document.

wfs_[storedqueryid]_filedef
(Optional, WFS 2.0) Name of a file that contains a valid <StoredQueryDescription> document.

wfs_title
(Required) Human readable title to identify server. WFS TAG Name: Title (WFS 1.0.0, sect. 12.3.3)

Layer Object

gml_constants
(Optional) A comma delimited list of constants. This option allows you to define data that are not part of the
underlying dataset and add them to the GML output. Many application schemas require constants of one form or
another. To specify the value and type of the constants use gml_[item name]_value and gml_[item name]_type.

"gml_constants" "const1,const2"
"gml_const1_type" "Character"
"gml_const1_value" "abc"
"gml_const2_type" "Integer"
"gml_const2_value" "999"

gml_default_items
(Optional) A comma delimited list of items to put in a GetFeature response document without explicit
PROPERTYNAME, or “all”. When a GetFeature request without explicit PROPERTYNAME is processed,
MapServer returns all items by default. As of MapServer 7.0, this behaviour can be amended by specifying
“gml_default_items” to specify which items (among the optional ones) must be returned.

gml_exclude_items
(Optional) A comma delimited list of items to exclude. As of MapServer 4.6, you can control how many attributes
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(fields) you expose for your data layer with metadata. The previous behaviour was simply to expose all attributes
all of the time. The default is to expose no attributes at all. An example excluding a specific field would be:

"gml_include_items" "all"
"gml_exclude_items" "Phonenum"

gml_featureid
(Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML. wfs_featureid or
ows_featureid can be specified instead.

gml_geometries
Provides a name other than the default “msGeometry” for geometry elements. The value is specified as a string
to be used for geometry element names. “none” will exclude the geometry from MapServer integrated output
(OGR outputformat doesn’t honour this setting).

gml_[geometry name]_occurances
MapServer applies default values of 0 and 1, respectively, to the “minOccurs” and “maxOccurs” attributes of
geometry elements, as can be seen in the preceding examples. To override these defaults, a value is assigned
to a gml_[geometry name]_occurances layer metadata item, where again [geometry name] is the string value
specified for gml_geometries, and the value is a comma-delimited pair containing the respective lower and upper
bounds.

gml_[geometry name]_type
When employing gml_geometries, it is also necessary to specify the geometry type of the layer. This is accom-
plished by providing a value for gml_[geometry name]_type, where [geometry name] is the string value specified
for gml_geometries, and a value which is one of:

• point

• multipoint

• line

• multiline

• polygon

• multipolygon

ows/wfs_geomtype
(Optional, metadata shared with OGR output). Set the geometry type of OGR layers created from this MapServer
LAYER. One of “Point”, “LineString”, “Polygon”, “MultiPoint”, “MultiLineString”, “MultiPolygon”, “Geome-
tryCollection”, “Geometry”, or “None”. Most are fairly obvious, but “Geometry” can be used to represent a mix
of geometry types, and “None” is sometimes suitable for layers without geometry. Note that layers which are a
mix of polygon and multipolygon would normally have to be described as “Geometry”. To produce 2.5D output
append “25D” to the geometry type (ie. “Polygon25D”). Note that Z values are only carried by MapServer if
built with USE_POINT_Z_M support.

"ows_geomtype" "Polygon25D"

Note: For GML output, only the “25D” suffix of the value is taken into account to determine whether Z coordinates
should be output or not.

gml_groups
(Optional) A comma delimited list of group names for the layer.

gml_[group name]_group
(Optional) A comma delimited list of attributes in the group. Here is an example:
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"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items
(Optional) A comma delimited list of items to include, or keyword “all”. As of MapServer 4.6, you can control
how many attributes (fields) you expose for your data layer with this metadata. The previous behaviour was
simply to expose all attributes all of the time. You can enable full exposure by using the keyword “all”, such as:

"gml_include_items" "all"

You can specify a list of attributes (fields) for partial exposure, such as:

"gml_include_items" "Name,ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias
(Optional) An alias for an attribute’s name. The served GML will refer to this attribute by the alias. Here is an
example:

"gml_province_alias" "prov"

gml_[item name]_precision
(Optional) Specifies the precision of the indicated field for formats where this is significant, such as Shapefiles.
Precision is the number of decimal places, and is only needed for “Real” fields. Currently this is only used for
OGR based output formats, not the WFS GML2/GML3 output.

gml_[item name]_type (Optional)
Specifies the type of the attribute. Valid values are the OGR data types: Inte-
ger|Long|Real|Character|Date|Time|DateTime|Boolean. MapServer translates these to valid GML data
types.

Note: Long is to be used for 64-bit integers, starting with MapServer 7.0.1.

Note: Time and DateTime have been added in MapServer 8. And since MapServer 8, Date semantics is a date,
without time, whereas in previous versions, it was used indifferently for Date, Time or DateTime.

gml_[item name]_value
Used to specify values for gml_constants.

gml_[item name]_width
(Optional) Specifies the width of the indicated field for formats where this is significant, such as Shapefiles.

gml_mandatory_items
(Optional) A comma delimited list of items to make mandatory, or keyword “all”. See gml_optional_items.

gml_optional_items
(Optional) A comma delimited list of items to make optional, or keyword “all”. By default, as of MapServer 7.0,
all items are considered as optional (minOccurs=”0” in the GML application schema). If “gml_optional_items”
is specified, only the listed elements will be optional and other included items will be mandatory. If there are
more mandatory items, it might be more convenient to specify “gml_mandatory_items”.

gml_types
(Optional) If this field is “auto” then some input feature drivers (ie. OGR, POSTGIS, ORACLESPATIAL and
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native shapefiles) will automatically populate the type, width and precision metadata for the layer based on the
source file. This is mainly used by OGR based output formats, as well as the WFS GML2/GML3 output to format
dates.

"gml_types" "auto"

gml_xml_items
(Optional) A comma delimited list of items that should not be XML-encoded.

ows_allowed_ip_list
Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list
Same as ows_denied_ip_list in the Web Object.

wfs_abstract
Same as wfs_abstract in the Web Object.

wfs_enable_request (or ows_enable_request)
Space separated list of requests to enable. The default is none. The following requests can be enabled: GetCa-
pabilities, GetFeature and DescribeFeatureType. A “!” in front of a request will disable the request. “*” enables
all requests.

Examples:

To enable only GetCapabilities and GetFeature:

"wfs_enable_request" "GetCapabilities GetFeature"

To enable all requests except GetCapabilities

"wfs_enable_request" "* !GetCapabilities"

wfs_extent
(Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very inefficient) for
MapServer to probe the data source to figure its extents. The value for this metadata is “minx miny maxx maxy”
separated by spaces, with the values in the layer’s projection units. If wfs_extent is provided then it has priority
and MapServer will NOT try to read the source file’s extents.

wfs_featureid
(Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML. gml_featureid or
ows_featureid can be specified instead.

wfs_getfeature_formatlist
(Optional) Comma-separted list of formats that should be valid for a GetFeature request. If defined, only these
formats are advertised in the Capabilities document.

wfs_keywordlist
Same as wfs_keywordlist in the Web Object.

wfs_metadataurl_about
• (Optional) used to reference the aspect of the element which includes the MetadataURL element that this meta-

data provides more information about. The layer metadata wfs_metadataurl_href must also be specified. Refer
to Table 11 of the OGC WFS 2.0 specification (WFS 2.0 only)

• To output several MetadataURL elements, use wfs_metadataurl_list

wfs_metadataurl_format
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• (Optional) The file format of the metadata record. Valid values are “XML”, “SGML”, or “HTML”. The layer
metadata wfs_metadataurl_type and wfs_metadataurl_href must also be specified. Refer to section 12.3.5 of the
WFS 1.0.0 spec (unused for WFS 2.0).

• To output several MetadataURL elements, use wfs_metadataurl_list

wfs_metadataurl_href
• (Optional) The URL to the layer’s metadata. The layer metadata wfs_metadataurl_type and

wfs_metadataurl_format for WFS 1.0 and 1.1, or wfs_metadataurl_about for WFS 2.0 may also be speci-
fied. Refer to section 12.3.5 of the WFS 1.0.0 spec and Table 11 of the OGC WFS 2.0 specification

• To output several MetadataURL elements, use wfs_metadataurl_list

wfs_metadataurl_list

Note: wfs_metadataurl_list will be included in the MapServer 8.0 release.

• (Optional) Space-separated list of parts of metadata keys, to be able to specify several MetadataURL. If the
value of wfs_metadataurl_list is “foo bar”, then wfs_metadataurl_foo_href, wfs_metadataurl_foo_format,
wfs_metadataurl_foo_type, wfs_metadataurl_foo_about, wfs_metadataurl_bar_href,
wfs_metadataurl_bar_format, wfs_metadataurl_bar_type, wfs_metadataurl_bar_about will be queried
with the semantics of the wfs_metadataurl_href, wfs_metadataurl_format, wfs_metadataurl_type and
wfs_metadataurl_about items.

Example:

"wfs_metadataurl_list" "xml html"

"wfs_metadataurl_xml_format" "text/xml"
"wfs_metadataurl_xml_type" "TC211"
"wfs_metadataurl_xml_href" "http://example.com/testXML"
"wfs_metadataurl_xml_about" "about XML"

"wfs_metadataurl_html_format" "text/html"
"wfs_metadataurl_html_type" "TC211"
"wfs_metadataurl_html_href" "http://example.com/testHTML"
"wfs_metadataurl_html_about" "about HTML"

wfs_metadataurl_type
• (Optional) The standard to which the metadata complies. Currently only two types are valid: “TC211”

which refers to [ISO 19115], and “FGDC” which refers to [FGDC CSDGM]. The layer metadata
wfs_metadataurl_format and wfs_metadataurl_href must also be specified. Refer to section 12.3.5 of the WFS
1.0.0 spec (unused for WFS 2.0).

• To output several MetadataURL elements, use wfs_metadataurl_list

wfs_srs
If there is no SRS defined at the top-level in the mapfile then this SRS will be used to advertize this feature type
(layer) in the capabilities. See the note about the SRS rules in WFS.

wfs_title
Same as wfs_title in the Web Object.

wfs_use_default_extent_for_getfeature
(Optional, since MapServer 7.0.4) Whether the MAP.EXTENT should be used in request to datasources in the
absence of other spatial filter. This is the default behaviour, but this might affect performance in some use cases.
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In those cases, setting this item to “false” will avoid he default spatial filter to be appended to the request. This
is only implemented for OGR datasources (since 7.0.4) and MSSQL2008 connections (since 7.6)

Layer Metadata API

If wfs_metadataurl_href is not defined, MapServer will provide a link to the Layer Metadata API for the given layer in
the <MetadataURL> element. See the Layer Metadata API documentation for more information.

To-do Items and Known Limitations

• This is just a basic WFS (read-only): transaction requests are not supported and probably never will given the
nature of MapServer. GeoServer or TinyOWS is recommended for those needing WFS-T support.

• WFS spec. seems to require that features of a given feature type must all be of the same geometry type (point,
line, polygon). This works fine for shapefiles, but some data source formats supported by MapServer allow
mixed geometry types in a single layer and this goes against the WFS spec. Suggestions on how to handle this
are welcome (send suggestions to the mapserver-dev mailing list.

10.1.11 INSPIRE Download Service
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Introduction

INSPIRE is the name of an European directive, establishing an infrastructure for spatial information in Europe to
support Community environmental policies, and policies or activities which may have an impact on the environment.

The INSPIRE Download Service is an implementation of the INSPIRE Technical Guidance Download Services v3.1
on top of the WFS Server, version 2.0 (implementation explained in the previous chapter) and an implementation of
Technical Guidance for the implementation of INSPIRE Download Services using Web Coverage Services on top of
WCS Server, version 2.0. The INSPIRE schemas contain extensions to OGC WFS and WCS schemas.

In order to achieve INSPIRE Download Service compliance, the following enhancements have been implemented in
MapServer:

• Activation of INSPIRE support (two scenarios)

• Multi-language support for certain capabilities fields

• Provision of INSPIRE specific metadata

Support for INSPIRE Download Service in MapServer uses a syntax identical to the one used for INSPIRE View
Service. Consequently, it is possible to define shared metadata items between Download and View services by using
the ows_ prefix instead of wfs_ or wcs_. In the following examples the ows_ prefix is used, as the documentation is
meant for both WCS and WFS.

Activation of INSPIRE support

INSPIRE specific metadata can either be referenced in an external INSPIRE service metadata document (scenario 1)
or can be directly embedded in the capabilities document (scenario 2). MapServer supports both scenarios.

Activation of the corresponding scenario for INSPIRE support takes place in the WEB.METADATA section of the
mapfile through ows_inspire_capabilities. If activated, the corresponding INSPIRE namespace as well as appropriate
validation warnings are generated in the capabilities document.

Scenario 1 - activate INSPIRE support using a reference to external service metadata:

WEB
METADATA
"ows_inspire_capabilities" "url"
...

END
END

Scenario 2 - activate INSPIRE support using embedded service metadata:

WEB
METADATA
"ows_inspire_capabilities" "embed"
...

END
END
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Multi-language support for certain capabilities fields

INSPIRE requires multi-language support and requests a list of all supported languages as well as the default language
in the capabilities document. Based on the language parameter in the GetCapabilities request, certain specific metadata
values, namely

• ows_title

• ows_abstract

need to be provided in the requested language (both at the WEB.METADATA and LAYER.METADATA levels). If
the language is not supported (or no language parameter is present), the default language has to be used.

For INSPIRE download service WCS, only the WEB.METADATA fields have an effect, as the INSPIRE and language
specific metadata are only relevant for the service itself and is not required on the level of coverages.

As an extension, also not encouraged by the INSPIRE Download Services technical guidance, MapServer supports
language dependent reference data like

• DATA “road_eng”

• CONNECTION “db_ger”

All supported languages have to be specified as comma separated list (first language is default) through wfs_languages
in the WEB.METADATA section of the mapfile. This language parameter is also added to the OnlineResource in the
GetCapabilities output:

WEB
METADATA
...
"ows_languages" "eng,ger" #first default, values according ISO 639-2/B
...

END
END

For language specific metadata values, a key extension method is applied:

WEB
METADATA
...
"ows_title.eng" "myservicetitle"
"ows_title.ger" "myservicetitleger"
"ows_abstract" "mylayerabstract" #fallback
"ows_abstract.ger" "mylayerabstractger"
...

END
END

LAYER
METADATA
"wfs_title" "title: province"
"wfs_title.fre" "titre: province"
"wfs_abstract" "abstract: province"
"wfs_abstract.fre" "resume: province"
...
END
...

END
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For language dependent reference data, a similar approach like the run-time substitution feature of MapServer has been
followed (only DATA and CONNECTION values with %language% are substituted):

...
LAYER
NAME TN.RoadTransportNetwork.RoadLink
DATA "road_%language%"
...
END

...

If the language is not supported (or no language parameter is present), the default language is substituted.

Provision of INSPIRE specific metadata

Depending on the scenario, additional metadata information is required to support the specification. The INSPIRE
related fields are provided below.

Scenario 1 - INSPIRE related fields using referenced external service metadata:

WEB
METADATA
"ows_inspire_capabilities" "url"
"ows_languages" "eng,ger" #first default, values according ISO 639-2/B

"ows_inspire_metadataurl_href" "http://INSPIRE.service/metadata"
"ows_inspire_metadataurl_format" "application/vnd.ogc.csw.capabilities.response_xml"
"ows_inspire_dsid_code" "mycode"

"ows_keywordlist" "ogc,wfs,gml"
"ows_title" "myservicetitle"
"ows_abstract" "myabstract"
"ows_fees" "conditions unknown" #value either "no conditions apply"|default

→˓"conditions unknown"|<specific conditions>
"wfs_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode␣

→˓codelist) or default "None"
"ows_contactorganization" "MapServer" #responsible organization
"ows_contactposition" "owner" #responsible organization, value according

→˓"INSPIRE Metadata Regulation" (part D6)
...

END
END

Scenario 2 - INSPIRE related fields using embedded service metadata:

WEB
METADATA
"ows_inspire_capabilities" "embed"
"ows_languages" "eng,ger" #first default, values according ISO 639-2/B

"ows_inspire_temporal_reference" "2011-09-19" #date of␣
→˓last revision, value according YYYY-MM-DD
"ows_inspire_mpoc_name" "mympocname" #point␣

→˓of contact
(continues on next page)
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(continued from previous page)

"ows_inspire_mpoc_email" "mympoc@e.mail" #point␣
→˓of contact
"ows_inspire_metadatadate" "2011-09-19"
"ows_inspire_resourcelocator" "http://myinspireresource" #URL for␣

→˓ResourceLocator
"ows_inspire_keyword" "infoMapAccessService" #value␣

→˓according "classification of spatial data services"
"ows_inspire_dsid_code" "mycode"
"ows_inspire_dsid_ns" "http://mycode"

"ows_keywordlist" "ogc,wfs,gml"
"ows_title" "myservicetitle"
"ows_abstract" "myabstract"
"ows_fees" "conditions unknown" #value either "no conditions apply"|default

→˓"conditions unknown"|<specific conditions>
"ows_accessconstraints" "None" #value according ISO 19115 (MD_RestrictionCode␣

→˓codelist) or default "None"
"ows_contactorganization" "MapServer" #responsible organization
"ows_contactposition" "owner" #responsible organization, value according

→˓"INSPIRE Metadata Regulation" (part D6)
...
END

END

Notes:

• this mailing list exchange gives a few hints how to fill the wfs_inspire_dsid_code metadata item.

• regarding scenario 2, <inspire_common:ResourceType> is always set to service and <in-
spire_common:SpatialDataServiceType> is always set to download, both values can’t be altered through
the mapfile

• conformity is always set to not evaluated, based on the latest INSPIRE Metadata Implementing Rules (page 7),
a specification document, the specification date and a specification URI or URL need to be provided for degree
conformant/not conformant, which is currently not implemented

10.1.12 WFS Client
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Introduction

MapServer can retrieve and display data from a WFS server. The following document explains how to display data
from a WFS server using the MapServer CONNECTIONTYPE WFS.

WFS can also be accessed through OGR (CONNECTIONTYPE OGR). See the OGR Vector Layers Through MapServer
documentation for datails.

A WFS ( Web Feature Service ) publishes feature-level geospatial data to the web. This means that it is possible to
use this data as a data source to render a map. In effect, this is not unlike having a shapefile accessible over the web,
only it’s not a shapefile, it’s XML-Encoded geospatial data (GML to be exact), including both geometry AND attribute
information.

WFS-Related Information

Although in-depth understanding of WFS and GML is neither necessary nor required in order to implement a
MapServer application that reads remote WFS data, it is recommended to at least get acquainted with the concepts and
basic functionality of both. Here are the official references (including a newly added OGC workshop with MapServer):

• OGC Web Feature Service Implementation Specification.

• Geography Markup Language Implementation Specification.

• MapServer OGC Web Services Workshop package.
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Software Requirements

In order to enable MapServer to serve WFS, it MUST be compiled against certain libraries:

• PROJ: The reprojection library. Version 4.4.3 or greater is required.

• GDAL/OGR: I/O support libraries. Version 1.1.8 or greater is required.

• LibCURL: Used to help MapServer act as an HTTP client. Version 7.10 or greater is required.

Please see the MapServer UNIX Compilation and Installation HOWTO for detailed instructions on compiling
mapserver with support for these libraries and features. For Windows users, look on the MapServer website to see
if there are any binaries available that meet these requirements.

Setting up a WFS-client Mapfile

Storing Temporary Files

You must set the IMAGEPATH parameter in your mapfile since MapServer uses this directory to store temporary
files downloaded from the remote WFS server. Windows users must specify a full path for IMAGEPATH, such as:
IMAGEPATH “C:/tmp/ms_tmp/”

MAP
...
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL ...

END
...

END

Configuring for HTTPS Connections

Follow the Accessing OGC services over HTTPS document to make sure that your local server can connect through
HTTPS secured connections.

WFS Layer

A WFS layer is a regular mapfile layer, which can use CLASS objects, with expressions, etc.

As of MapServer 4.4, the suggested method to define a WFS Client layer is through the CONNECTION parameter and
the layer’s METADATA. The necessary mapfile parameters are defined below:

• CONNECTIONTYPE: must be “wfs”

• CONNECTION : The URL to the WFS Server. e.g. https://demo.mapserver.org/cgi-bin/wfs? The
path to the mapfile on the WFS server is required if it was required in the GetCapabilities re-
quest e.g. you would have to specify the MAP parameter in the CONNECTION for the following
server: http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map &SER-
VICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

• METADATA: The LAYER’s must contain a METADATA object with the following parameters:
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– wfs_connectiontimeout (optional): The maximum time to wait for a remote WFS layer to load, set in sec-
onds (default is 30 seconds). This metadata can be added at the layer level so that it affects only that
layer, or it can be added at the map level (in the web object) so that it affects all of the layers. Note that
wfs_connectiontimeout at the layer level has priority over the map level.

– wfs_filter: This can be included to include a filter encoding parameter in the getFeature request (see the
Filter Encoding Howto for more information on filtering). The content of the wfs_filter is a valid filter
encoding element.

...
METADATA

"wfs_filter" "<PropertyIsGreaterThan><PropertyName>POP_RANGE</PropertyName>
<Literal>4</Literal></PropertyIsGreaterThan>"

END
...

– wfs_geometryname (optional): The name of the geometry column used for spatial filtering in the filter
parameter (Geometry by default). This parameter is used for ArcGIS or GeoServer WFS services as several
geometry column can be chosen (or with a different default name to Geometry).

– wfs_latlongboundingbox (optional): The bounding box of this layer in geographic coordinates in the format
“lon_min lat_min lon_max lat_max”. If it is set then MapServer will request the layer only when the map
view overlaps that bounding box. You normally get this from the server’s capabilities output.

– wfs_maxfeatures (optional): Limit the number of GML features to return. Sensible values are integers
greater than 0. If 0 is specified, no features will be returned.

– wfs_request_method (optional): Can be set to “GET” to do a Get request to WFS servers that do not support
Post requests. The default method in MapServer is Post.

...
METADATA

"wfs_request_method" "GET"
END
...

– wfs_typename (required): the <Name> of the layer found in the GetCapabilities. An example Get-
Capabilities request is: https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&
REQUEST=GetCapabilities

– wfs_version (required): WFS version, currently “1.0.0”

Note: Each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries the ‘wfs_*’
metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of duplication
in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere for common
metadata items shared by multiple OGC interfaces.
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Optional Layer Parameters and Metadata

• “wfs_auth_username” metadata - msEncrypt-style authorization string. Empty strings are also accepted.

METADATA
"wfs_auth_username" "foo"
"wfs_auth_password" "{FF88CFDAAE1A5E33}"

END

• “wfs_auth_type” metadata - Authorization type. Supported types include:

– basic

– digest

– ntlm

– any (the underlying http library picks the best among the options supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wfs_auth_type" "ntlm"

END

• “wfs_connectiontimeout” metadata
– the maximum time to wait for a remote WFS layer to load, set in seconds (default is 30 seconds). This

metadata can be added at the layer level so that it affects only that layer, or it can be added at the map level
(in the web object) so that it affects all of the layers. Note that wfs_connectiontimeout at the layer level has
priority over the map level.

METADATA
...
"wfs_connectiontimeout" "60"
...

END

• “wfs_proxy_auth_type” metadata - the authorization type to use for a proxy connection. Supported types
include:

– basic

– digest

– ntlm

– any (the underlying http library picks the best among the opotions supported by the remote server)

– anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wfs_proxy_auth_type" "ntlm"

END

• “wfs_proxy_host” metadata - the hostname of the proxy to use, in “dot-quad” format, with an optional port
component (e.g. ‘192.168.2.10:8080’).
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METADATA
"wfs_proxy_host" "192.168.2.10"

END

• “wfs_proxy_port” metadata - the port to use for a proxy connection.

METADATA
"wfs_proxy_port" "8080"

END

• “wfs_proxy_type” metadata - the type of the proxy connection. Valid values are ‘http’ and ‘socks5’, which are
case sensitive.

METADATA
"wfs_proxy_type" "http"

END

• “wfs_proxy_username” metadata - msEncrypt-style string for a proxy connection. Empty strings are also
accepted.

METADATA
"wfs_proxy_username" "foo"
"wfs_proxy_password" "{FF88CFDAAE1A5E33}"

END

Example WFS Layer

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
CONNECTION "https://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "continents"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "10"

END
PROJECTION
"init=epsg:4326"

END
CLASS
NAME "Continents"
STYLE
COLOR 255 128 128
OUTLINECOLOR 96 96 96

END
END

END # Layer
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Connection - deprecated

As of MapServer v4.4 the method of specifying all of the connection information in the CONNECTION parameter has
beendeprecated. The preferred method is mentioned above. If the metadata is not provided, VERSION, SERVICE,
and TYPENAME will be fetched from the CONNECTION, as shown below

CONNECTION "https://demo.mapserver.org/cgi-bin/wfs?SERVICE=WFS&VERSION=1.0.0&
→˓TYPENAME=continents"

TODO / Known Limitations

1. Temporary WFS (gml) files are written to the IMAGEPATH directory, but this could become a security concern
since it makes the raw GML data downloadable by someone who could guess the gml filename. We should
consider having a “wfs_cache_dir” metadata that, if it is set will define a directory where temp files should be
written. The default would still be to use the value of IMAGEPATH if “wfs_tmpdir” is not set.

10.1.13 WFS-T Server

Contents

• WFS-T Server

– WFS-T

WFS-T

MapServer does not support the WFS-T specification. A companion program, TinyOWS, is a fast implementation of
WFS-T. TinyOWS and MapServer share the same Mapfile format, and you can use the same Mapfile and datasources
for a dual installation of MapServer and TinyOWS on your server.
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• WFS Filter Encoding

– Introduction

– Currently Supported Features

– Get and Post Requests

– Use of Filter Encoding in MapServer

– Limitations

– Tests

Introduction

This document describes the procedures for taking advantage of the Filter Encoding (FE) support in WFS GetFeature
requests, which was added to MapServer in version 4.2.

This document assumes that you are already familiar with the following aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WFS specification would be an asset. Links to the MapServer WFS documents are included
in the next section.

As of MapServer 7.0, the OGC Filter Encoding 2.0 specification is also used to evaluate Filters of WFS 2.0 GetFeature
requests.

Links to SLD-related Information

• Filter Encoding Implementation Specification.

• MapServer WFS Client Howto.

• MapServer WFS Server Howto.

• MapServer OGC Web Services Workshop.

• Open GIS Consortium (OGC) home page.

Currently Supported Features

The following table lists the currently supported features for FE.

Table 1. Currently Supported Features
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Feature Set Feature
Spatial Capabilities

Equals
Disjoint
Touches
Within
Overlaps
Crosses
Intersects
Contains
DWithin
BBOX

Scalar Capabilities

Logical Operators
And
Or
Not

Comparison Operators
PropertyIsEqualTo (=)
PropertyIsNotEqualTo (<>)
PropertyIsLessThan (<)
PropertyIsGreaterThan (>)
PropertyIsLessThanOrEqualTo (<=)
PropertyIsGreaterThanOrEqualTo (>=)
PropertyIsLike
PropertyIsBetween (range)

Units of measure

The following units of measure are supported:

m or meters meters
km or kilometers kilometers
NM nauticalmiles
mi or miles miles
in or inches inches
ft or feet feet
deg or dd degree
px pixels
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Get and Post Requests

MapServer already has the capability to receive and parse Get requests and URL-encoded Post requests. The ability
for MapServer to be able to receive Post requests with XML-encoded information sent in the body of the request has
been added. Also, the ability to generate XML-encoded Post requests for WFS layers has been added.

Both Get and Post request are now supported for all WFS requests:

• GetCapabilities

• GetFeatures

• DescribeFeatureType

Supporting these WFS requests in Post was implemented to keep consistency between all supported WFS requests.

When sending requests, the default request method used is Post. To change this behavior, we have introduced a layer
level meta data, wfs_request_method, which can be set to “GET”.

Use of Filter Encoding in MapServer

This section describes how to use FE on both the server and client sides.

Server Side

To be able to use Filter Encoding, you need to create a valid WFS server using MapServer. Please refer to the WFS
Server HOWTO for specifics.

There is nothing special that should be added to a WFS server for Filter Encoding, but you should note that, when
requesting the capabilities of your WFS server, the document returned should contain the supported filters. Here is part
of a Capabilities document (note the “Filter_Capabilities” section):

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <WFS_Capabilities version="1.0.0" updateSequence="0"
3 xmlns="http://www.opengis.net/wfs" xmlns:ogc="http://www.opengis.net/ogc"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.opengis.net/wfs
6 http://schemas.opengis.net/wfs/1.0.0/WFS-capabilities.xsd">
7

8 <!-- MapServer version 5.6.5 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
9 OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE

10 SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
11 SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
12 SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=EPPL7 INPUT=POSTGIS INPUT=OGR
13 INPUT=GDAL INPUT=SHAPEFILE -->
14

15 <Service>
16 <Name>MapServer WFS</Name>
17 <Title>WMS Demo Server for MapServer</Title>
18 <Abstract>This demonstration server showcases MapServer (www.mapserver.org)
19 and its OGC support</Abstract>
20 <OnlineResource>https://demo.mapserver.org/cgi-bin/wfs?</OnlineResource>
21 </Service>
22

23 <Capability>
(continues on next page)

10.1. OGC Support and Configuration 845



MapServer Documentation, Release 7.6.6

(continued from previous page)

24 <Request>
25 <GetCapabilities>
26 <DCPType>
27 <HTTP>
28 <Get onlineResource="https://demo.mapserver.org/cgi-bin/wfs?"/>
29 </HTTP>
30 </DCPType>
31 <DCPType>
32 <HTTP>
33 <Post onlineResource="https://demo.mapserver.org/cgi-bin/wfs?"/>
34 </HTTP>
35 </DCPType>
36 </GetCapabilities>
37 ...
38 </Request>
39 </Capability>
40 ...
41 <ogc:Filter_Capabilities>
42 <ogc:Spatial_Capabilities>
43 <ogc:Spatial_Operators>
44 <ogc:Equals/>
45 <ogc:Disjoint/>
46 <ogc:Touches/>
47 <ogc:Within/>
48 <ogc:Overlaps/>
49 <ogc:Crosses/>
50 <ogc:Intersects/>
51 <ogc:Contains/>
52 <ogc:DWithin/>
53 <ogc:BBOX/>
54 </ogc:Spatial_Operators>
55 </ogc:Spatial_Capabilities>
56 <ogc:Scalar_Capabilities>
57 <ogc:Logical_Operators/>
58 <ogc:Comparison_Operators>
59 <ogc:Simple_Comparisons/>
60 <ogc:Like/>
61 <ogc:Between/>
62 </ogc:Comparison_Operators>
63 </ogc:Scalar_Capabilities>
64 </ogc:Filter_Capabilities>
65

66 </WFS_Capabilities>
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Client Side

To be able to generate a Filter to a WFS server, a layer level metadata called wfs_filter has been added, which should
contain the filter to be sent to the server. Following is an example of a valid WFS client layer with a filter:

LAYER
NAME "cities"
TYPE POINT
STATUS ON
CONNECTION "https://demo.mapserver.org/cgi-bin/wfs?"
CONNECTIONTYPE WFS
METADATA
"wfs_typename" "cities"
"wfs_version" "1.0.0"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "100"
"wfs_filter" "<PropertyIsGreaterThan><PropertyName>POPULATION</PropertyName>

<Literal>10000000</Literal></PropertyIsGreaterThan>"
END
PROJECTION
"init=epsg:4326"

END
LABELITEM 'NAME'
CLASS
NAME 'World Cities'
STYLE
COLOR 255 128 128
OUTLINECOLOR 128 0 0
SYMBOL 'circle'
SIZE 9

END
LABEL
COLOR 0 0 0
OUTLINECOLOR 255 255 255
TYPE TRUETYPE
FONT sans
SIZE 7
POSITION UC
PARTIALS FALSE

END
END

END

Note:

• The filter given as a value of the wfs_filter metadata should not contain <Filter> start and end tags.

• The CONNECTION points to a valid WFS server supporting filters

• The returned shapes will be drawn using the class defined in the layer.
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Limitations

• A limited set of spatial operators are supported.

Tests

Here are some test URLs for the different supported filters:

• PropertyIsEqualTo

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsEqualTo><PropertyName>NAME</PropertyName>
<Literal>Halifax</Literal></PropertyIsEqualTo></Filter>

• PropertyIsNotEqualTo

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsNotEqualTo><PropertyName>NAME</PropertyName>
<Literal>Halifax</Literal></PropertyIsNotEqualTo></Filter>

• PropertyIsLessThan

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLessThan><PropertyName>POPULATION</PropertyName>
<Literal>1000</Literal></PropertyIsLessThan></Filter>

• PropertyIsGreaterThan

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsGreaterThan><PropertyName>POPULATION</PropertyName>
<Literal>10000000</Literal></PropertyIsGreaterThan></Filter>

• PropertyIsLessThanOrEqualTo

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLessThanOrEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>499</Literal></PropertyIsLessThanOrEqualTo></Filter>

• PropertyIsGreaterThanOrEqualTo

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsGreaterThanOrEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>10194978</Literal></PropertyIsGreaterThanOrEqualTo></Filter>

• PropertyIsBetween

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>

(continues on next page)
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(continued from previous page)

<PropertyIsBetween><PropertyName>POPULATION</PropertyName>
<LowerBoundary>10194978</LowerBoundary>
<UpperBoundary>12116379</UpperBoundary></PropertyIsBetween></Filter>

• PropertyIsLike

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<PropertyIsLike wildcard='*' singleChar='.' escape='!'>
<PropertyName>NAME</PropertyName><Literal>Syd*</Literal></PropertyIsLike>
</Filter>

• Logical operator OR

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<OR><PropertyIsEqualTo><PropertyName>NAME</PropertyName>
<Literal>Sydney</Literal></PropertyIsEqualTo><PropertyIsEqualTo>
<PropertyName>NAME</PropertyName><Literal>Halifax</Literal>
</PropertyIsEqualTo></OR></Filter>

• Logical operator AND

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<AND><PropertyIsLike wildcard='*' singleChar='.' escape='!'>
<PropertyName>NAME</PropertyName><Literal>Syd*</Literal></PropertyIsLike>
<PropertyIsEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>4250065</Literal></PropertyIsEqualTo></AND></Filter>

• Logical operator NOT

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<AND><NOT><PropertyIsEqualTo><PropertyName>POPULATION</PropertyName>
<Literal>0</Literal></PropertyIsEqualTo></NOT><NOT><PropertyIsEqualTo>
<PropertyName>POPULATION</PropertyName><Literal>12116379</Literal>
</PropertyIsEqualTo></NOT></AND></Filter>

• Spatial operator BBOX

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<BBOX><PropertyName>Name>NAME</PropertyName><Box%20srsName='EPSG:3978'>
<coordinates>135.2239,34.4879 135.8578,34.8471</coordinates></Box></BBOX>
</Filter>

• Spatial operator Dwithin

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<DWithin><PropertyName>Geometry</PropertyName><gml:Point>
<gml:coordinates>135.500000,34.666667</gml:coordinates>
</gml:Point><Distance units='m'>10000</Distance></DWithin></Filter>
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https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=%3CFilter%3E%3CAND%3E%3CPropertyIsLike%20wildcard=%27*%27%20singleChar=%27.%27%20escape=%27!%27%3E%3CPropertyName%3ENAME%3C/PropertyName%3E%3CLiteral%3ESyd*%3C/Literal%3E%3C/PropertyIsLike%3E%3CPropertyIsEqualTo%3E%3CPropertyName%3EPOPULATION%3C/PropertyName%3E%3CLiteral%3E4250065%3C/Literal%3E%3C/PropertyIsEqualTo%3E%3C/AND%3E%3C/Filter%3E
https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}AND\T1\textgreater {}\T1\textless {}NOT\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}0\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/NOT\T1\textgreater {}\T1\textless {}NOT\T1\textgreater {}\T1\textless {}PropertyIsEqualTo\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}POPULATION\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}Literal\T1\textgreater {}12116379\T1\textless {}/Literal\T1\textgreater {}\T1\textless {}/PropertyIsEqualTo\T1\textgreater {}\T1\textless {}/NOT\T1\textgreater {}\T1\textless {}/AND\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=%3CFilter%3E%3CBBOX%3E%3CPropertyName%3EName%3ENAME%3C/PropertyName%3E%3CBox%20srsName=%27EPSG:4326%27%3E%3Ccoordinates%3E135.2239,34.4879%20135.8578,34.8471%3C/coordinates%3E%3C/Box%3E%3C/BBOX%3E%3C/Filter%3E
https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=%3CFilter%3E%3CDWithin%3E%3CPropertyName%3EGeometry%3C/PropertyName%3E%3Cgml:Point%3E%3Cgml:coordinates%3E135.500000,34.666667%3C/gml:coordinates%3E%3C/gml:Point%3E%3CDistance%20units=%27m%27%3E10000%3C/Distance%3E%3C/DWithin%3E%3C/Filter%3E
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• Spatial operator Intersects

https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS
&REQUEST=GetFeature&TYPENAME=cities&Filter=<Filter>
<Intersects><PropertyName>Geometry</PropertyName>
<gml:Polygon><gml:outerBoundaryIs><gml:LinearRing>
<gml:coordinates>135.5329,34.6624 135.4921,34.8153 135.3673,34.7815
135.3800,34.6216 135.5361,34.6210 135.5329,34.6624</gml:coordinates>
</gml:LinearRing></gml:outerBoundaryIs></gml:Polygon></Intersects></Filter>

• The OGC conformance tests (https://cite.opengeospatial.org/teamengine/) have been run on the FE support. The
following table and notes reflect the current status.

Table 2. WFS OGC test suite (over the HTTP Get and Post method)

Test # Description # of Tests # of Failed Tests
1 Basic WFS tests over the HTTP Get and Post method 402 281
1.1 GetCapabilities 16 0
1.2 DescribeFeatureType 18 0
1.3 GetFeature 368 281
1.3.1 Basic WFS tests 20 1
1.3.2 Complex WFS tests 18 18
1.3.3 Arithmetic filter WFS tests 8 8
1.3.4 Comparison WFS tests 50 26
1.3.4.1 GetFeature PropertyIsGreaterThanOrEqualTo filter 2 0
1.3.4.2 GetFeature PropertyIsBetween filter 6 2
1.3.4.3 GetFeature PropertyIsEqualTo filter 4 0
1.3.4.4 GetFeature PropertyIsGreaterThan filter 4 2
1.3.4.5 GetFeature PropertyIsGreaterThanOrEqualTo filter 6 6
1.3.4.6 GetFeature PropertyIsLessThan filter 6 4
1.3.4.7 GetFeature PropertyIsLessThanOrEqualTo filter 6 4
1.3.4.8 GetFeature PropertyIsLike filter 2 0
1.3.4.9 GetFeature PropertyIsNotEqualTo filter 6 0
1.3.4.10 GetFeature PropertyIsNull filter 8 8
1.3.5 Logical WFS test 20 0
1.3.5.1 GetFeature AND PropertyIsEqualTo PropertyIsEqualTo filter 8 0
1.3.5.2 GetFeature OR PropertyIsEqualTo PropertyIsEqualTo filter 8 0
1.3.5.3 GetFeature NOT PropertyIsNotEqualTo filter 4 0
1.3.6 Spatial operator WFS test 252 228
1.3.6.1 GetFeature BBOX filter 36 12
1.3.6.2 GetFeature with other filter types 216 216
2 Transactional WFS test 69 69

The OGC Cite WFS test suite can be found on the OGC Cite portal.

Following are some MapServer specific notes on this test suite:

1. Test number 1.3.1:

• There is a contradiction between the wfs/1.0.0/basic/getfeature/post/3 assertion and the XPath expected
value of the test. The assertion says: “Test that a GetFeature request with no output format de-
fined returns a wfs:FeatureCollection with GML data.” and the expected XPath value for this request:
“boolean(/ogc:ServiceExceptionReport)” is supposed to be true. So, the assertion means that when a WFS
server receives a request which contains an undefined output format or no output format at all, the WFS
server must return a WFS collection containing GML data. The XPath expected value means that when a
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https://demo.mapserver.org/cgi-bin/wfs?&VERSION=1.0.0&SERVICE=WFS&REQUEST=GetFeature&TYPENAME=cities&Filter=\T1\textless {}Filter\T1\textgreater {}\T1\textless {}Intersects\T1\textgreater {}\T1\textless {}PropertyName\T1\textgreater {}Geometry\T1\textless {}/PropertyName\T1\textgreater {}\T1\textless {}gml:Polygon\T1\textgreater {}\T1\textless {}gml:outerBoundaryIs\T1\textgreater {}\T1\textless {}gml:LinearRing\T1\textgreater {}\T1\textless {}gml:coordinates\T1\textgreater {}135.5329,34.6624%20135.4921,34.8153%20135.3673,34.7815%20135.3800,34.6216%20135.5361,34.6210%20135.5329,34.6624\T1\textless {}/gml:coordinates\T1\textgreater {}\T1\textless {}/gml:LinearRing\T1\textgreater {}\T1\textless {}/gml:outerBoundaryIs\T1\textgreater {}\T1\textless {}/gml:Polygon\T1\textgreater {}\T1\textless {}/Intersects\T1\textgreater {}\T1\textless {}/Filter\T1\textgreater {}
https://cite.opengeospatial.org/teamengine/
https://cite.opengeospatial.org/teamengine/


MapServer Documentation, Release 7.6.6

WFS server receives a request with an undefined output format or no output format at all, the WFS server
must return a service exception report.

2. Tests number 1.3.2 and 1.3.3:

• Not supported.

3. Tests number 1.3.4.2, 1.3.4.4 to 1.3.4.7:

• The string comparison is not supported using >, <, >=, <=.

• The date comparison is not supported.

See also:
bug 461

4. Test number 1.3.4.10:

• This property is not supported in MapServer.

5. Test number 1.3.6.1:

• The returned feature xml won’t validate because the validation is done against a specific xsd (geomatry.xsd).

• The data conversion on multipoints and multilayers are not supported within GDAL.

See also:
bug 461

6. Test number 2:

• The transaction requests are not supported.

10.1.15 SLD
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– Other Items Implemented

– Issues Found During Implementation

Introduction

This document describes the procedures for taking advantage of the Styled Layer Descriptor (SLD) support in WMS
GetMap requests with MapServer. SLD support exists for the server side (ability to read an SLD and apply it with a
GetMap request) and for the client side (includes sending SLD requests to server and generate SLD files on the fly from
MapServer map file). SLD support was added to MapServer in version 4.2.

This document assumes that you are already familiar with the following aspects of MapServer:

• MapServer application development and setting up .map files.

• Familiarity with the WMS specification would be an asset. Links to the MapServer WMS documents are included
in the next section.

Links to SLD-related Information

• Styled Layer Descriptor Implementation Specification.

• MapServer WMS Client HowTo.

• MapServer WMS Server HowTo.

• MapServer OGC Web Services Workshop.

• Open GIS Consortium (OGC) home page.

Server Side Support

General Information

There are two ways a WMS request can pass an SLD document with a GetMap request to MapServer:

• SLD parameter pointing to remote SLD (SLD=http://URL_TO_SLD).

• SLD_BODY parameter to send the SLD definition in the URL.

These two methods are both available through MapServer. An example of a request would be:

https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap
&LAYERS=country_bound
s&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml

Test the remote SLD request.

The SLD in the above request follows:

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.0.0"

xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

(continues on next page)
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https://www.ogc.org/standards/sld
http://mapserver.github.io/ms-ogc-workshop/
https://www.ogc.org
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml


MapServer Documentation, Release 7.6.6

(continued from previous page)

xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>country_bounds</Name>
<UserStyle>
<Title>xxx</Title>
<FeatureTypeStyle>
<Rule>
<LineSymbolizer>
<Geometry>
<ogc:PropertyName>center-line</ogc:PropertyName>

</Geometry>
<Stroke>
<CssParameter name="stroke">#0000ff</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Version 1.1.0 of the same SLD

<?xml version="1.0" encoding="UTF-8"?>
<StyledLayerDescriptor version="1.1.0"

xmlns="http://www.opengis.net/sld"
xmlns:se="http://www.opengis.net/se"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd">

<NamedLayer>
<se:Name>country_bounds</se:Name>
<UserStyle>
<se:Name>xxx</se:Name>
<se:FeatureTypeStyle>
<se:Rule>
<se:LineSymbolizer>
<se:Geometry>
<ogc:PropertyName>center-line</ogc:PropertyName>

</se:Geometry>
<se:Stroke>
<se:SvgParameter name="stroke">#0000ff</se:SvgParameter>

</se:Stroke>
</se:LineSymbolizer>

</se:Rule>
</se:FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>
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When MapServer gets a valid SLD through a request, it parses this SLD to extract all the styles attached to the Named-
Layers, and then it applies these styles to the map before it is returned to the client. When applying the SLD, MapServer
compares the <Name> parameter of the NamedLayers in the SLD document to the WMS layer names (WMS layer
names are available in a GetCapabilities request).

Note: All the examples given in this document are live uses of valid SLDs and a MapServer installation with SLD
support.

Additional WMS features related to SLDs have also been developed:

Table1. Additional WMS Features

Features Supported Notes
Method GET : SLD URL Yes
Method GET : SLD_BODY Yes Additional item
Describer Layer Yes
GetLegendGraphic Yes
GetStyles Yes Uses MapScript to get the SLD

Note: As of MapServer version 4.2.3, the GetLegendGraphic request (see section 12 of the Styled Layer Descriptor
Implementation Specification) works as follows: if the RULE keyword is absent from the request, an image containing
the entire legend for the specified layer will be returned. This image consists of the layer name and a symbolization
graphic and label for each class.

Specific SLD Elements Supported

The following tables give a lot of additional details about SLD support in MapServer.

Table2. Named Layers and User Layers

Features Supported Notes
Named Layers Yes
User Layers No

Table3. Named Layers

Features Supported Notes
LayerFeatureConstraints Yes Since MapServer 7.0.1
Named Styles Yes
User Styles Yes

Table 4. User Styles

10.1. OGC Support and Configuration 854

https://www.ogc.org/standards/sld
https://www.ogc.org/standards/sld


MapServer Documentation, Release 7.6.6

Features Sup-
ported

Notes

Name No This was removed at implementation time, since it does not fit with MapServer
Title No No use in the MapServer environment
Abstract No No use in the MapServer environment
IsDefault No Only one style is available per layer
FeatureType-
Style

Yes MapServer has a concept of one feature type style per layer (either point, line, poly-
gon, or raster)

Table 5. FeatureTypeStyle

Features Supported Notes
Name No No use in the MapServer environment
Title No No use in the MapServer environment
Abstract No No use in the MapServer environment
FeatureTypeName No No use in the MapServer environment
SemanticTypeIdentifier No Still an experimental element in the SLD specifications
Rule Yes

Table 6. Rule

Features Supported Notes
Name Yes
Title Yes
Abstract No No use in the MapServer environment
LegendGraphic Yes
Filter Yes
ElseFilter Yes
MinScaleDenominator Yes
MaxScaleDenominator Yes
LineSymbolizer Yes
PolygonSymbolizer Yes
PointSymbolizer Yes
TextSymbolizer Yes
RasterSymbolizer Yes Applies for 8-bit rasters

• Filter and ElseFilter

For each rule containing a filter, there is a class created with the class expression set to reflect that filter. Available
filters that can be used are Comparison Filters and Logical Filters (see the Filter Encoding HowTo). The ElseFilter
parameters are converted into a class in MapServer and placed at the end of the class list with no expression set.
They are used to render elements that did not fit into any other classes.

• MinScaleDenomibator and MaxScaleDenominator are translated in minscale and maxscale in MapServer.

The following are examples of valid requests using the Filters:

• line with one filter: sld 6a / full request 6a

• line with multiple filters: sld 6b / full request 6b

• line with one filter and an else filter: sld 6c / full request 6c
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https://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_line_multi_filter.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_multi_filter.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter_and_else.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_one_filter_and_else.xml
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• spatial filter using BBOX: sld 6d/ full request 6d

This example enables spatial filtering using the BBOX parameter as a Filter for a selected area (Africa).
Note that an ElseFilter will not work with a spatial filter.

Table 7. LineSymbolizer

Features Supported Notes
Geometry No MapServer uses the data geometry for the rendering
Stroke: GraphicFill No Solid color is used
Stroke: GraphicStroke Yes Draws the symbol along the line
Stroke (CssParameter): stroke Yes RGB colors are supported
Stroke (CssParameter): width Yes
Stroke (CssParameter): opacity Yes Only for AGG driver and mapserver version >=5.2
Stroke (CssParameter): linejoin and linecap No Not supported in MapServer
Stroke (CssParameter): dasharray Yes
Stroke (CssParameter): dashoffset No
PerperdicularOffset (only in SLD 1.1.0) Yes Offset values of the style object will be set
InitialGap(GraphicStroke SLD 1.1.0) No
Gap (GraphicStroke parameter SLD 1.1.0) No

Note: SvgParameter instead of CssParameter are required for SLD 1.1.0.

The following are examples of valid requests using the LineSymbolizer:

• simple line: sld 7a / full request 7a

• line with width: sld 7b / full request 7b

• dashed line: sld 7c / full request 7c

Table 8. PolygonSymbolizer

Features Supported Notes
Geometry No
Stroke Yes Strokes are the same as for the LineSymbolizer
Fill Yes Was developed to support symbol fill polygons in addition to solid fill
Fill-opacity Yes Only available for AGG driver and mapserver version >=5.2
PerperdicularOffset No SLD 1.1.0 parameter
Displacement Yes SLD 1.1.0 parameter. Sets offsetx/y in MapServer

A Fill can be a solid fill or be a Graphic Fill, which is either a well-known Mark symbol (e.g., square, circle, triangle,
star, cross, x) or an ExternalGraphic element (e.g., gif, png) available through a URL. When a Mark symbol is used
in an SLD, MapServer creates a corresponding symbol in the map file and uses it to render the symbols. When a
ExternalGraphic is used, the file is saved locally and a pixmap symbol is created in the mapfile referring to the this file.

Note: The Web object IMAGEPATH is used to save the file.

The following are examples of valid requests using the PolygonSymbolizer:

• simple solid fill: sld 8a / full request 8a

• solid fill with outline: sld 8b / full request 8b
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https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple_spatial3.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple_spatial3.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_simple.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_line_width.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_width.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_line_dash.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=wms&VERSION=1.1.1&REQUEST=GetMap&LAYERS=country_bounds&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_dash.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill_outline.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_solid_fill_outline.xml
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• fill with mark symbol: sld 8c / full request 8c

• fill with external symbol: sld 8d/ full request 8d

Table 9. PointSymbolizer

Features Sup-
ported

Notes

Geometry No
Graphic: Mark symbol Yes Well-known names (square, circle, triangle, star, cross, X) are supported
Graphic: External-
Graphic

Yes Was developed to support symbol fill polygons in addition to solid fill

Opacity Yes Support added in MapServer 5.4
Size Yes
Rotation Yes Support added in MapServer 5.4
Displacement Yes SLD 1.1.0 Parameter. Support added in MapServer 5.4
AnchorPoint No

Note: Refer to the PolygonSymbolizer notes for how the Mark and ExternalGraphic symbols are applied in MapServer.

The following are examples of valid requests using the PointSymbolizer:

• filled mark symbol: sld 9a / full request 9a

• default settings (square, size 6, color 128/128/128): sld 9b / full request 9b

• external symbol: sld 9c / full request 9c

Table 10. TextSymbolizer

Features Sup-
ported

Notes

Geometry No
Label Yes MapServer behaviour changes for versions >= 8.0, see note below
Font(font-
family)

Yes Font names used are those available in MapServer font file. If no fonts are available there,
default bitmap fonts are used

Font-style
(Italic, . . . )

Yes

Font-weight Yes
Font-size Yes If true-type fonts are not used, default bitmap sizes are given
LabelPlace-
ment

Yes PointPlacement is supported. LinePlacement is supported for versions >=5.2.1. Only Per-
perdicularOffset and IsAligned are supported for LinePlacement.

Halo Yes Supported (fill converted to outlinecolor, and radius is converted to outlinewidth. Note that
outlinewidth is only available for AGG in >=5.2)

Fill Yes Only solid color is available

Notes on the TextSymbolizer:

• Label: Starting with version >= 8.0 and in conformance with OGC standard, raw text in a Label tag is interpreted
as an implicit Literal instead of an implicit PropertyName. Moreover, Literal and Function tags are supported,
as well as mixed content. Supported Functions are MapServer functions returning a number.

• Font names: when converting Font parameters to MapServer, the following rule is applied to get the font name:
FontFamily-FontStyle-FontWeight. For example, if there is an SLD with a Font Family of arial, a Font Style of
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https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol_external.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=continents&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&BBOX=-180.0,-90.0,180.0,90.0&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_polygon_fill_symbol_external.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_default_settings.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_default_settings.xml
https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_external.xml
https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cities&BBOX=-84.7978536015,41.440374,-75.737539764,45.97524&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_symbol_external.xml
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italic, and a Font weight equal to bold, the resulting MapServer font name is arial-bold-italic. Font Style and
Weight are not mandatory and, if not available, they are not used in building the font name. When a Font Style or
a Font Weight is set to normal in an SLD, it is also ignored in building the name. For example, if there is an SLD
with a Font Family of arial, a Font Style of normal and a Font weight equals to bold, the resulting MapServer
font name is arial-bold.

• A TextSymbolizer can be used in MapServer on a Point, Line, or Polygon layer - in addition to other symbolizers
used for these layers.

• PointPacement: a point placement includes AnchorPoint (which is translated to Position in MapServer) Dis-
placement (which is translated to Offset) and Angle (which is translated to Angle).

• Angle setting (MapServer version >=5.4): by default the angle parameter is set to AUTO. For point features,
users can use the PointPlacement to alter the value. For line features, the user can add a LinePlacement: If
an ‘empty’ LinePlacement is part of the SLD, the angle will be set to FOLLOW, If a LinePlacement contains
the PerpendicualarOffset parameter, the angle will be set to 0 and the PerpendicualarOffset will be used to set
the offset values in the label object. SLD 1.1.0 introduces the IsAligned parameter for LinePlacement: if this
parameter is set to false, the angle will be set to 0.

The following are examples of valid requests using the TextSymbolizer:

• point layer : test for label, font, point placement, color, angle: sld 10a / full request 10a

• point layer with text and symbols using 2 symbolizers: sld 10b / full request 10b

• line layer with text using 2 symbolizers: sld 10c / full request 10c

Table 11. RasterSymbolizer

Features Supported Notes
Geometry No
Opacity Yes
ChannelSelection No
OverlapBehaviour No
ColorMap Yes
ContrastEnhancement No
ShadedRelief No
ImageOutline No

The current support in MapServer includes only ColorMap parameter support. It can be used to classify 8-bit rasters.
Inside the ColorMap parameters, the color and quantity parameters are extracted and used to do the classification.

Table 12. ColorMap
The following Features are available in SLD 1.0

Features Supported Notes
Color Yes
Opacity No
Quantity Yes
Label No

The following is an example of ColorMap usage for SLD 1.0.

If we have following ColorMap in an SLD:
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https://demo.mapserver.org/ogc-demos/map/sld/sld_text_annotation.xml
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https://demo.mapserver.org/cgi-bin/wms?SERVICE=WMS&VeRsIoN=1.1.1&Request=GetMap&LAYERS=country_bounds&BBOX=-64.3,44.3,-64.2,44.4&FORMAT=png&WIDTH=400&HEIGHT=300&SRS=EPSG:4326&STYLES=&TRANSPARENT=TRUE&SLD=https://demo.mapserver.org/ogc-demos/map/sld/sld_line_text_with_symbols.xml
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<ColorMap>
<ColorMapEntry color="#00ff00" quantity="22"/>
<ColorMapEntry color="#00bf3f" quantity="30"/>
<ColorMapEntry color="#007f7f" quantity="37"/>
<ColorMapEntry color="#003fbf" quantity="45"/>
<ColorMapEntry color="#0000ff" quantity="52"/>
<ColorMapEntry color="#000000" quantity="60"/>

</ColorMap>

The six classes that are created are:

class 1: [pixel] >= 22 AND [pixel] < 30 with color 00ff00
class 2: [pixel] >= 30 AND [pixel] < 37 with color 00bf3f
class 3: [pixel] >= 37 AND [pixel] < 45 with color 007f7f
class 4: [pixel] >= 45 AND [pixel] < 52 with color 003fbf
class 5: [pixel] >= 52 AND [pixel] < 60 with color 0000ff
class 6: [pixel] = 60 with color 000000

Note: The ColorMapEntry quantity parameters should be in increasing order.

The following Features are available in SLD 1.1

Features Supported Notes
Categorize Yes

The following is an example of and SLD 1.1.0 with a raster symbolizer

<StyledLayerDescriptor version="1.1.0" xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.1.0/StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:se="http://www.opengis.net/se" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>
<se:Name>landsat</se:Name>
<UserStyle>
<se:Name>xxx</se:Name>
<se:FeatureTypeStyle>
<se:Rule>
<se:RasterSymbolizer>
<se:Opacity>0.7</se:Opacity>
<se:ColorMap>
<se:Categorize fallbackValue="#78c818">
<se:LookupValue>Rasterdata</se:LookupValue>
<se:Value>#ffffff</se:Value>
<se:Threshold>22</se:Threshold>
<se:Value>#00ff00</se:Value>
<se:Threshold>30</se:Threshold>
<se:Value>#00bf3f</se:Value>
<se:Threshold>37</se:Threshold>
<se:Value>#007f7f</se:Value>

(continues on next page)
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<se:Threshold>45</se:Threshold>
<se:Value>#003fbf</se:Value>
<se:Threshold>52</se:Threshold>
<se:Value>#0000ff</se:Value>
<se:Threshold>60</se:Threshold>
<se:Value>#000000</se:Value>
</se:Categorize>
</se:ColorMap>
</se:RasterSymbolizer>
</se:Rule>
</se:FeatureTypeStyle>
</UserStyle>
</NamedLayer>
</StyledLayerDescriptor>

The classes that are created are:

class 1: [pixel] < 22 with color ffffff
class 2: [pixel] >= 22 AND [pixel] < 30 with color 00ff00
class 3: [pixel] >= 30 AND [pixel] < 37 with color 00bf3f
class 4: [pixel] >= 37 AND [pixel] < 45 with color 007f7f
class 5: [pixel] >= 45 AND [pixel] < 52 with color 003fbf
class 6: [pixel] >= 52 AND [pixel] < 60 with color 0000ff
class 7: [pixel] >= 60 with color 000000

Examples using 8 bits and 16 bits rasters can be seen at:

• example 1

• example 2

Table 13. LayerFeatureConstraints (MapServer 7.0.1 or above)

Features Supported Notes
FeatureTypeConstraint Yes Only one occurrence

Table 14. FeatureTypeConstraint (MapServer 7.0.1 or above)

Features Supported Notes
FeatureTypeName No
Filter Yes
Extent No

A Filter can be applied through LayerFeatureConstraints/FeatureTypeConstraint to a named style or a user style. It is
used to select which features are to be rendered. If the style has also filtering rules, they are combined with the filter of
FeatureTypeConstraint (as well as with any FILTER or native filter set on the layer in the mapfile configuration)

<NamedLayer>
<Name>Layer1</Name>
<LayerFeatureConstraints>

<FeatureTypeConstraint>
(continues on next page)
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<Filter>....</Filter>
</FeatureTypeConstraint>

</LayerFeatureConstraints>
<NamedStyle>

<Name>the_style</Name>
</NamedStyle>

</NamedLayer>

Client Side Support

Client side support of the SLD consists of two parts:

• The first part is using MapServer as a WMS client to send a GetMap request with an SLD. This is done using
two metadata that can be placed at a layer level in a MapServer mapfile. These two metadata are:

– wms_sld_url, which takes a valid URL as a value and appends SLD=xxx to the GetMap request.

– wms_sld_body, which takes a valid SLD string and appends SLD_BODY=xxx to the GetMap request. If
the value of wms_sld_body is set to AUTO, MapServer generates an SLD based on the classes found in the
layer and send this SLD as the value of the SLD_BODY parameter in the GetMap request.

• The other major item is the generation of an SLD document from MapServer classes. These functions are cur-
rently available through MapServer/MapScript interface. Here are the functions available:

– on a map object: generatesld

– on a layer object: generatesld

Additional MapScript functions have been added or will be added to complement these functions:

– on a map object: applysld

– on a layer object: applysld

Note: When generating an SLD from MapServer classes, if there is a pixmap symbol you need to have this symbol
available through a URL so it can be converted as an ExternalGraphic symbol in the SLD. To do this, you need to
define the URL through a web object level metadata called WMS_SLD_SYMBOL_URL in your map file. The SLD
generated uses this URL and concatenates the name of the pixmap symbol file to get the value that is generated as the
ExternaGraphic URL.

PHP/MapScript Example that Generates an SLD from a Mapfile

The following is a small script that calls the generateSLD() function to create an SLD for a specific layer in a mapfile:

1 <?php
2

3 // define variables
4 define( "MAPFILE", "D:/ms4w/apps/cadastra/map/cadastra.map" );
5 define( "MODULE", "php_mapscript.dll" );
6

7 // load the mapscript module
8 if (!extension_loaded("MapScript")) dl(MODULE);
9

(continues on next page)
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10 // open map
11 $oMap = ms_newMapObj( MAPFILE );
12

13 // get the parcel layer
14 $oLayer = $oMap->getLayerByName("parcel");
15

16 // force visibilty of the layer
17 $oLayer->set('status', MS_ON);
18

19 // generate the sld for that layer
20 $SLD = $oLayer->generateSLD();
21

22 // save sld to a file
23 $fp = fopen("parcel-sld.xml", "a");
24 fputs( $fp, $SLD );
25 fclose($fp);
26

27 ?>

Named Styles support

Named styles support are introduced in MapServer 5.2. The support is base on rfc39.

MapServer 5.2 introduces the possibility to assign a group to a series of classes defined on a layer object using two new
non-mandatory keywords CLASSGROUP (at the layer level) and GROUP at the class level:

LAYER
...
CLASSGROUP "group1"
...
CLASS

NAME "name1"
GROUP "group1"
...

END
CLASS

NAME "name2"
GROUP "group2"
...

END
CLASS

NAME "name3"
GROUP "group1"
...

END
...

At rendering time, if the CLASSGROUP is defined, only classes that have the same group name would be used. Based
on this concept, WMS/SLD support uses the class groups as named styles. Each group of classes is considered equiv-
alent to a named style:

• The GetCapbilities request will output all the styles that are available
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• The GetMap request can use the STYLES parameter to specify a named style

• The GetLegendGraphic can use the STYLES parameter to specify a named style

Other Items Implemented

• Support of filled polygons with Mark and ExternalGraphic symbols.

• MapScript functions to parse and apply SLD.

• SLD_BODY request support on client and server side.

Issues Found During Implementation

• Limitation of the FilterEncoding to comparison and logical filters. The spatial filters were not made available
since it required major changes in MapServer WMS support.

10.1.16 WCS Server
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– Rules for handling SRS in a MapServer WCS

– Spatio/Temporal Indexes

– WCS 2.0 Application Profile - Earth Observation (EO-WCS)

– To-do Items and Known Limitations

– Credits

Introduction

A WCS (or Web Coverage Service) allows for the publication of “coverages”- digital geospatial information represent-
ing space-varying phenomena. In the MapServer world it allows for unfiltered access to raster data. Conceptually it
is easy think of WCS as a raster equivalent of WFS. The following documentation is based on the Open Geospatial
Consortium’s (OGC) Web Coverage Service Interfaces Implementation Specification version 1.0.0.

Links to WCS-Related Information

• OGC’c WCS Standard page

• WCS 1.0.0 specification

• WCS 1.1.1c1 specification

• WCS 2.0

– GML 3.2.1 Application Schema Coverages

– WCS 2.0 Specification - Core

– WCS 2.0 Specification - KVP Protocol Binding Extension

– WCS 2.0 Specification - XML/POST Protocol Binding Extension

• WMS Server HowTo

Software Requirements

In order to enable MapServer to serve WCS data, it MUST be compiled against certain libraries:

• PROJ: The reprojection library. Version 4.4.3 or greater is required.

• GDAL: raster support library.

• MapServer: version >= 4.4 (tested with 5.0.2 while updating this document)

For WCS 1.1.x (MapServer 5.2) and WCS 2.0 (MapServer 6.0) support there is an additional requirement:

• libxml2: An xml parser and generation library.

Please see the MapServer UNIX Compilation and Installation HowTo for detailed instructions on compiling MapServer
with support for these libraries and features. For Windows users, MapServer for Windows (MS4W) comes with WCS
Server support.
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Configuring Your Mapfile to Serve WCS Layers

Much as in the WMS and WFS support, WCS publishing is enabled by adding certain magic METADATA key-
word/value pairs to a .map file.

MapServer will serve and include in its WCS capabilities only the layers that meet the following conditions:

• Data source is a raster, which is processed using GDAL (e.g GeoTIFF, Erdas Imagine, . . . )

• LAYER NAME must be set

• LAYER TYPE is set to RASTER

• WEB metadata or LAYER metadata “wcs_enable_request” must be set

• WEB metadata “wcs_label” must be set

• LAYER metadata “wcs_label” must be set

• LAYER metadata “wcs_rangeset_name” must be set

• LAYER metadata “wcs_rangeset_label” must be set

• LAYER is enabled to be served via WCS (see MS RFC 67)

• LAYER PROJECTION must be set, even if PROJECTION is set at the MAP level (a bug?)

Example WCS Server Mapfile

The following is an example of a simple WCS Server mapfile. Note the comments for the required parameters.

MAP
NAME WCS_server
STATUS ON
SIZE 400 300
SYMBOLSET "../etc/symbols.txt"
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
# Start of web interface definition
#
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA
"wcs_label" "GMap WCS Demo Server" ### required
"wcs_description" "Some text description of the service"
"wcs_onlineresource" "http://127.0.0.1/cgi-bin/mapserv.exe?" ### recommended
"wcs_fees" "none"
"wcs_accessconstraints" "none"
"wcs_keywordlist" "wcs,test"
"wcs_metadatalink_type" "TC211"
"wcs_metadatalink_format" "text/plain"

(continues on next page)
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"wcs_metadatalink_href" "http://someurl.com"
"wcs_address" "124 Gilmour Street"
"wcs_city" "Ottawa"
"wcs_stateorprovince" "ON"
"wcs_postcode" "90210"
"wcs_country" "Canada"
"wcs_contactelectronicmailaddress" "blah@blah"
"wcs_contactperson" "me"
"wcs_contactorganization" "unemployed"
"wcs_contactposition" "manager"
"wcs_contactvoicetelephone" "613-555-1234"
"wcs_contactfacimiletelephone" "613-555-1235"
"wcs_service_onlineresource" "http://127.0.0.1/cgi-bin/mapserv.exe?"
"wcs_enable_request" "*"

END
END

PROJECTION
"init=epsg:3978"

END

LAYER
NAME bathymetry
METADATA
"wcs_label" "Elevation/Bathymetry" ### required
"wcs_rangeset_name" "Range 1" ### required to support DescribeCoverage request
"wcs_rangeset_label" "My Label" ### required to support DescribeCoverage request

END
TYPE RASTER ### required
STATUS ON
DATA bath_mapserver.tif
PROJECTION
"init=epsg:3978"

END
END

END # Map File

Output Formats

The raster formats supported by MapServer WCS are determined by the wcs_formats metadata item on the LAYER.
This should contain a space separated list of OUTPUTFORMAT driver names separated by spaces. If absent, all raster
OUTPUTFORMATs are allowed.

WCS is a “raw data” oriented format. So it often most suitable to use it with format using the BYTE, INT16 and
FLOAT32 IMAGEMODEs with GDAL related output formats rather than the built in “rendering oriented” output
formats. By default the only GDAL format driver defined is the GTiff driver. The following are example output format
declarations utilizing the raw image modes:

OUTPUTFORMAT
NAME GEOTIFF_16

(continues on next page)
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DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE FLOAT32
EXTENSION "tif"

END

OUTPUTFORMAT
NAME AAIGRID
DRIVER "GDAL/AAIGRID"
MIMETYPE "image/x-aaigrid"
IMAGEMODE INT16
EXTENSION "grd"
FORMATOPTION "FILENAME=result.grd"

END

The FORMATOPTION FILENAME defines the preferred name of the result file when returned WCS GetCoverage
results.

Test Your WCS 1.0 Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure nothing
is missing.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WCS&VERSION=1.0.0&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=WCS
&VERSION=1.0.0&REQUEST=GetCapabilities

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable, by
setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as recom-
mended in the document Limit Mapfile Access. All possible environment variables to secure your server are listed in
Environment Variables.

If you get an error message in the XML output then take necessary actions. Common problems and solutions are listed
in the FAQ at the end of this document.

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”. . . MapServer inserts XML comments starting with “<!–WARNING: “ in the XML output if it detects missing
mapfile parameters or metadata items.

Note that when a request happens, it is passed through WMS, WFS, and WCS in MapServer (in that order) until one
of the services respond to it.

Here is a working example of a GetCapabilities request:

WCS GetCapabilities live example
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Test With a DescribeCoverage Request

OK, now that we know that our server can produce a valid XML GetCapabilities response we should test the De-
scribeCoverage request. The DescribeCoverage request lists more information about specific coverage offerings.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WCS&VERSION=1.0.0&REQUEST=DescribeCoverage&COVERAGE=layername” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=WCS
&VERSION=1.0.0&REQUEST=DescribeCoverage&COVERAGE=bathymetry

Here is a working example of a DescribeCoverage request:

WCS DescribeCoverage live example

Test With a GetCoverage Request

The GetCoverage request allows for the retrieval of coverages in a specified output format to the client.

The following is a list of the required GetCoverage parameters according to the WCS spec:

VERSION=version: Request version

REQUEST=GetCoverage: Request name

COVERAGE=coverage_name: Name of an available coverage, as stated in the GetCapabilities

CRS=epsg_code: Coordinate Reference System in which the request is expressed.

BBOX=minx,miny,maxx,maxy: Bounding box corners (lower left, upper right) in CRS units. One of
BBOX or TIME is required.

TIME=time1,time2: Request a subset corresponding to a time. One of BBOX or TIME is required..

WIDTH=output_width: Width in pixels of map picture. One of WIDTH/HEIGHT or RESX/Y is re-
quired.

HEIGHT=output_height: Height in pixels of map picture. One of WIDTH/HEIGHT or RESX/Y is
required.

RESX=x: When requesting a georectified grid coverage, this requests a subset with a specific spatial
resolution. One of WIDTH/HEIGHT or RESX/Y is required.

RESY=y: When requesting a georectified grid coverage, this requests a subset with a specific spatial
resolution. One of WIDTH/HEIGHT or RESX/Y is required.

FORMAT=output_format: Output format of map, as stated in the DescribeCoverage response.

The following are optional GetCoverage parameters according to the WCS spec:

RESPONSE_CRS=epsg_code: Coordinate Reference System in which to express coverage responses.

So to follow our above examples, a valid DescribeCoverage request would look like:

http://my.host.com/cgi-bin/mapserv?map=mywcs.map&SERVICE=WCS
&VERSION=1.0.0&REQUEST=GetCoverage&coverage=bathymetry
&CRS=EPSG:3978&BBOX=-2200000,-712631,3072800,3840000&WIDTH=3199
&HEIGHT=2833&FORMAT=GTiff

Here is a working example of a GetCoverage request (note that a 350KB tif is being requested, so this may take a
second):
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WCS GetCoverage live example

WCS 1.1.0+ Issues

WCS 1.1.0 and later versions of the WCS protocol are supported by MapServer 5.2. For the most part the map file
setup for WCS 1.1.0 is similar to WCS 1.0.0, but the actual protocol is substantially changed.

GetCapabilities

The GetCapabilities request is the same as WCS 1.0 but with a different VERSION value:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCapabilities

The format of the returned capabilities document is substantially altered from WCS 1.0, and makes use of OWS Com-
mon for service descriptions.

DescribeCoverage

The DescribeCoverage request is similar to WCS 1.0, but the IDENTIFIERS keyword is used instead of COVERAGE
to name the coverage(s) being requested:

SERVICE=WCS&VERSION=1.1.0&REQUEST=DescribeCoverage&IDENTIFIERS=spaceimaging

GetCoverage

The format for GetCoverage is substantially changed from 1.0. The following is a list of GetCoverage required param-
eters:

VERSION=version: Request version

REQUEST=GetCoverage: Request name

IDENTIFIER=coverage_name: Name of an available coverage, as stated in the GetCapabilities

BOUNDINGBOX=minx,miny,maxx,maxy,crs: Bounding box corners (lower left, upper right), and the
CRS they are in. The CRS is described using a URN.

FORMAT=output_format: Output format (mime type) of grid product, as stated in the GetCapabilities.

If an alternate spatial resolution is desired, then the following set of keywords must be used to specify the sample origin
and step size of the output grid to be produced. The produced grid will be of a number of pixels and lines as can be fit
in the BOUNDINGBOX starting at GridOrigin, at GridOffsets resolution.

GRIDBASECRS=crs: The grid base CRS (URN).

GRIDCS=crs: The grid CRS (URN).

GridType=urn:ogc:def:method:WCS:1.1:2dGridIn2dCrs: This is the only supported value for
MapServer.

GridOrigin=x_origin,y_origin: The sample point for the top left pixel.

GridOffsets=xstep,ystep: The x and y step size for grid sampling (resolution). Both are positive.

As well, the following optional parameters are available.
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RangeSubset=selection: Selects a range subset, and interpolation method. Currently only subsetting on
bands are allowed. Depending on rangeset names, this might take the form “BandsName[bands[1]]” to
select band 1, or “BandsName:bilinear[bands[1]]” to select band 1 with bilinear interpolation.

So a simple GetCoverage might look like:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCoverage&IDENTIFIER=dem&FORMAT=image/tiff
&BOUNDINGBOX=43,33,44,34,urn:ogc:def:crs:EPSG::4326

A more complex request might look like:

SERVICE=WCS&VERSION=1.1.0&REQUEST=GetCoverage&IDENTIFIER=dem&FORMAT=image/tiff
&BOUNDINGBOX=33,43,34,44,urn:ogc:def:crs:EPSG::4326
&GridBaseCRS=urn:ogc:def:crs:EPSG::4326&GridCS=urn:ogc:def:crs:EPSG::4326
&GridType=urn:ogc:def:method:WCS:1.1:2dGridIn2dCrs
&GridOrigin=33,44&GridOffsets=0.01,0.01
&RangeSubset=BandsName:bilinear[bands[1]]

It should also be noted that return results from WCS 1.1 GetCoverage requests are in multi-part mime format. Typically
this consists of a first part with an xml document referencing the other parts of the message, and an image file part.
However, for output formats that return multiple files, each will be a separate part. For instance, this means it is possible
to return a jpeg file with a world file, the OUTPUTFORMAT is appropriately configured.

URNs

In WCS 1.1 protocol coordinate systems are referenced by URN. Some typical URNs are:

urn:ogc:def:crs:EPSG::4326
urn:ogc:def:crs:EPSG:27700
urn:ogc:def:crs:OGC::CRS84

The first two are roughly equivalent to EPSG:4326, and EPSG:27700 while the third is a CRS defined by OGC (es-
sentially WGS84). One critical thing to note is that WCS 1.1 follows EPSG defined axis/tuple ordering for geographic
coordinate systems. This means that coordinates reported, or provided in urn:ogc:def:EPSG::4326 (WGS84) are ac-
tually handled as lat, long, not long,lat. So, for instance the BOUNDINGBOX for an area in California might look
like:

BOUNDINGBOX=34,-117,35,-116,urn:ogc:def:crs:EPSG::4326

And, likewise the bounds reported by GetCapabilities, and DescribeCoverage will be in this ordering as appropriate.

WCS 2.0

Overview

Version 6.0 introduces support for the new version 2.0 of the WCS specification. This section documents the usage of
the new WCS version.
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Web Coverage Service (WCS) 2.0 Interface Standard

This specification adopts the new OGC Core and Extension model and at the moment the following documents are
available from the OGC’c WCS Standard page:

• GML 3.2.1 Application Schema Coverages

• WCS 2.0 Specification - Core

• WCS 2.0 Specification - KVP Protocol Binding Extension

• WCS 2.0 Specification - XML/POST Protocol Binding Extension

• WCS 2.0 Specification - Interpolation Extension

• WCS 2.0 Specification - Range Subsetting Extension

• WCS 2.0 Specification - GeoTIFF Coverage Encoding Profile

• WCS 2.0 Specification - CRS Extension

• WCS 2.0 Specification - Scaling Extension

Technical changes from WCS version 1.1.2 include entirely building on the GML 3.2.1 Application Schema Coverages
and adoption of OWS Common 2.0. Another major change is the introduction of trim and slice concepts which is
explained in more detail below.

There are WCS 2.0 Schemas defined against which all requests and responses should validate.

WCS 2.0 KVP request parameters

The following KVP request parameters are available in WCS 2.0:

COVERAGEID=id: This parameter is technically the same as the COVERAGE parameter for WCS
1.0 or the IDENTIFIER parameter for WCS 1.1. In DescribeCoverage requests, multiple IDs can be
requested by concatenating them with commas.

SUBSET=axis[,crs](low,high): This parameter subsets the coverage on the given axis. This parameter
can be given multiple times, but only once for each axis. The optional sub-parameter crs can either be an
EPSG definition (like EPSG:4326), an URN or an URI or ‘imageCRS’ (which is the default). All crs sub-
parameters from all SUBSET parameters must be equal. (e.g: you cannot subset one axis in imageCRS
and another in EPSG:4326).

Note: The syntax of the crs sub-parameter is non-standard and deprecated. Please use the SUBSET-
TINGCRS parameter instead.

Note: Recognized values for the axis sub-parameter are: “x”, “xaxis”, “x-axis”, “x_axis”, “long”,
“long_axis”, “long-axis”, “lon”, “lon_axis”, “lon-axis”, “y”, “yaxis”, “y-axis”, “y_axis”, “lat”, “lat_axis”
and “lat-axis”.

SUBSETTINGCRS=crs: This parameter defines the crs subsetting all SUBSETs are expressed in, and
also the output CRS if no OUTPUTCRS is specified. By default all subsets are interpreted to be relative
to the coverages CRS.

OUTPUTCRS=crs: This parameter defines in which crs the output image should be expressed in.
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MEDIATYPE=mediatype: This parameter is relevant to GetCoverage requests, when multipart
XML/image output is desired. It should be set to ‘multipart/related’ (which is currently the only possible
value for this parameter).

SCALEFACTOR=factor: With this parameter (a positive float) the size of the output image can be ad-
justed. All axes are scaled equally.

SCALEAXES=axis(value)[,axis(value)]: With this parameter, an axis specific scaling can be applied.
Any axis not mentioned

SCALESIZE=axis(size)[,axis(size)]: This is similar to the SCALEAXES parameter, but allows an axis
specific setting of the absolute pixel size of the returned coverage.

SCALEEXTENT=axis(min:max)[,axis(min:max)]: This parameter is treated like a SCALESIZE pa-
rameter with “axis(max-min)”.

INTERPOLATION=interpolation_method: This defines the interpolation method used, for rescaled
images. Possible values are “NEAREST”, “BILINEAR” and “AVERAGE”.

RANGESUBSET=band1[,band2[,. . . ]]: With this parameter, a selection of bands can be made. Also
the bands can be reordered. The bands can be referred to either by name (which can be retrieved using
the DescribeCoverage request) or by index (starting with ‘1’ for the first band). Also a range of bands can
be given: bandX:bandY. This also includes the lower and upper bounds. As the name implies, the lower
bound must reference the band with the lower index. You can mix direct references to the bands with
intervals. E.g: RANGESUBSET=band1,band3:band:5,band7

The following parameters are part of the WCS 2.0 Specification - GeoTIFF Coverage Encoding Profile and are only
available for the GeoTIFF outputformat:

GEOTIFF:COMPRESSION=compression: The compression method used for the returned image.
Valid options are: None, PackBits, Deflate, Huffman, LZW and JPEG.

GEOTIFF:JPEG_QUALITY=1-100: When the compression method JPEG is chosen, this value defines
the quality of the algorithm.

GEOTIFF:PREDICTOR=None|Horizontal|FloatingPoint: The predictor value for the LZW and De-
flate compression methods.

GEOTIFF:INTERLEAVE=Band|Pixel: Defines whether the image shall be band or pixel interleaved.

GEOTIFF:TILING=true|false: Defines if the output image shall be internally tiled.

GEOTIFF:TILEWIDTH=tilewidth, GEOTIFF:TILEHEIGHT=tileheight: Define the size of the in-
ternal tiles. Must be positive integer divisible by 16.

The following request parameters are not part of the WCS 2.0 Core or any extension thereof, and are kept for backward
compatibility. They originate from a time where the most vital standard extensions were not specified and the WCS
core was not quite useful without. They are deprecated.

SIZE=axis(value): This parameter sets the size of the desired axis to the desired value (pixels).

RESOLUTION=axis(value): This parameter sets the resolution of the desired axis to the desired value
(pixels/unit).

Note: The SIZE and RESOLUTION are mutually exclusive on one axis, but can be mixed on different
axes (e.g: SIZE on x-axis and RESOLUTION on y-axis). Also axis names in SUBSET, SIZE and RES-
OLUTION parameters cannot be mixed. E.g: . . .&SUBSET=x(0,100)&SIZE=lon(200)&. . . is not legal
although the axis names logically refer to the same axis.
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Unchanged KVP parameters

The following parameters have not (or just slightly) changed since the last version of the WCS standard.

VERSION=version: For WCS 2.0, this should be set to ‘2.0.1’. This
parameter is deprecated for GetCapabilities related to OGC Web Services Common Standard 2.0.0.

SERVICE=service
REQUEST=request
ACCEPTVERSIONS=versions
SECTIONS=sections
UPDATESEQUENCE=updatesequence
ACCEPTFORMATS=formats: This parameter is currently ignored.

ACCEPTLANGUAGES=languages: This is used for language negotiation for multi-lingual services

FORMAT=format: The desired format can now also be set with the name of the outputformat object
defined in the mapfile. In contrast to previous versions of WCS this parameter is optional when the native
format is either specified or can be determined via GDAL.

MAP=mapfile

KVP request examples

The below sample request outline the new KVP request syntax:

# GetCapabilities
http://www.yourserver.com/wcs?SERVICE=WCS&ACCEPTVERSIONS=1.0.0,2.0.1
&REQUEST=GetCapabilities

http://www.yourserver.com/wcs?SERVICE=WCS&REQUEST=GetCapabilities
# DescribeCoverage 2.0
http://www.yourserver.com/wcs?SERVICE=WCS&VERSION=2.0.1
&REQUEST=DescribeCoverage&COVERAGEID=grey

# GetCoverage 2.0 image/tiff full
http://www.yourserver.com/wcs?SERVICE=WCS&VERSION=2.0.1
&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff

# GetCoverage 2.0 multipart/related (GML header & image/tiff) full
http://www.yourserver.com/wcs?SERVICE=WCS&VERSION=2.0.1
&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&MEDIATYPE=multipart/related

# GetCoverage 2.0 image/tiff trim x y both in imageCRS
http://www.yourserver.com/wcs?SERVICE=WCS&VERSION=2.0.1
&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&SUBSET=x(10,200)&SUBSET=y(10,200)
&SUBSETTINGCRS=imageCRS

# GetCoverage 2.0 reproject to EPSG 4326
http://www.yourserver.com/wcs?SERVICE=WCS&VERSION=2.0.1
&REQUEST=GetCoverage&COVERAGEID=grey&FORMAT=image/tiff
&SUBSET=x(-121.488744,-121.485169)
&SUBSETTINGCRS=http://www.opengis.net/def/crs/EPSG/0/4326

Please refer to the WCS 2.0 tests in msautotest for further sample requests.
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Changes to previous versions

The layer name must be a valid NCName, i.e: must not start with a number and can only contain alphanumerical
characters. This constraint derives of the gml:id property which has to be a NCName, that relates to the coverage ID
which is itself taken from the layers name.

Specifying coverage specific metadata

For WCS enabled layers in MapServer, there are different possibilities for declaring coverage metadata for WCS 2.0.
In the simplest case, all of the required metadata can be retrieved from the source image.

For some reason this may not be desirable, maybe because the source image does not provide these metadata. Not
every input image format has geospatial metadata attached. In this case, the layer metadata can be used to provide this
information.

The convention is that once (wcs|ows)_extent and one of (wcs|ows)_size and (wcs|ows)_resolution is set in the layer
metadata, all the coverage specific metadata will be retrieved from there. Otherwise the source image is queried via
GDAL, if possible.

The relevant layer metadata fields are (wcs|ows)_bandcount, (wcs|ows)_imagemode, (wcs|ows)_native_format, and all
New band related metadata entries.

New band related metadata entries

In this section new WCS 2.0 specific layer metadata entries are discussed.

The following layer metadata fields can be used to return a more detailed description for the range type of a “virtual
dataset” coverage. A coverage is considered as a “virtual dataset” if the (wcs|ows)_extent metadata entry and one of
the (wcs|ows)_size or (wcs|ows)_resolution metadata entries are set.

First of all, the used version of metadata has to be identified. To identify the bands of a coverage, the following field
must be present:

• (wcs|ows)_band_names

The type of these fields is a space delimited list of names, whereas the count of the names has to match the “bandcount”
metadata field. These names are then used as a prefix for other metadata fields only concerning this band. The possible
metadata keys are the following:

• {band_name}_band_interpretation

• {band_name}_band_uom

• {band_name}_band_definition

• {band_name}_band_description

• {band_name}_interval

All values are interpreted as strings, only “interval” is interpreted as 2 double precision float values separated with a
space.

Also default values can be configured for every key. These have the same suffix as the band specific keys but start with
(wcs|ows) instead of the bands name:

• (wcs|ows)_band_interpretation

• (wcs|ows)_band_uom

• (wcs|ows)_band_definition
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• (wcs|ows)_band_description

• (wcs|ows)_interval

If no specific or default value is given, the output is dependent on the metadata key. The UOM, for example will be
set to ‘W.m-2.Sr-1’, interval and significant figures will be determined according to the image type and definition,
description, and interpretation will not be visible in the output at all.

This example demonstrates the use of the band-specific metadata fields with their default values:

METADATA
"ows_srs" "EPSG:4326"
"wcs_extent" "47.5070762077246 16.038578977182 49.0103258976982 17.2500586851354"

"wcs_size" "1200 1100"
"wcs_imagemode" "BYTE"

"wcs_bandcount" "3"
"wcs_band_names" "BandA BandB BandC"

#default values
"wcs_band_interpretation" "This is default interpretation"
"wcs_band_uom" "DefaultUOM"
"wcs_band_definition" "DefaultDefinition"
"wcs_band_description" "This is default description"
"wcs_interval" "0 125"
"wcs_significant_figures" "3"

#specific band values
"BandA_band_interpretation" "This is a specific interpretation"
"BandA_band_uom" "SpecificUOM"
"BandA_band_definition" "SpecificDefinition"
"BandA_band_description" "This is a specific description"
"BandA_interval" "0 255"

END

The above example would result in having BandA a more specific description, and BandB and BandC having the default
description. It would also be possible to only use some of the specific values for BandA and others from the default.

If no default and specific values are given for the interval or significant figures metadata field, the a default is generated
from the “imagemode” field, which itself defaults to FLOAT32.

The new metadata fields also contain the (wcs|ows)_nilvalues and (wcs|ows)_nilvalues_reasons

• (wcs|ows)_nilvalues

With this field, specific nilvalues can be set. The values have to be delimited by a space.

• (wcs|ows)_nilvalues_reasons

This field defines the reasons for the specific nilvalues. The reasons are also space delimited and reference the nilvalue
with the same index. The values for the reasons should be URIs or URNs.

The following example demonstrates the use of both metadata fields:

METADATA
"ows_srs" "EPSG:4326"
"wcs_extent" "47.5070762077246 16.038578977182 49.0103258976982 17.2500586851354"

(continues on next page)
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(continued from previous page)

"wcs_size" "1200 1100"
"wcs_imagemode" "BYTE"
"wcs_bandcount" "3"

"wcs_nilvalues" "0 255"
"wcs_nilvalues_reasons"
"urn:ogc:def:nil:OGC::BelowDetectionLimit urn:ogc:def:nil:OGC::AboveDetectionLimit"

END

HTTP-POST support

Since version 6.0 MapServer also supports HTTP-POST XML requests. All requests possible via HTTP GET can also
be sent via POST. POST requests are possible for WCS 1.1 or WCS 2.0 which adhere to the according standard.

This is an example GetCapabilities request:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:GetCapabilities
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs='http://www.opengis.net/wcs/2.0'
xmlns:ows="http://www.opengis.net/ows/2.0"
service="WCS">
<ows:AcceptVersions>
<ows:Version>2.0.1</ows:Version>

</ows:AcceptVersions>
<ows:Sections>
<ows:Section>OperationsMetadata</ows:Section>
<ows:Section>ServiceIdentification</ows:Section>

</ows:Sections>
</wcs:GetCapabilities>

This is an example DescribeCoverage request, which is only valid for WCS 2.0:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:DescribeCoverage
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
service="WCS"
version="2.0.1">
<wcs:CoverageId>SOME_ID</wcs:CoverageId>

</wcs:DescribeCoverage>

This example demonstrates the usage of a WCS 2.0 POST-XML GetCoverage request:

<?xml version="1.0" encoding="UTF-8"?>
<wcs:GetCoverage

(continues on next page)
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(continued from previous page)

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
xmlns:wcscrs="http://www.opengis.net/wcs/crs/1.0"
xmlns:scal="http://www.opengis.net/wcs/scaling/1.0"
xmlns:int="http://www.opengis.net/wcs/interpolation/1.0"
service="WCS"
version="2.0.1">
<wcs:CoverageId>SOME_ID</wcs:CoverageId>
<wcs:DimensionTrim>
<wcs:Dimension>x</wcs:Dimension>
<wcs:TrimLow>16.5</wcs:TrimLow>
<wcs:TrimHigh>17.25</wcs:TrimHigh>

</wcs:DimensionTrim>
<wcs:DimensionTrim>
<wcs:Dimension>y</wcs:Dimension>
<wcs:TrimLow>47.9</wcs:TrimLow>

</wcs:DimensionTrim>
<wcs:format>image/tiff</wcs:format>
<wcs:mediaType>multipart/related</wcs:mediaType>
<wcs:Extension>
<wcscrs:subsettingCrs>http://www.opengis.net/def/crs/EPSG/0/4326</

→˓wcscrs:subsettingCrs>
<wcscrs:outputCrs>http://www.opengis.net/def/crs/EPSG/0/32611</wcscrs:outputCrs>
<scal:ScaleToSize>
<scal:TargetAxisSize>
<scal:axis>x</scal:axis>
<scal:targetSize>50</scal:targetSize>

</scal:TargetAxisSize>
<scal:TargetAxisSize>
<scal:axis>y</scal:axis>
<scal:targetSize>50</scal:targetSize>

</scal:TargetAxisSize>
</scal:ScaleToSize>
<int:Interpolation>
<int:globalInterpolation>NEAREST</int:globalInterpolation>

</int:Interpolation>
</wcs:Extension>

</wcs:GetCoverage>

These are some other scaling options:

<wcs:GetCoverage
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
xmlns:scal="http://www.opengis.net/wcs/scaling/1.0"
service="WCS"

(continues on next page)
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(continued from previous page)

version="2.0.1">

<!-- ... -->
<wcs:Extension>
<scal:ScaleByFactor>
<scal:scaleFactor>1.5</scal:scaleFactor>

</scal:ScaleByFactor>

<!-- or -->

<scal:ScaleAxesByFactor>
<scal:ScaleAxis>
<scal:axis>x</scal:axis>
<scal:scaleFactor>1.5</scal:scaleFactor>

</scal:ScaleAxis>
<scal:ScaleAxis>
<scal:axis>y</scal:axis>
<scal:scaleFactor>2.0</scal:scaleFactor>

</scal:ScaleAxis>
</scal:ScaleAxesByFactor>

<!-- or -->

<scal:ScaleToExtent>
<scal:TargetAxisExtent>
<scal:axis>x</scal:axis>
<scal:low>10</scal:low>
<scal:high>20</scal:high>

</scal:TargetAxisExtent>
<scal:TargetAxisExtent>
<scal:axis>y</scal:axis>
<scal:low>20</scal:low>
<scal:high>30</scal:high>

</scal:TargetAxisExtent>
</scal:ScaleToExtent>

</wcs:Extension>
</wcs:GetCoverage>

GeoTIFF parameters are used as follows:

<wcs:GetCoverage
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation="http://www.opengis.net/wcs/2.0
http://schemas.opengis.net/wcs/2.0/wcsAll.xsd"

xmlns="http://www.opengis.net/wcs/2.0"
xmlns:wcs="http://www.opengis.net/wcs/2.0"
xmlns:geotiff="http://www.opengis.net/gmlcov/geotiff/1.0"
service="WCS"
version="2.0.1">

<!-- ... -->
<wcs:Extension>

(continues on next page)
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(continued from previous page)

<geotiff:parameters>
<geotiff:compression>LZW</geotiff:compression>
<geotiff:predictor>Horizontal</geotiff:predictor>
<geotiff:interleave>Band</geotiff:interleave>
<geotiff:tiling>yes</geotiff:tiling>
<geotiff:tilewidth>256</geotiff:tilewidth>
<geotiff:tileheight>256</geotiff:tileheight>

</geotiff:parameters>
</wcs:Extension>

</wcs:GetCoverage>

Please refer to the WCS 2.0 Specification - XML/POST Protocol Binding Extension and the WCS 2.0 Schemas for
further information on POST request in WCS 2.0.

INSPIRE download service support

Since version 7.2, MapServer WCS 2.0 also supports the the INSPIRE download service. To enable this functionality,
the wcs_inspire_capabilities setting must be set to either url or embed.

Please refer to the INSPIRE Download Service documentation for further metadata options.

Multi-language support

Part of the INSPIRE download service support is the support for multi-lingual WCS services. With the wcs_languages
a (comma-separated) list of language specifiers can be set. When this is set, client and server can negotiate the result
language using the ACCEPTLANGUAGES parameter (or the <ows:AcceptLanguages>/<ows:Language> tags when
using XML). The first item in the accept languages list contained in the list specified with wcs_languages will be used
for the resulting capabilities document

Additional information can be found in the section for Multi-language support for certain capabilities fields.

Reference Section

To avoid confusion only “wcs_*” and “ows_*” prefixed metadata entries are evaluated in OGC WCS services. Previous
versions used “wms_*” prefixed entries as fallback which is dropped in version 6.0 in favor of forcing explicit decisions.
The module will look for the “wcs_*” and “ows_*” metadata prefixes in this order.

The following metadata are available in the setup of the mapfile:

Web Object Metadata

ows_allowed_ip_list (or wcs_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or wcs_denied_ip_list)
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• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

wcs_abstract
• Description: (Optional) A brief description of the service, maps to ows:Abstract (WCS 1.1+ only).

wcs_accessconstraints
• Description: (Optional) A list of codes describing any access constraints imposed by the service provider. The

keyword NONE is reserved to mean no access constraints are imposed.

wcs_address, wcs_city, wcs_contactelectronicmailaddress, wcs_contactfacimiletelephone,
wcs_contactorganization, wcs_contactperson, wcs_contactposition, wcs_contactvoicetelephone, wcs_country,
wcs_postcode, wcs_stateorprovince

• Description: (Optional) Contact address information. If provided then all twelve metadata items are required.
You can also use the responsibleparty metadata instead.

wcs_band_names
• Description: (WCS 2.0) Space separated list of band names. See New band related metadata entries

wcs_description
• Description: (Optional) A description of the server.

wcs_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be en-

abled: GetCapabilities, GetCoverage and DescribeCoverage. A “!” in front of a request will disable the request.
“*” enables all requests.

• Examples:

To enable only GetCapabilities and GetCoverage:

"wcs_enable_request" "GetCapabilities GetCoverage"

To enable all requests except GetCapabilities

"wcs_enable_request" "* !GetCapabilities"

wcs_fees
• Description: (Optional) A text string indicating any fees imposed by the service provider.

wcs_keywords
• Description: (Optional) Short words for catalog searching.

wcs_label
• Description: (Required) A human-readable label for the server.

wcs_metadatalink_format
• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The web metadata

wcs_metadatalink_type and wcs_metadatalink_href must also be specified.

• To output several metadata links, use wcs_metadatalink_list
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wcs_metadatalink_href
• Description: (Optional) The URL to the server’s metadata. The web metadata wcs_metadatalink_format and

wcs_metadatalink_type must also be specified.

• To output several metadata links, use wcs_metadatalink_list

wcs_metadatalink_list

Note: wcs_metadatalink_list will be included in the MapServer 8.0 release.

• Description: (Optional) Space-separated list of parts of metadata keys, to be able to specify several
metadata links. If the value of wcs_metadatalink_list is “foo bar”, then wcs_metadatalink_foo_href,
wcs_metadatalink_foo_format, wcs_metadatalink_foo_type, wcs_metadatalink_bar_href,
wcs_metadatalink_bar_format, wcs_metadatalink_bar_type will be queried with the semantics of the
wcs_metadatalink_href, wcs_metadatalink_format and wcs_metadatalink_type items.

Example:

"wcs_metadatalink_list" "xml html"

"wcs_metadatalink_xml_format" "text/xml"
"wcs_metadatalink_xml_type" "TC211"
"wcs_metadatalink_xml_href" "http://example.com/testXML"

"wcs_metadatalink_html_format" "text/html"
"wcs_metadatalink_html_type" "TC211"
"wcs_metadatalink_html_href" "http://example.com/testHTML"

wcs_metadatalink_type
• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:

“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The web metadata
wcs_metadatalink_format and wcs_metadatalink_href must also be specified.

• To output several metadata links, use wcs_metadatalink_list

wcs_name
• Description: (Optional) A name for the server.

wcs_responsibleparty_address_administrativearea, wcs_responsibleparty_address_city,
wcs_responsibleparty_address_country, wcs_responsibleparty_address_deliverypoint,
wcs_responsibleparty_address_electronicmailaddress, wcs_responsibleparty_address_postalcode,
wcs_responsibleparty_individualname, wcs_responsibleparty_onlineresource, wcs_responsibleparty_organizationname,
wcs_responsibleparty_phone_facsimile, wcs_responsibleparty_phone_voice, wcs_responsibleparty_postionname

• Description: (Optional) Contact address information. If provided then all twelve metadata items are required.
You can also use the address* metadata instead.

wcs_service_onlineresource
• Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if pro-

vided) in the following order:

1. wcs_service_onlineresource

2. ows_service_onlineresource

3. wcs_onlineresource (or automatically generated URL, see the onlineresource section of this document)
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wcs_languages
• Description: (Optional) A comma-separated list of supported languages. For details please refer to the section

Multi-language support for certain capabilities fields in the INSPIRE Download Service documentation.

Layer Object Metadata

ows_allowed_ip_list
Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list
Same as ows_denied_ip_list in the Web Object.

wcs_abstract
• Description: (Optional) A brief description of the service, maps to ows:Abstract (WCS 1.1+ only).

wcs_description
• Description: (Optional) A description of the layer.

wcs_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be en-

abled: GetCapabilities, GetCoverage and DescribeCoverage. A “!” in front of a request will disable the request.
“*” enables all requests.

• Examples:

To enable only GetCapabilities and GetCoverage:

"wcs_enable_request" "GetCapabilities GetCoverage"

To enable all requests except GetCapabilities

"wcs_enable_request" "* !GetCapabilities"

wcs_extent
• Description: (Optional) Bounding box of layer, which must be provided for tiled data. Comma-delimited, in the

format of: minx,miny,maxx,maxy

wcs_formats
• Description: (Optional) The formats which may be requested for this layer, separated by a space. (e.g. “GTiff

MrSID”)

wcs_keywords
• Description: (Optional) Short words for catalog searching.

wcs_label
• Description: (Required) A human-readable label for the layer.

wcs_metadatalink_format
• Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The web metadata

wcs_metadatalink_type and wcs_metadatalink_href must also be specified.

wcs_metadatalink_href
• Description: (Optional) The URL to the layer’s metadata. The web metadata wcs_metadatalink_format and

wcs_metadatalink_type must also be specified.
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wcs_metadatalink_type
• Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:

“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The web metadata
wcs_metadatalink_format and wcs_metadatalink_href must also be specified.

wcs_name
• Description: (Optional) A name for the layer.

wcs_nativeformat
• Description: (Optional) The current format of the served raster layer. (e.g. “GTiff”) (used for WCS 1.0)

wcs_native_format
• Description: (Optional) The mime-type of the current format of the served raster layer (e.g. “image/tiff”).

This field is used when coverage metadata is provided by the layer metadata only (when wcs_extent and
wcs_size/wcs_resolution are set). When set, WCS 2.0 GetCoverage requests will use this format when no other
format is specified (the format parameter is optional then).

wcs_outputformat_{OUTPUTFORMATNAME}_creationoption_{OPTIONNAME}
• Description: (Optional) (added in MapServer 7.2.0) To provide creation options in a (GDAL) output format

specific and layer specific way. {OUTPUTFORMATNAME} should be substituted by the user with the OUT-
PUTFORMAT.NAME value of an output format allowed for the layer. And {OPTIONNAME} by a valid GDAL
creation option valid for the OUTPUTFORMAT.DRIVER.

The purpose of this metadata item is to provide creation options that depend on the layer, typically to configure
some metadata in the resulting raster file that depends on that layer (for non-layer dependent configuration options,
OUTPUTFORMAT.FORMATOPTION should rather be used).

For GDAL drivers that support band-specific creation output (at time of writing, only the
GRIB driver in GDAL 2.3.0), with a BAND_{bandnumber}_{OPTIONNAME} syntax for
the GDAL creation option, it is also possible to use a MapServer metadata item named
wcs_outputformat_{OUTPUTFORMATNAME}_creationoption_BAND_{bandnumber}_{OPTIONNAME}.
bandnumber will be automatically adjusted when passed to GDAL so that the WCS band subsetting is properly
taken into account. You can consult WCS GRIB output in msautotest as a practical example of how to configure
GRIB2 WCS output (requires GDAL 2.3.0)

Axes Descriptions (WCS 1.x only)

MapServer allows you define a number of these for a layer. Individual axis are identified by name when defining specific
metadata (e.g. description). All defined axes must be listed in the rangeset_axes metadata tag so MapServer knows in
advance what to expect. A special rangeset for multiband date is automatically generated by adding the name “bands”
to the rangeset_axes list. If found MapServer will automatically generate metadata for the image bands. You may of
course extend that basic support using the naming conventions below.

wcs_rangeset_axes
• Description: (Optional) Delimited list of defined range sets. If defined, you can also use the following nine

metadata items, where rangeset axis matches the axis name provided in this wcs_rangeset_axes metadata: (WCS
1.x only)

{rangeset axis}_semantic
{rangeset axis}_refsys
{rangeset axis}_refsyslabel
{rangeset axis}_description
{rangeset axis}_label
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{rangeset axis}_values
{rangeset axis}_values_semantic
{rangeset axis}_values_type
{rangeset axis}_interval

wcs_rangeset_description
• Description: (Optional, for DescribeCoverage request) Rangeset description (WCS 1.0 only)

wcs_rangeset_label
• Description: (Required, for DescribeCoverage request) Rangeset label (WCS 1.x only)

wcs_rangeset_name
• Description: (Required, for DescribeCoverage request) Rangeset name (WCS 1.x only)

wcs_rangeset_nullvalue
• Description: (Optional, for DescribeCoverage request) Rangeset single null value (WCS 1.x only)

wcs_srs
• Description: (Optional) Spatial reference system of the layer, in the form of: EPSG:code (e.g. EPSG:3978)

wcs_timeitem
• Description: (Optional) The attribute in the spatio/temporal index that contains time values.

wcs_timeposition
• Description: (Optional) A list of the start and end time of a given coverage (i.e. “2000-11-11T11:11:11Z,2001-

11-11T11:11:11Z”), used when advertising GetCapabilities.

Layer Metadata API

If wcs_metadatalink_href is not defined, MapServer will provide a link to the Layer Metadata API for the given layer.
See the Layer Metadata API documentation for more information.

Rules for handling SRS in a MapServer WCS

TODO!

Spatio/Temporal Indexes

MapServer has long supported a method of breaking a dataset into smaller, more manageable pieces or tiles. In this
case a shapefile is used to store the boundary of each tile, and an attribute holds the location of the actual data. Within
a MapServer mapfile the layer keywords TILEINDEX and TILEITEM are used to activate tiling.

Consider the example where an organization wants to serve hundreds or even thousands of MODIS scenes. Five
images cover the spatial extent and each group of five varies by date of acquisition. This turns out to be a fairly
common scenario for organizations interested in WCS, one that the existing tiling support does not adequately address.
In previous versions of MapServer a developer would have to create one tile index and one layer definition for each
group of five images. This could result in configuration files that are prohibitively long and difficult to manage.

In order to more efficiently support the WCS specification a new tiling scheme has been implemented within MapServer.
One that supports spatial sub-setting, but also ad hoc sub-setting based on any attributes found within tile index. In
many cases a temporal attribute could be used, but sub-setting is not limited to that case. The new scheme introduces
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the concept of tile index layers, that is, a separate layer definition is used to describe the tile index dataset. With this
we get all the benefits of any MapServer layer, most importantly we can apply MapServer filters to the data. Filters
can be defined at runtime using MapServer CGI, MapScript or via the WCS server interface. The syntax for the layer
using the index remains unchanged except that the value for Tile Indexes refers to the index layer instead of an external
shapefile.

So, looking at the example above again we can reduce our MapServer configuration to two layer definitions, one for
the tile index and one for the imagery itself. Extracting a single dates worth of imagery is now a matter of setting the
appropriate filter within the tile index layer.

Building Spatio-Temporal Tile Indexes

Developing these tile indexes is more difficult than basic indexes simply because there are no ready-made tools to do
so. Fortunately we can leverage existing tool available within MapServer or supporting libraries such as GDAL by post
processing their output.

Taking the above example, building an index is relatively simple task if you are willing to roll up your sleeves and
write a bit of code. First, the basic spatial index needs to be built. The GDAL utility gdaltindex already does this.
Simply point gdaltindex at the directory containing the collection of MODIS images and it will build a shapefile index
suitable for use with MapServer. The next step would be to add the temporal information. The pseudo code would look
something like:

• open the index .dbf file for reading

• create a new column to hold the image acquisition date

• for each image; 1) extract the image acquisition date and 2) insert it into the new column

• close the index .dbf file

This general approach could be used for many cases. A scripting language such as Perl, PHP or Python works well
since they all have readily available modules for manipulating .dbf files. A worst case would involve hand editing the
resulting .dbf file using a desktop tool such as Mircosoft Access or ESRI Arcview.

WCS 2.0 Application Profile - Earth Observation (EO-WCS)

OGC is currently discussing the adoption of an Earth Observation (EO) Application Profile for WCS 2.0 (EO-WCS)
(see public RFC on EO-WCS). For an implementation please refer to the Open Source project EOxServer which already
implements this proposed EO-WCS based on MapServer.

To-do Items and Known Limitations

• MapServer does not derive all of the metadata it could from a given dataset. For example, you must explicitly
list time periods covered by a layer. This should get better with time.

• Only spatial, simple temporal and radiometric band subsetting is possible with the current implementation. Fu-
ture enhancements should allow for arbitrary subsets based on pixel values or tile/image attributes.

• The available set of WCS 2.0 specification documents is not yet complete. Thus, for some implementation details,
the content of some forthcoming extensions had to be anticipated based on the approaches taken for WCS 1.1
and 1.0. The implementation will be adjusted as soon as new specification documents become available.

• If you want to use libxml2 or its derived tools (like xmllint) for validation be aware that there is a currently bug
in libxml2 that breaks the validation of GML 3.2.1.
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This document explains how to use MapServer to deliver Landsat, SPOT, DEM, and NetCDF temporal/banded data
through the MapServer WCS interface. Thanks go to Steve Lime and Frank Warmerdam for their assistance with these
projects

It also shows how to configure MapServer for GRIB2 output format.

Landsat

To serve Landsat imagery through the MapServer Web Coverage Service specify the OUTPUTFORMAT object. For
format support install the GDAL library and from the command prompt and cd to where GDAL is installed and use
the command, gdalinfo –formats. A list of all supported formats will appear and will specify if the format is read only
<ro> or read and write <rw> for WCS the format needs to be supported for read and write (except for GDAL’s own
WCS format, however).

For the example below the Landsat 7 15m resolution mosaic is in a Enhanced Compressed Wavelets format (ECW).
By running the gdalinfo.exe program I could verify that the ECW format has write permissions, therefore the format
can be specified in the MapFile and requested using the GetCoverage request.

OUTPUTFORMAT
NAME "ECW"
DRIVER "GDAL/ECW"

(continues on next page)
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MIMETYPE "image/ecw"
IMAGEMODE "BYTE"
EXTENSION "ecw"

END

LAYER
NAME "Landsat7"
STATUS OFF
TYPE RASTER
PROCESSING "SCALE=AUTO"
UNITS Meters
TILEINDEX "MapServer/wcs/landsat7/l7mosaic15m.shp"
TILEITEM "Location"
METADATA
"wcs_description" "Landsat 7 15m resolution mosaic"
"wcs_name" "Landsat7"
"wcs_label" "Landsat 7 15m resolution mosaic"
"ows_srs" "EPSG:27700"
"ows_extent" "0 0 700005 1050000"
"wcs_resolution" "75 75"
"wcs_bandcount" "3"
"wcs_formats" "ECW"
"wcs_enable_request" "*"

END
END

A GetCoverage request can then be requested (using the parameters set in the MapFile) by creating a URL with the
elements: - Your Server, MapServer Program, Location of MapFile, Type of Service (WCS), Request (GetCoverage),
Coverage (Landsat7), BBOX (0,0,700005,1050000), CRS (EPSG:27700), ResX (75) ResY (75), Format (ECW).

SPOT

SPOT imagery can be delivered through MapServer Web Coverage Service similarly to the Landsat example above.
The main difference is that as SPOT is a greyscale image the wcs_bandcount = 1 rather than a Landsat image which
consists of 3 bands. For this example the well known GeoTiff format will be used to demonstrate what to specify in a
MapFile for SPOT data.

OUTPUTFORMAT
NAME "GEOTIFF"
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE "BYTE"
EXTENSION "tif"

END
LAYER

NAME "SPOT"
STATUS OFF
TYPE RASTER
PROCESSING "SCALE=AUTO"
UNITS Meters
TILEINDEX "MapServer/wcs/orthospot/spot.shp"

(continues on next page)
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TILEITEM "Location"
METADATA
"wcs_description" "Orthospot mosaic"
"wcs_name" "SPOT"
"wcs_label" "Orthospot mosaic"
"ows_srs" "EPSG:27700"
"ows_extent" "375960 64480 497410 200590"
"wcs_resolution" "100 100"
"wcs_bandcount" "1"
"wcs_formats" "GEOTIFF"
"wcs_nativeformat" "8-bit GeoTIF"
"wcs_enable_request" "*"

END
END

The key parameters to specify in the WCS MapFile for any data layer and format are:

- Layer Name = Create a short name for the data
- Layer Type = Raster

The following examples further demonstrate how WCS can be implemented and also how to create WCS containing
layers with a temporal dimension (see NetCDF example).

DEM

It is possible to deliver 16 bit DEM data through the MapServer Web Coverage Service.

Firstly it is necessary to specify the output format in the map file

OUTPUTFORMAT
NAME "GEOTIFFINT16"
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE "INT16"
EXTENSION "tif"

END

and the corresponding layer

LAYER
NAME "srtm"
STATUS OFF
TYPE RASTER
DATA "srtm.tif"
PROJECTION
"init=epsg:4326"

END
METADATA
"wcs_label" "SRTM WCS TIF Server"
"ows_extent" "-180 -90 180 90"
"wcs_resolution" "0.00083 -0.00083"
"ows_srs" "EPSG:4326"

(continues on next page)
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"wcs_formats" "GEOTIFFINT16"
"wcs_nativeformat" "geotiff"
"wcs_enable_request" "*"

END
END

Performance gains can be made by using the gdaladdo utility described at https://gdal.org/programs/gdaladdo.html

NetCDF

Firstly GDAL doesn’t support all versions of netCDF (there are a lot, it is a generic format), so for stability it may be
necessary to convert the files into GeoTiff format first. This can be achieved using the netCDF libraries here https:
//www.unidata.ucar.edu/software/netcdf/. Denis Nadeau and Frank Warmerdam have added netCDF CF as a read only
format within GDAL, so it now possible to read the CF convention netCDF files directly from disk.

We placed the Z-levels in the bands of the GDAL data file (either GeoTiff or netCDF), and created a shape index for
the time levels. GDAL data is a 2-D format (x,y) and bands. netCDF is an N-D file format, supporting time, x,y,z, and
experiment parameters. By using a set of GDAL netCDF / geoTiff files it is possible to represent this, and to store the
z-level (height) as bands within the data file. Although a hack, it is possible for a custom client to receive important
metadata from the describeCoverage operation of a WCS about the which z-level a band of a geotiff represents by
encoding this in the returned axes description tag.

To create the shape file for the temporal dimension we had to do some hacking with Java code, but we also got it to
work with Steve Lime’ s perl script in the MODIS MapServer demo download (which doesn’t seem to be available
now).

The perl script used in Modis demo by Steve Lime is as follows, and I have placed inline comments below. The script
assumes that gdaltindex has already been run in this directory to create a tile index shape and dbf file. It assumes that
the filenames of your data files have the date in the filename, for example myfileYYYYMMDDHH.tif

1 #!/usr/bin/perl
2 use XBase;
3 opendir(DIR, '.'); # open the current directory
4 foreach $file (readdir(DIR)) {
5 next if !($file =~ /\.dbf$/); # read the dbf file in this directory created by␣

→˓gdaltindex
6 print "Working on $file...\n";
7 $tfile = 'temporary.dbf';
8 system("mv $file $tfile");
9 $oldtable = new XBase $tfile or die XBase->errstr;

10 print join("\t", $oldtable->field_names) ."\n";
11 print join("\t", $oldtable->field_types) ."\n";
12 print join("\t", $oldtable->field_lengths) ."\n";
13 print join("\t", $oldtable->field_decimals) ."\n";
14 $newtable = XBase->create("name" => $file,
15 "field_names" => [$oldtable->field_names, "IMGDATE"], # this is the␣

→˓FILTERITEM in the corresponding tile index layer within your mapfile
16 "field_types" => [$oldtable->field_types, "C"], # character column␣

→˓type
17 "field_lengths" => [$oldtable->field_lengths, 13], # length of the␣

→˓date string
18 "field_decimals" => [$oldtable->field_decimals, undef]) or die "Error␣

→˓creating new table.";
(continues on next page)
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19 foreach (0 .. $oldtable->last_record) {
20 ($deleted, @data) = $oldtable->get_record($_);
21 print " ...record $data[0]\n";
22 # extract the date
23 $year = substr $data[0], 8, 4; # year is at position 8 in the filename string
24 $month = substr $data[0], 12, 2; # month is at position 12 in the filename␣

→˓string
25 $day = substr $data[0], 14, 2; # day is at position 14 in the filename string
26 $hour = substr $data[0], 16, 2; # hour is at position 16 in the filename string
27 $date = "$year-$month-$day" . "T" . "$hour\n"; # format is YYYY-MM-DDTHH, or␣

→˓any ISO format
28 print "$date";
29 push @data, "$date";
30 $newtable->set_record($_, @data);
31 }
32 $newtable->close();
33 $oldtable->close();
34 unlink($tfile);
35 }

If have used the perl script then skip to the layer definitions below, if you wish to code your own the description is here.

The DBF file has to have the column ‘location’ that indicates the location of the data file (either absolute path or relative
to the map file location, and the second column that can be called whatever you want but indexes time. In our case we
called it ‘time’ :-)

The corresponding shapefile then has to contain Polygons with the bounding boxes of the tif file for each time. So
OGRInfo timeIndex.shp looks something like:

OGRFeature(timeIndex):116
location(String) = mytime.tif
time(String) = 2001-01-31T18:00:00
POLYGON ((xxx,xxxx,.......))

Define your output format as

OUTPUTFORMAT
NAME "GEOTIFF_FLOAT"
DRIVER 'GDAL/GTiff'
MIMETYPE 'image/tiff'
IMAGEMODE FLOAT32
EXTENSION 'tif'

END

Then you need to define your tile index within the map file

LAYER
NAME 'time_idx'
TYPE TILEINDEX
DATA 'timeIndex'
FILTERITEM 'time'
FILTER '%time%'

END
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and the actual layer

LAYER
NAME 'TempData'
STATUS OFF
TYPE RASTER
TILEINDEX 'time_idx'
PROJECTION
"init=epsg:4326"

END
METADATA
"wcs_label" 'Temperature data'
"ows_extent" '-180 -90 180 90'
"wcs_resolution" '1.125 -1.125'
"ows_srs" 'EPSG:4326'
"wcs_formats" 'GEOTIFF_FLOAT'
"wcs_nativeformat" 'netCDF'
"wcs_bandcount" '27'
"wcs_rangeset_axes" 'bands'
"wcs_rangeset_label" 'Pressure (hPa units) Levels'
"wcs_rangeset_name" 'bands'
"wcs_rangeset_description" 'Z levels '
"wcs_timeposition" '2001-01-01T06:00:00,2001-01-01T12:00:00,2001-01-01T18:00:00,2001-

→˓01-02T00:00:00'
"wcs_timeitem" 'time'
"wcs_enable_request" "*"

END
END

The TempData coverage layer will now let you subset with the &bands=. . . &time=. . . subset parameters!

To do a coordinate reprojection specify in the request &Response_CRS=ESPG:xxxx

When you start doing temporal subsetting with WCS and MapServer you can see the need for an automatic way of
generating map files such as using an XSL stylesheet!

For a tile-index layer you need to provide the following extra metadata in order to use it for WCS:

"OWS_EXTENT" "10050 299950 280050 619650"
"WCS_RESOLUTION" "100 100"
"WCS_SIZE" "2700 3197"
"WCS_BANDCOUNT" "3"

If your image has a colortable and only one band, it will come out greyscale unless you set the IMAGEMODE to PC256
instead of BYTE.
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GRIB2 output format

This requires MapServer 7.2.0 for format-specific and layer-specific creation options mechanism, as well as GDAL
2.3.0 for GRIB2 output support.

Define your output format as

OUTPUTFORMAT
NAME GRIB
DRIVER "GDAL/GRIB"
MIMETYPE "application/x-grib2"
IMAGEMODE Float32
EXTENSION "grib2"
FORMATOPTION "DATA_ENCODING=SIMPLE_PACKING"

END

(consult GDAL GRIB driver documentation for more options that can be provided in FORMATOPTION)

and the actual layer

LAYER
NAME temperatures
TYPE raster
STATUS ON
DUMP TRUE
DATA "temperatures.tif"

PROJECTION
"init=epsg:4326"

END

METADATA
"ows_extent" "-180 -90 180 90"
"wcs_label" "Test label"
"ows_srs" "EPSG:4326"
"wcs_resolution" "2.4 2.4"
"wcs_bandcount" "1"
"wcs_imagemode" "Float32"
"wcs_formats" "GEOTIFF_FLOAT32 GRIB"
"wcs_description" "Test description"
"wcs_metadatalink_href" "http://www.gdal.org/metadata_test_link.html"
"wcs_keywordlist" "test,mapserver"
"wcs_abstract" "abstract"

# GDAL creation options for the GRIB output format
# In the case where the input DATAset would be a GRIB2 product,
# those wcs_outputformat_GRIB_creationoption_* keywords are not
# needed, as being directly taken from the input dataset
"wcs_outputformat_GRIB_creationoption_DISCIPLINE" "0(Meteorological)"
"wcs_outputformat_GRIB_creationoption_IDS" "Normally this will never be used␣

→˓given the BAND_1_IDS override"
"wcs_outputformat_GRIB_creationoption_BAND_1_IDS" "CENTER=54(Montreal)␣

→˓SUBCENTER=0 MASTER_TABLE=4 LOCAL_TABLE=0 SIGNF_REF_TIME=1(Start_of_Forecast) REF_
→˓TIME=2017-01-05T00:00:00Z PROD_STATUS=0(Operational) TYPE=2(Analysis_and_forecast)"

"wcs_outputformat_GRIB_creationoption_PDS_PDTN" "0"
(continues on next page)
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(continued from previous page)

"wcs_outputformat_GRIB_creationoption_PDS_TEMPLATE_ASSEMBLED_VALUES" "0 0 2 47␣
→˓47 0 0 1 0 103 0 2 255 -127 -2147483647"

# WCS 2.0 metadata items
"wcs_native_format" "application/x-grib2"
"wcs_band_names" "Temperature_2m"
"Temperature_2m_band_interpretation" "interp"
"Temperature_2m_band_uom" "Celcius"
"Temperature_2m_band_definition" "Temperature at 2m above ground"
"Temperature_2m_band_description" "Temperature at 2m above ground"
"Temperature_2m_interval" "-100 100"
"Temperature_2m_significant_figures" "1"

# WCS 1.x metadata items
"wcs_nativeformat" "GRIB"
"wcs_rangeset_axes" "bands"
"wcs_rangeset_name" "Temperatures"
"wcs_rangeset_label" "Bands"
"wcs_rangeset_description" "Temperatures"

END
END

(consult GDAL GRIB driver documentation for more options that can be provided in
‘wcs_outputformat_GRIB_creationoption_{OPTIONNAME}’)

Credit: Support for per-layer creation options has been funded by Meteorological Service of Canada.

10.1.18 SOS Server
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Introduction

SOS (Sensor Observation Service), currently an OGC discussion paper, is part of of the OGC’s SensorWeb Enablement
(SWE) group of specifications. These specifications describe how applications and services will be able to access
sensors of all types over the Web. Specifically, SOS provides an API for managing deployed sensors and retrieving
sensor data.

SOS support is available in MapServer 4.10.0 or more recent. Note that no client tools currently exist in MapServer
for SOS; you can try QGIS desktop and its plugins, or try using a JavaScript library such as OpenLayers as a client.

SOS support was implemented in MapServer to the guidelines of MapServer rfc13.

This document assumes that you are already familiar with certain aspects of MapServer:

• MapServer application development and setting up .map files.

Links to SOS-Related Information

• SOS specification documents

• OGC’s Sensor Web Enablement working group

Relevant Definitions

The following is taken from the SOS 1.0.0 specification:

Observation
An observation is an event with a result which has a value describing some phenomenon.

Observation Offering
An observation offering is a logical grouping of observations offered by a service that are related in some way.

Observed Value
A value describing a natural phenomenon, which may use one of a variety of scales including nominal, ordinal,
ratio and interval.

Sensor
An entity capable of observing a phenomenon and returning an observed value. A sensor can be an instrument
or a living organism (e.g. a person).

Setting Up an SOS Server Using MapServer

Install the Required Software

SOS requests are handled by the “mapserv” CGI program. The first step is to check that your mapserv exe-
cutable includes SOS support. One way to verify this is to use the “-v” command-line switch and look for “SUP-
PORTS=SOS_SERVER”.

Example 1. On Unix:

$ ./mapserv -v
MapServer version 4.9 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=THREADS INPUT=JPEG
INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG
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Example 2. On Windows:

C:\MS4W\Apache\cgi-bin> mapserv -v
MapServer version 4.9 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT
SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=THREADS INPUT=JPEG
INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Note: Windows users can install MS4W which supports SOS server.

If you don’t have SOS support in your MapServer build, then you must compile MapServer with the following in mind:

• flag -DUSE_SOS_SVR is required

• requires either -DUSE_WMS_SVR or -DUSE_WFS_SVR flags to be enabled

• requires libxml2 and proj libraries

• requires ICONV support (-DUSE_ICONV ) on Windows

For more help with MapServer compilation see the appropriate HowTo: Unix / Windows

Configure a Mapfile For SOS

Each instance of SOS server that you setup needs to have its own mapfile. It is just a regular MapServer mapfile in
which some parameters and some metadata entries are mandatory. Most of the metadata is required in order to produce
a valid GetCapabilities output.

Here is the list of parameters and metadata items that usually optional with MapServer, but are required (or strongly
recommended) for a SOS configuration:
MAP level:

• Map NAME

• Map PROJECTION

• Map Metadata (in the WEB Object):

– sos_title

– sos_onlineresource

– sos_srs

– sos_enable_request

– see the Reference Section of this document for a full list of metadata and descriptions

LAYER level:
• Layer NAME

• Layer PROJECTION

• Layer METADATA

– sos_offering_id

– sos_observedproperty_id

– sos_observedproperty_id
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– sos_describesensor_url

– see the Reference Section of this document for a full list of metadata and descriptions

Onlineresource URL

The sos_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should be used
to access your server. This is required for the GetCapabilities output. If sos_onlineresource is not provided then
MapServer will try to provide a default one using the script name and hostname, but you shouldn’t count on that too
much. It is strongly recommended that you provide the sos_onlineresource metadata.

Here is a valid online resource URL:

http://my.host.com/cgi-bin/mapserv?map=mysos.map&

By creating a wrapper script on the server it is possible to hide the “map=” parameter from the URL and then your
server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mapserv?

This is covered in more detail in the “More About the Online Resource URL” section of the WMS Server document.

Note: It is strongly recommended to review the security steps for the MAP= call to the MapServer executable, by
setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on public servers, as recom-
mended in the document Limit Mapfile Access. All possible environment variables to secure your server are listed in
Environment Variables.

Example SOS Server Mapfile

The following is an example of a bare minimum SOS Server mapfile. Note the comments for the required parameters.

MAP
NAME "SOS_DEMO"
STATUS ON
SIZE 300 300
EXTENT -66 44 -62 45
UNITS METERS
SHAPEPATH "./data/"
IMAGECOLOR 255 255 0
SYMBOLSET "./etc/symbols.sym"

IMAGETYPE png

WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

METADATA
"sos_onlineresource" "http://127.0.0.1/mapserv?map=/sos/sos_test.map" ## REQUIRED
"sos_title" "My SOS Demo Server" ## Recommended
"sos_srs" "EPSG:4326" ## REQUIRED

(continues on next page)
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(continued from previous page)

"sos_enable_request" "*" ## REQUIRED
END

END

PROJECTION
"init=epsg:4326"

END

LAYER
NAME "test_sos_layer"
METADATA
"sos_procedure" "NS01EE0014" ## REQUIRED
"sos_offering_id" "WQ1289" ## REQUIRED
"sos_observedproperty_id" "Water Quality" ## REQUIRED
"sos_describesensor_url" "http://some/url/NS01EE0014.xml" ## REQUIRED

END
TYPE POINT
STATUS ON
DATA "sos_test"

PROJECTION
"init=epsg:4326"

END

CLASS
NAME "water quality"
STYLE
COLOR 255 0 0
SYMBOL "circle"
SIZE 8

END
END

END

END #map

Test Your SOS Server

GetCapabilities Request

The GetCapabilities request allows the clients to retrieve service metadata about a specific service instance. For an
SOS service, it allows to identify such things as offerings and observed property available, as well as information on
sensors that are used.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=SOS&REQUEST=GetCapabilities” to the end, e.g.

http://my.host.com/cgi-bin/mapserv?MAP=mysos.map&SERVICE=SOS&REQUEST=GetCapabilities

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”. . . MapServer inserts XML comments starting with “<!–WARNING: “ in the XML output if it detects missing
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mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix all of them
before you can try your server with an SOS client, otherwise things are likely not going to work.

Note: The SERVICE parameter is required for all SOS requests.

GetObservation Request

The GetObservation request is designed to query sensor systems to retrieve observation data in the form defined in
the Observation and Measurement specification (O&M), and more information on this O&M spec can be found at
https://www.ogc.org/standards/om. Upon receiving a GetObservation request, a SOS shall either satisfy the request or
return an exception report.

The following is a list of the possible parameters for a GetObservation request:

request: (Required) value must be “GetObservation”.

service: (Required) value must be “SOS”.

version: (Required) value must be “1.0.0”.

offering: (Required) The Offering identified in the capabilities document.

observedProperty: (Required) The property identified in the
capabilities document.

responseFormat: (Required) The format / encoding to be returned
by the response.

eventTime (Optional) Specifies the time period for which
observations are requested.

procedure: (Optional) The procedure specifies the sensor system
used. In this implementation, the procedure is equivalent to be the sensor id that will be used when
doing a DescribeSensor request.

featureOfInterest: (Optional) In this implementation, this will
be represented by a gml envelope defining the lower and upper corners.

Result: (Optional) The Result parameter provides a place to put
OGC filter expressions based on property values.

resultModel: (Optional) Identifier of the result model to be
used for the requested data. The resultModel values supported by a SOS server are listed in
the contents section of the service metadata (GetCapabilities). MapServer currently supports
om:Observation and om:Measurement. om:Measurement provides a flat model of the geometry and
attributes, similar to WFS GetFeature output. om:Observations provides a more compact definition
which includes an XML header of the field names and definitions, followed by a “DataBlock” of
delimited records (default is CSV delimited output). The default output is om:Measurement.

srsName: (Optional) srs (EPSG code) of the output response.

Here are some valid examples:

Example 1:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"
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Example 2:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&eventtime=<ogc:TM_Equals><gml:TimePeriod>
<gml:beginPosition>1991-05-01</gml:beginPosition><gml:endPosition>
1993-02-02</gml:endPosition></gml:TimePeriod></ogc:TM_Equals>
&result=<Filter><Or><PropertyIsEqualTo><PropertyName>COLOUR
</PropertyName><Literal>180</Literal></PropertyIsEqualTo>
<PropertyIsEqualTo><PropertyName>COLOUR</PropertyName><Literal>200
</Literal></PropertyIsEqualTo></or></Filter>&version=1.0.0
&responseFormat=text/xml; subtype="om/1.0.0"

Example 3:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&featureofinterest=<gml:Envelope>
<gml:lowerCorner srsName='EPSG:4326'>-66 43</gml:lowerCorner>
<gml:upperCorner srsName='EPSG:4326'>-64 45</gml:upperCorner>
</gml:Envelope>&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"

Example 4:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=GetObservation&service=SOS&Offering=WQ1289&
observedproperty=Water Quality&version=1.0.0&
responseFormat=text/xml; subtype="om/1.0.0"&resultModel=om:Observation

DescribeSensor Request

The DescribeSensor request gives the client the ability to retrieve the characteristics of a particular sensor and return
the information in a SensorML xml document. In this implementation, MapServer does not generate the SensorML
document but only redirect the request to an existing SensorML document.

The following is a list of the possible parameters for a DescribeSensor request:

request: (Required) value must be “DescribeSensor”

service: (Required) value must be “SOS”.

version: (Required) value must be “1.0.0”.

procedure: (Required) This is the sensor id, which was specified
in the “sos_procedure” metadata.

outputFormat: (Required) The format encoding to be returned by
the response.

Here is a valid example:

http://127.0.0.1/cgi-bin/mapserv.exe?map=D:/ms4w/apps/sos/sos_test.map&
Request=DescribeSensor&procedure=urn:ogc:def:procedure:NS01EE0014&
service=SOS&version=1.0.0&outputFormat=text/xml; subtype="sensorML/1.0.0"
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Limitations / TODO

1. Have MapServer generate the SensorML document, instead of redirecting the request to an existing SensorML
document.

Reference Section

The following metadata are available in the setup of the SOS Server mapfile:

Note: Each of the metadata below can also be referred to as ‘ows_*’ instead of ‘sos_*’. MapServer tries the ‘sos_*’
metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of duplication
in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere for common
metadata items shared by multiple OGC interfaces.

Web Object Metadata

ows_allowed_ip_list (or sos_allowed_ip_list)

• Description: (Optional) A list of IP addresses that will be allowed access to the service.

Example:

METADATA
"ows_allowed_ip_list" "123.45.67.89 11.22.33.44"

END

ows_denied_ip_list (or sos_denied_ip_list)

• Description: (Optional) A list of IP addresses that will be denied access to the service.

Example:

METADATA
"ows_denied_ip_list" "123.45.67.89 11.22.33.44"

END

ows_language
• Description: (Optional) Descriptive narrative for more information about the server. Identifier of the language

used by all included exception text values. These language identifiers shall be as specified in IETF RFC 1766.
When this attribute is omitted, the language used is not identified. Examples: “en-CA”, “fr-CA”, “en-US”.
Default is “en-US”.

ows_schemas_location
• Description: (Optional) (Note the name ows_schemas_location and not sos/_. . . this is because all OGC Web

Services (OWS) use the same metadata) Root of the web tree where the family of OGC SOS XMLSchema files
are located. This must be a valid URL where the actual .xsd files are located if you want your SOS output to
validate in a validating XML parser. Default is http://schemas.opengis.net/sos/.

ows_updatesequence
• Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a client

cache of the contents of a service metadata document. The parameter value can be an integer, a timestamp in
[ISO 8601:2000] format, or any other number or string.
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sos_abstract
• Description: (Optional) Descriptive narrative for more information about the server.

sos_accessconstraints
• Description: (Optional) Text describing any access constraints imposed by the service provider on the SOS or

data retrieved from this service.

sos_addresstype, sos_address, sos_city, sos_country, sos_postcode, sos_stateorprovince
• Description: Optional contact address information. If provided then all six metadata items are required.

sos_contactelectronicmailaddress
• Description: Optional contact Email address.

sos_contactfacsimiletelephone
• Description: Optional contact facsimile telephone number.

sos_contactinstructions
• Description: (Optional) Supplemental instructions on how or when to contact the individual or organization.

sos_contactorganization, sos_contactperson, sos_contactposition
• Description: Optional contact information. If provided then all three metadata items are required.

sos_contactvoicetelephone
• Description: Optional contact voice telephone number.

sos_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be

enabled: GetCapabilities, GetObservation and DescribeSensor. A “!” in front of a request will disable the
request. “*” enables all requests.

• Examples:

To enable only GetCapabilities and GetObservation:

"sos_enable_request" "GetCapabilities GetObservation"

To enable all requests except GetCapabilities

"sos_enable_request" "* !GetCapabilities"

sos_encoding_blockSeparator
• Description: (Optional) For GetObservation requests using resultModel=om:Observation (SWE DataBlock en-

coding). Record separator to be used. Default is ‘\n’

sos_encoding_tokenSeparator
• Description: (Optional) For GetObservation requests using resultModel=om:Observation (SWE DataBlock en-

coding). Token (field) separator to be used. Default is ‘,’

sos_fees
• Description: (Optional) Fees information. Use the reserved word “none” if there are no fees.

sos_hoursofservice
• Description: (Optional) Time period (including time zone) when individuals can contact the organization or

individual.
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sos_keywordlist
• Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching.

sos_maxfeatures
• Description: (Optional) The number of elements to be returned by the SOS server. If the not set all observations

are returned

sos_onlineresource
• Description: (Required) The URL that will be used to access this OGC server. This value is used in the GetCa-

pabilities response.

• See the section “Onlineresource URL” above for more information.

sos_role
• Description: (Optional) Function performed by the responsible party. Possible values of this Role shall include

the values and the meanings listed in Subclause B.5.5 of ISO 19115:2003.

sos_service_onlineresource
• Description: (Optional) Top-level onlineresource URL.

sos_srs
• Description: (Required) Contains a list of EPSG projection codes that should be advertized as being available

for all layers in this server. The value can contain one or more EPSG:<code> pairs separated by spaces (e.g.
“EPSG:4269 EPSG:4326”) This value should be upper case (EPSG:3978. . . ..not epsg:3978) to avoid problems
with case sensitive platforms.

sos_title
• Description: (Recommended) A human-readable name for this Layer.

Layer Object Metadata

ows_allowed_ip_list
Same as ows_allowed_ip_list in the Web Object.

ows_denied_ip_list
Same as ows_denied_ip_list in the Web Object.

sos_describesensor_url
• Description: (Required) This metadata item is only a temporary measure until the describe sensor is generated

from MapServer. Right now when a DescribeSensor request is sent with a procedure (sensorid), it will redirect
it to the url defined by this metadata item.

• In MapServer 5.0, it is possible to use variable substitution on the url. For example “sos_describesensor_url”
"http://foo/foo?mysensor=%procedure%"will substitute the %procedure% in the metadata with the procedure
value coming from the request.

"sos_describesensor_url" "http://some/url/NS01EE0014.xml"

sos_enable_request (or ows_enable_request)
• Description: Space separated list of requests to enable. The default is none. The following requests can be

enabled: GetCapabilities, GetObservation and DescribeSensor. A “!” in front of a request will disable the
request. “*” enables all requests.
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• Examples:

To enable only GetCapabilities and GetObservation:

"sos_enable_request" "GetCapabilities GetObservation"

To enable all requests except GetCapabilities

"sos_enable_request" "* !GetCapabilities"

sos_[item name]_alias
• Description: (Optional) An alias for an attribute’s name that will be returned when executing a GetObservation

request.

sos_[item name]_definition
• Description: (Optional) An associated definition (usually a URN) for a component, that will be returned when

executing a GetObservation request. Default is "urn:ogc:object:definition"

sos_[item name]_uom
• Description: (Optional) An associated unit of measure URN) for a component, that will be returned when exe-

cuting a GetObservation request. Default is "urn:ogc:object:uom"

sos_observedproperty_authority
• Description: (Optional) An associated authority for a given component of an observed property

sos_observedproperty_id
• Description: (Required) ID of observed property, possibly in number format.

sos_observedproperty_name
• Description: (Optional) Name of observed property, possibly in string format.

sos_observedproperty_version
• Description: (Optional) An associated version for a given component of an observed property

sos_offering_description
• Description: (Optional) Description of offering.

sos_offering_extent
• Description: (Optional) Spatial extents of offering, in minx, miny, maxx, maxy format:

"sos_offering_extent" "-66, 43, -62, 45"

The logic for the bounding box returned as part of the offering is the following:

– note that it is a mandatory element that needs an espg code and lower/upper corner coordinates

– looks for the espg parameter in the first layer of the offering (this could be an ows/sos_srs or a projection
object with the epsg code (mandatory)

– looks for sos_offering_extent. If the metadata is not available, the extents of all layers in the offering will
be used to compute it.

Here is an example result from a GetCapabilities request:
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<gml:boundedBy>
<gml:Envelope>
<gml:lowerCorner srsName="EPSG:4326">-66 43</gml:lowerCorner>
<gml:upperCorner srsName="EPSG:4326">-62 45</gml:upperCorner>

</gml:Envelope>
</gml:boundedBy>

sos_offering_id
• Description: (Required) ID of offering, possibly in number format.

sos_offering_intendedapplication
• Description: (Optional) The intended category of use for this offering.

sos_offering_name
• Description: (Optional) Name of offering, possibly in string format.

sos_offering_timeextent
• Description: (Optional) Time extent of offering, in the format of “begin/end”. Here is an example:

"sos_offering_timeextent" "1990/2006"

If end is not specified it will be set to now. Here is an example result from a GetCapabilities request:

<sos:eventTime>
<gml:TimePeriod>
<gml:beginPosition>1990</gml:beginPosition>
<gml:endPosition>2006</gml:endPosition>

</gml:TimePeriod>
</sos:eventTime>

sos_procedure
• Description: (Required) Normally a sensor unique id. One per layer:

"sos_procedure" "NS01EE0014"

Note: sos_procedure can also be a list, separated by spaces, i.e.:

"sos_procedure" "35 2147 604"

All sos_procedure links from layers in the offerings will be outputed together, such as the following taken from
a GetCapabilities response:

<procedure xlink:href="urn:ogc:object:feature:Sensor:3eTI:csi-sensor-1"/>
<procedure xlink:href="urn:ogc:object:feature:Sensor:3eTI:csi-sensor-2"/>

sos_procedure_item
• Description: (Required if sos_procedure is not present): See section 5 for more details

"sos_procedure_item" "attribute_field_name"

sos_timeitem
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• Description: (Optional) Name of the time field. It will be used for queries when a GetObservation request is
called with an EVENTTIME parameter. It is layer specific and should be set on all layers.

"sos_timeitem" "TIME"

Layer Metadata API

If sos_metadataurl_href is not defined, MapServer will provide a link to the Layer Metadata API for the given layer.
See the Layer Metadata API documentation for more information.

Use of sos_procedure and sos_procedure_item

In MapServer 5.0 SOS support has been upgraded to use a new metadata called sos_procedure_item. The value for
sos_procedure_item is the field/attribute name containing the procedure values. The use of this metadata as well as the
sos_procedure is described here per type of request (refer to https://github.com/MapServer/MapServer/issues/2050 for
more description):

It should be noted that, for very large datasets defined only with sos_procedure_item, this may result in costly process-
ing, because MapServer has to process attribute data. It is advised to setup and manage datasets accordingly if dealing
with large observation collections.

GetCapabilities

• if sos_procedure is defined, use it

• if not look for sos_procedure_item : procedure values are extracted from the layer’s attribute specified by this
metadata. Not that this can be time consuming for layers with a large number of features.

• if none is defined return an exception

DescribeSensor

• if sos_procedure is defined, use it

• if not look for sos_procedure_item : procedure values are extracted from the layer’s attribute specified by this
metadata

• if none is defined return an exception

GetObservation

Both sos_procedure and sos_procedure_item can be define. Here are the cases:

• case 1
[only sos_procedure is defined.]

– Use this metadata to match the layer with the procedure value sent in the request

– When outputting the <member/procedure> output the value of the metadata
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Note: If more than one procedure is defined per LAYER object, output observations will have incorrect sos:procedure
values, because there is no way to map procedures to observations. This is where sos_procedure_item should be used
(i.e. when more than one procedure makes up a LAYER object).

• case 2: only procedure_item is defined.
– Use the sos_procedure_item and do a query on the layer to match the procedure with the layer.

– When outputting the <member/procedure> use the procedure_item as a way to only output the attribute
value corresponding to the feature.

• case 3: both are defined.
– check in sos_procedure to match the procedure with the layer.

– When outputting the <member/procedure> use the procedure_item as a way to only output the attribute
value corresponding to the feature.

10.1.19 MapScript Wrappers for WxS Services

Author
Frank Warmerdam

Contact
warmerdam at pobox.com

Contents

• MapScript Wrappers for WxS Services

– Introduction

– Python Examples

– Perl Example

– Java Example

– PHP Example

– Use in Non-CGI Environments (mod_php, etc)

– Post Processing Capabilities

Introduction

With the implementation of MapServer rfc16 in MapServer 4.9, MapScript now has the ability to invoke MapServer’s
ability to execute OGC Web Service requests such as WMS, WCS, and WFS as well as capturing the results of pro-
cessing the requests.

This makes it possible to dynamically configure a map object based on information in the original request, and to
capture the output of processing requests for further post-processing.

Warning: MapServer CGI Controls and Run-time Substitution are not applied when using mapscript WxS wrap-
pers. It is up to the mapscript code you are writing to apply any mapfile modifications.
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Python Examples

The following trivial example, in Python, demonstrates a script that internally provides the map name, but otherwise
uses normal mapserver processing.

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj( '/u/www/maps/ukpoly/ukpoly.map' )
map.OWSDispatch( req )

The OWSRequest object is used to manage a parsed list of OWS processing options. In the above example they are
loaded from the environment using the loadParams() call which fetches and parses them from QUERY_STRING in the
same way the mapserv executable would.

Then we load a map, and invoke OWSDispatch with the given arguments on that map. By default the results of the
dispatched request are written to stdout which returns them back to the client.

The following example ignores all passed in arguments, and manually constructs a request argument by argument. It is
likely more useful for testing purposes than for deploying WxS services, but demonstrates direct manipulation of the
request object.

import mapscript

req = mapscript.OWSRequest()
req.setParameter( 'SERVICE', 'WMS' )
req.setParameter( 'VERSION', '1.1.0' )
req.setParameter( 'REQUEST', 'GetCapabilities' )

map = mapscript.mapObj( '/u/www/maps/ukpoly/ukpoly.map' )
map.OWSDispatch( req )

The previous example have all let results be returned directly to the client. But in some cases we want to be able to
capture, and perhaps modify the results of our requests in some custom way. In the following example we force the
hated OGC required mime type for errors to simple text/xml (warning - non-standard!)

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj( '/u/www/maps/ukpoly/ukpoly.map' )

mapscript.msIO_installStdoutToBuffer()
map.OWSDispatch( req )

content_type = mapscript.msIO_stripStdoutBufferContentType()
content = mapscript.msIO_getStdoutBufferBytes()

if content_type == 'vnd.ogc.se_xml':
content_type = 'text/xml'

print 'Content-type: ' + content_type
(continues on next page)
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print
print content

This example demonstrates capture capturing output of OWSRequest to a buffer, capturing the “Content-type:” header
value, and capturing the actual content as binary data. The msIO_getStdoutBufferBytes() function returns the stdout
buffer as a byte array. If the result was known to be text, the msIO_getStdoutBufferString() function could have been
used to fetch it as a string instead, for easier text manipulation.

Perl Example

Most of the same capabilities are accessible in all SWIG based mapscript languages. In perl, we could script creation
of a request like this:

#!/usr/bin/perl

use mapscript;

$req = new mapscript::OWSRequest();
$req->setParameter( "SERVICE", "WMS" );
$req->setParameter( "VERSION", "1.1.0" );
$req->setParameter( "REQUEST", "GetCapabilities" );

$map = new mapscript::mapObj( "/u/www/maps/ukpoly/ukpoly.map" );

mapscript::msIO_installStdoutToBuffer();

$dispatch_out = $map->OWSDispatch( $req );

printf "%s\n", mapscript::msIO_getStdoutBufferString();

One issue in Perl is that there is currently no wrapping for binary buffers so you cannot call
msIO_getStdoutBufferBytes(), and so cannot manipulate binary results.

More Perl example code

#!/usr/bin/perl
############################################################################
#
# Name: wxs.pl
# Project: MapServer
# Purpose: MapScript WxS example
#
# Author: Tom Kralidis
#
##############################################################################
#
# Copyright (c) 2007, Tom Kralidis
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),

(continues on next page)
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(continued from previous page)

# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies of this Software or works derived from this Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
############################################################################/

use CGI::Carp qw(fatalsToBrowser);
use mapscript;
use strict;
use warnings;
use XML::LibXSLT;
use XML::LibXML;

my $dispatch;

# uber-trivial XSLT document, as a file
my $xsltfile = "/tmp/foo.xslt";

# here's the actual document inline for
# testing save and alter $xsltFile above

=comment
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:wfs="http://www.opengis.net/wfs">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<WFSLayers>
<xsl:for-each select="//wfs:FeatureType">
<wfs_layer>
<name><xsl:value-of select="wfs:Name"/></name>
<title><xsl:value-of select="wfs:Title"/></title>
</wfs_layer>
</xsl:for-each>
</WFSLayers>
</xsl:template>
</xsl:stylesheet>
=cut

my $mapfile = "/tmp/config.map";

(continues on next page)
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# init OWSRequest object
my $req = new mapscript::OWSRequest();

# pick up CGI parameters passed
$req->loadParams();

# init mapfile
my $map = new mapscript::mapObj($mapfile);

# if this is a WFS GetCapabilities request, then intercept
# what is normally returned, process with an XSLT document
# and then return that to the client
if ($req->getValueByName('REQUEST') eq "GetCapabilities" && $req->getValueByName('SERVICE
→˓') eq "WFS") {

# push STDOUT to a buffer and run the incoming request
my $io = mapscript::msIO_installStdoutToBuffer();
$dispatch = $map->OWSDispatch($req);

# at this point, the client's request is sent

# pull out the HTTP headers
my $ct = mapscript::msIO_stripStdoutBufferContentType();

# and then pick up the actual content of the response
my $content = mapscript::msIO_getStdoutBufferString();

my $xml = XML::LibXML->new();
my $xslt = XML::LibXSLT->new();

# load XML content
my $source = $xml->parse_string($content);

# load XSLT document
my $style_doc = $xml->parse_file($xsltfile);
my $stylesheet = $xslt->parse_stylesheet($style_doc);

# invoke the XSLT transformation
my $results = $stylesheet->transform($source);
# print out the result (header + content)
print "Content-type: $ct\n\n";
print $stylesheet->output_string($results);

}

# else process as normal
else {
$dispatch = $map->OWSDispatch($req);

}
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Java Example

One benefit of redirection of output to a buffer is that it is thread-safe. Several threads in the same process can be actively
processing requests and writing their results to distinct output buffers. This Java example, used to test multi-threaded
access demonstrates that.

import edu.umn.gis.mapscript.mapObj;
import edu.umn.gis.mapscript.OWSRequest;
import edu.umn.gis.mapscript.mapscript;

class WxSTest_thread extends Thread {

public String mapName;
public byte[] resultBytes;

public void run() {
mapObj map = new mapObj(mapName);

map.setMetaData( "ows_onlineresource", "http://dummy.org/" );

OWSRequest req = new OWSRequest();

req.setParameter( "SERVICE", "WMS" );
req.setParameter( "VERSION", "1.1.0" );
req.setParameter( "REQUEST", "GetCapabilities" );

mapscript.msIO_installStdoutToBuffer();

int owsResult = map.OWSDispatch( req );

if( owsResult != 0 )
System.out.println( "OWSDispatch Result (expect 0): " + owsResult );

resultBytes = mapscript.msIO_getStdoutBufferBytes();
}

}

public class WxSTest {
public static void main(String[] args) {

try {
WxSTest_thread tt[] = new WxSTest_thread[100];
int i;
int expectedLength=0, success = 0, failure=0;

for( i = 0; i < tt.length; i++ )
{

tt[i] = new WxSTest_thread();
tt[i].mapName = args[0];

}

for( i = 0; i < tt.length; i++ )
tt[i].start();

(continues on next page)
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for( i = 0; i < tt.length; i++ )
{

tt[i].join();
if( i == 0 )
{

expectedLength = tt[i].resultBytes.length;
System.out.println( "Document Length: " + expectedLength + ",␣

→˓expecting somewhere around 10000 or more." );
}
else if( expectedLength != tt[i].resultBytes.length )
{

System.out.println( "Document Length:" + tt[i].resultBytes.length + "␣
→˓Expected:" + expectedLength );

failure++;
}
else

success++;
}

System.out.println( "Successes: " + success );
System.out.println( "Failures: " + failure );

} catch( Exception e ) {
e.printStackTrace();

}
}

}

PHP Example

Most of the same capabilities are accessible in php mapscript. Here is an example displaying a wms capabilities.

Example1 : get the capabilities
This is for example what a url could look like :
http://.../php/ows.php?service=WMS&version=1.1.1&Request=GetCapabilities

<?php

dl("php_mapscript_4.10.0.dll");

$request = ms_newowsrequestobj();

$request->loadparams();

/*exampple on how to modify the parameters :
forcing the version from 1.1.1 to 1.1.0 */
$request->setParameter("VeRsIoN","1.1.0");

ms_ioinstallstdouttobuffer();

(continues on next page)
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$oMap = ms_newMapobj("../../service/wms.map");

$oMap->owsdispatch($request);

$contenttype = ms_iostripstdoutbuffercontenttype();

$buffer = ms_iogetstdoutbufferstring();

header('Content-type: application/xml');
echo $buffer;

ms_ioresethandlers();

?>

Example2 : get the map
This is for example what a url could look like :

http://.../php/ows.php?SERVICE=WMS&VeRsIoN=1.1.1&Request=GetMap&
LAYERS=WorldGen_Outline

<?php

dl("php_mapscript_4.10.0.dll");

$request = ms_newowsrequestobj();

$request->loadparams();

ms_ioinstallstdouttobuffer();

$oMap = ms_newMapobj("../../service/wms.map");

$oMap->owsdispatch($request);

$contenttype = ms_iostripstdoutbuffercontenttype();

if ($contenttype == 'image/png')
header('Content-type: image/png');

ms_iogetStdoutBufferBytes();

ms_ioresethandlers();

?>
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Use in Non-CGI Environments (mod_php, etc)

The loadParams() call establish parses the cgi environment varabiables (QUERY_STRING, and RE-
QUEST_METHOD) into parameters in the OWSRequest object. In non-cgi environments, such as when php,
python and perl are used as “loaded modules” in Apache, or Java with Tomcat, the loadParams() call will not work -
in fact in 4.10.x it will terminate the web server instance.

It is necessary in these circumstances for the calling script/application to parse the request url into keyword/value pairs
and assign to the OWSRequest object by other means, as shown in some of the above examples explicitly setting the
request parameters.

Post Processing Capabilities

In the following python example, we process any incoming WxS request, but if it is a GetCapabilities request we replace
the Service section in the capabilities with a section read from a file, that is carefully tailored the way we want.

#!/usr/bin/env python

import sys
import elementtree.ElementTree as ET

import mapscript

req = mapscript.OWSRequest()
req.loadParams()

map = mapscript.mapObj( '/u/www/maps/ukpoly/ukpoly.map' )

#
# Handle anything but a GetCapabilities call normally.
#
if req.getValueByName('REQUEST') <> 'GetCapabilities':

map.OWSDispatch( req )

#
# Do special processing for GetCapabilities
#
else:
mapscript.msIO_installStdoutToBuffer()

map.OWSDispatch( req )

ct = mapscript.msIO_stripStdoutBufferContentType()
content = mapscript.msIO_getStdoutBufferString()
mapscript.msIO_resetHandlers()

# Parse the capabilities.

tree = ET.fromstring(content)

# Strip out ordinary Service section, and replace from custom file.

(continues on next page)
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tree.remove(tree.find('Service'))
tree.insert(0,ET.parse('./Service.xml').getroot())

# Stream out adjusted capabilities.

print 'Content-type: ' + ct
print
print ET.tostring(tree)
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Basemaps project is a mapfile for MapServer in order to generate maps from OpenStreetMaps data in different styles
like Google, Bing or using custom style.

11.1.1 Installation

Author
Yves Jacolin

Contact
yjacolin at free.fr
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∗ Custom configuration

∗ Build the mapfile

∗ Apache configuration

Basemaps needs: * data * project configuration

This section explains how to set up both of them.

Data

Data comes from an OpenStreetMap database and are stored in a PostgreSQL database.

Database creation

$ sudo -u postgres createdb osm
$ sudo -u postgres psql -d osm -c "CREATE EXTENSION postgis;"
$ sudo -u postgres createuser -D -l -R -S -P "www-data"
$ sudo -u postgres psql -d osm -c 'GRANT ALL ON ALL TABLES IN SCHEMA public TO "www-data
→˓";'

This will create a new database called osm, add the postgis extension, create a www-data role with right in the public
schema.

Imposm Installation

OpenStreetMap data are processed by imposm. This is a fast and easy step.

Check the Installation process from http://imposm.org/docs/imposm/latest/install.html or see the steps below:

$ cd # switch to user home
$ mkdir osm_pbf
$ cd osm_pbf
$ sudo apt-get install build-essential python-dev protobuf-compiler \
libprotobuf-dev libtokyocabinet-dev python-psycopg2 libgeos-c1

$ virtualenv venv
$ venv/bin/pip install imposm

We have now a virtual python env with imposm. Each time you need to use it, run source venv/bin/activate (see below
the next steps to use it in our use case).

Data Import

Source: http://imposm.org/docs/imposm/latest/tutorial.html#writing

$ cd /tmp
$ wget http://download.geofabrik.de/europe/france/poitou-charentes-latest.osm.pbf
$ wget http://download.geofabrik.de/europe/france/centre-latest.osm.pbf #if you need␣
→˓another location
$ pwd

(continues on next page)

11.1. Basemaps 917

http://imposm.org/docs/imposm/latest/install.html
http://imposm.org/docs/imposm/latest/tutorial.html#writing


MapServer Documentation, Release 7.6.6

(continued from previous page)

/tmp/
$ ls -1
centre-latest.osm.pbf
poitou-charentes-latest.osm.pbf

$ source venv/bin/activate
$ imposm -m /path/to/basemaps/imposm-mapping.py --read poitou-charentes-latest.osm.pbf
$ imposm -m /path/to/basemaps/imposm-mapping.py --read --merge-cache centre-latest.osm.
→˓pbf
$ imposm -m /path/to/basemaps/imposm-mapping.py --write -d osm --connection postgis://
→˓www-data:www-data@localhost/osm --proj EPSG:2154
$ imposm -m /path/to/basemaps/imposm-mapping.py --optimize --connection postgis://www-
→˓data:www-data@localhost/osm
# Following command is probably not useful
$ sudo -u postgres psql -d osm -c "CREATE VIEW osm_new_waterways_gen1 AS \

SELECT * FROM osm_new_waterways;CREATE VIEW osm_new_waterways_gen0 AS SELECT * FROM␣
→˓osm_new_waterways;"
$ sudo -u postgres psql -d osm -c "GRANT ALL ON ALL TABLES IN SCHEMA public TO \"www-
→˓data\";"

Let’s explain this better: First we download 2 pbf files from Geofabrik OpenStreetMap data. PBF is just another format
well compressed from Google. pwd and ls -1 commands are just there to show you where we are and what we get.

The source command activates the Python virtual environment in order to use imposm.

The next two commands (read) are similar and preprocesses PBF data. The difference is that the second one merges
cached data to push both French region into the database.

Then we write (push) data into the database using the French National projection EPSG code (EPSG:2154). You can
use whatever that’s fit your needs.

The last commands optimize the data and give some rights to www-data.

Some data are missing, you can get there:

• Get the following layer : https://github.com/datadesk/osm-la-streets/tree/master/la-streets/layers/processed_p
and putt hem in basemaps/data/

• Get the following layer land_polygon (Projection: Mercator) https://osmdata.openstreetmap.de/download/
land-polygons-complete-3857.zip also in basemaps/data/

• Get the following layer simplified_land_polygon https://osmdata.openstreetmap.de/download/
land-polygons-split-3857.zip also in basemaps/data/
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Project configuration

The Basemaps project source code is located here: https://github.com/MapServer/basemaps.

Project deployment

$ cd /var/www/somewhere/
$ git clone git@github.com:mapserver/basemaps.git
$ cd basemaps

That’s easy enough to not need much explanation.

Custom configuration

Create your own custom makefile and give it a name (whatever your want):

$ vim aname.mk (edit the following file with custom variable):

You can add all custom values from the main Makefile, here are some examples:

OSM_SRID = 2154
OSM_DB_CONNECTION = host=localhost dbname=osm user=www-data
password=www-data port=5432

include Makefile

Here we customize the SRID of the data (see above when we imported data into the database) and the database con-
nection.

Build the mapfile

$ make -f aname.mk

You should have now a working mapfile.

Apache configuration

Create an Apache configuration and enable it.

$ vim osm.conf

With such a content:

<VirtualHost \*:80>
ErrorLog ${APACHE_LOG_DIR}/osm_error.log
CustomLog ${APACHE_LOG_DIR}/osm_access.log combined

ScriptAlias /osm-default /usr/lib/cgi-bin/mapserv
<Location /osm-default>

(continues on next page)
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# Order Deny,Allow
# Deny from all
# Allow from 127.0.1.1 ::1
SetEnv MS_MAPFILE /path/to/basemaps/osm-default.map

</Location>
</VirtualHost>

Finally enable this Apache virtual conf:

$ cp osm.conf /etc/apache/site-available/conf/
$ sudo a2ensite osm
$ sudo /etc/init.d/apache2 graceful

And test the GetCapabilities URL: http://localhost/osm-default?SERVICE=WMS&VERSION=1.3.0&REQUEST=
GetCapabilities

11.1.2 Tweaking Map Styles

Author
Nicolas Ribot

Table of Contents

• Tweaking Map Styles

– Generating a mapfile

∗ Makefile

∗ The generate_style.py script

∗ Structure of parameters in generate_style.py

∗ Supported map styles

This page contains information about the way to tweak map styles using the mapserver/basemaps project.

Prior to using this version of mapserver/basemaps, you have to import OSM map data into a postgis database using the
imposm tool. See Installation to know how to set up easily your project.

Generating a mapfile

The mapfile called osm-_STYLE_.map is generated by executing the ‘make’ command based on the settings at the top
of the Makefile.
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Makefile

The following parameters are configurable at the top of the Makefile:

• OSM_PREFIX: the prefix of the table names in the postgis database

• OSM_SRID: EPSG code of the mapfile’s output projection (common values are 4326 for lon,lat and 900913 for
the Google Mercator projection)

• OSM_UNITS: MapServer units corresponding to the OSM_SRID (common values: DD or METERS)

• OSM_DB_CONNECTION : MapServer CONNECTION string to the OSM database

• OSM_EXTENT : Default extents to use in the generated mapfile (in the same coordinate system as OSM_SRID)

• STYLE: Name of the map style to generate. Three styles are available to choose from by default: default, google
and bing

The generate_style.py script

The generate_style.py script contains the value of all configurable style parameters.

At the top of the file, the vars array defines the default values of all configurable parameters. Those values are used by
the default style.

Then the style array that follows can be used to define custom styles. A custom style inherits the settings of the default
style (from the vars array), and then all values set for that style in the styles array override default values. Several sample
custom styles are provided as examples (see Supported Map Styles chapter)

Structure of parameters in generate_style.py

For each configurable style parameter, the value can either be a single value applicable to all map scales (map scales
are defined at the top of the file), or an associative array of values where the key is the corresponding scale, and the
value is the value applicable to this scale and all scales that follow up to the next entry in the array.

e.g.:

'stream_clr': '"#B3C6D4"',
'stream_font': "sc",

In this example, stream_clr and stream_font have values of “#B3C6D4” and “sc” respectively for all scales.

'stream_width': {
0:0,
10:0.5,
12:1,
14:2

},

In this case stream_width has a value of 0 for scales 0 to 9, 0.5 for scales 10-11, 1 for scales 12-13, and 2 for scales 14
and up.
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Supported map styles

The generate_styles.py file defines base styles in the styles object.

Final styles generated by the make command are defined in the styles_alias object, allowing to define a final style based
on several base styles.

For instance, the google style is defined by the combination of default, outlined and google base styles.

The outlined style overloads default style to add custom outline around way and the google style overloads default for
object colors.

base styles

The following base styles are defined in generate_styles.py:

• default: a map style with no road casing and few colors, suited for using as a basemap when overlaying other
layers without risk of confusion between layers.

• outlined: a style adding outline around ways

• centerlined: a style adding center line for ways

• google: a style resembling the google-maps theme

• googleosm2pgsql: a style resembling the google-maps theme, but using data coming from an osm2pgsql schema
rather than imposm

• bing: a style resembling the Bing-maps theme

• michelin: a style resembling the Michelin-maps theme

• grayscale: gray scale colors

• symbols: a style adding symbols and labels for amenities, transportation (metro, bus, tramway, carparks). PNG
symbols are based on SVG OSM symbols

• labels_only: a style displaying only labels on a transparent background

• geoms_only: a style displaying only geometries, without any label or symbol

• symbols_only: a style displaying only symbols and labels, without geometries

• buildings: a style displaying buildings (OSM polygons with tag building=yes) at zoom level >= 15

sample final styles

Based on the defined base styles, the following styles are available when running make command to generate mapfiles
(style alias name and base style combination are shown)

• default: default

• google: default,outlined,google

• googleosm2pgsql: default,outlined,google,osm2pgsql

• bing: default,outlined,bing

• michelin: default,outlined,centerlined,michelin

• default-symbols: default,symbols

• default-grayscale: default,outlined,grayscale
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• google-buildings-symbols: default,outlined,google,symbols,buildings

• google-buildings-symbols-grayscale: default,outlined,google,symbols,buildings,grayscale

• bing-buildings-symbols: default,outlined,bing,symbols,buildings

• bing-buildings-symbols-grayscale: default,outlined,bing,symbols,buildings,grayscale

• michelin-buildings-symbols: default,outlined,michelin,symbols,buildings

• michelin-buildings-symbols-grayscale: default,outlined,michelin,symbols,buildings,grayscale

• google-no-labels: default,outlined,google,geoms_only,buildings

• google-no-labels-grayscale: default,outlined,google,geoms_only,buildings,grayscale

• google-labels-only: default,outlined,google,labels_only

• symbols-only: symbols,symbols_only

Google style

Colorfull Default Style basemaps

Colorfull Google Style basemaps
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Black and white Google Style basemaps

Colorfull Bing Style basemaps
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Colorfull Michelin Style basemaps

11.1.3 Features

• Service WMS

• Colored and Grey level maps

• Custom style

• World or specific extent data

• Standard or custom projections
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TWELVE

TINYOWS

12.1 TinyOWS

Author
Olivier Courtin

Fig. 1: in memory of Olivier Courtin

TinyOWS is a lightweight and fast implementation of the OGC WFS-T speci-
fication. Web Feature Service (WFS) allows to query and to retrieve features.
The transactional profile (WFS-T) allows then to insert, update or delete such
features.

From a technical point of view WFS-T is a Web Service API in front of a spatial
database. TinyOWS is deeply tied to PostgreSQL/PostGIS.

TinyOWS is safely used in quite big GIS infrastructures, for instance, to allow
European farmers to report the locations and crops on their fields (and then to
be paid by EEC accordingly).

TinyOWS strictly implements OGC standards and successfully passes all WFS
OGC CITE tests (and even beta ones).

TinyOWS is part of the MapServer Suite, but provided as a distinct module
(i.e you could use it in conjonction with MapServer and MapCache, or as a
standalone app) But both MapServer and TinyOWS could use the same con-
figuration file, if you want to (or native TinyOWS XML config file).

12.1.1 TinyOWS Installation

Requires

TinyOWS need following libraries/applications:
• LibXML2 (2.8 version or later)

• PostGIS (1.5.x version or later)

• PostgreSQL (with libpq headers)

• A working Web Server with cgi-bin support

• Fast-CGI is recommended

926



MapServer Documentation, Release 7.6.6

Installing from a stable source release

An example of a typical download, configure, make, make install:

$ wget https://download.osgeo.org/mapserver/tinyows-1.2.0.tar.gz
$ tar xzvf tinyows-1.2.0.tar.gz
$ cd tinyows-1.2.0
$ autoconf
$ ./configure
$ make
$ sudo make install
$ sudo make install-demo

Then copy the tinyows binary to your cgi-bin directory.

Installing the Current Trunk from GIT

To build from git, you must first install the autoconf utility, and git application .

$ git clone https://github.com/MapServer/tinyows.git
$ cd tinyows
$ autoconf
$ ./configure
$ make
$ sudo make install
$ sudo make install-demo

Then copy the tinyows binary to your cgi-bin directory.

Installing from source on Windows (oldies so dunno if still up to date)

• From GIT with Visual C++ for Win32 (written by Alexander Bruy)

Note: MS4W comes with TinyOWS as well as an OpenLayers demo + data, for Windows users, and the
configuration is explained at https://ms4w.com/README_INSTALL.html#tinyows

12.1.2 Configuring TinyOWS with an XML File

The simplest way to configure TinyOWS is with a single XML file called tinyows.xml.

The default path is /etc/tinyows.xml. You can also use TINYOWS_CONFIG_FILE environment variable to set your own
path.
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Configuration file simple Example

An example config.xml file is in the demo directory:

<tinyows online_resource="http://127.0.0.1/cgi-bin/tinyows"
schema_dir="/usr/local/tinyows/schema/">

<pg host="127.0.0.1" user="postgres" password="postgres" dbname="tinyows_demo" port=
→˓"5432"/>

<metadata name="TinyOWS Server"
title="TinyOWS Server - Demo Service" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.mapserver.org/tinyows/"
name="world"
title="World Administrative Boundaries" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.mapserver.org/tinyows/"
name="france"
title="French Administrative Sub Boundaries (IGN - GeoFLA Departements)" />

</tinyows>

Testing your config.xml file

Once you have a config.xml file related to your service, launch TinyOWS with the –check option to validate your
configuration file, test your database connection, and list the layers to be used:

./tinyows --check
TinyOWS version: 1.2.0
FCGI support: Yes
Config File Path: /etc/tinyows.xml (TinyOWS XML)
PostGIS Version: 3.1.1
PostGIS dsn: host=127.0.0.1 user=postgres password=postgres dbname=foo port=5432
Output Encoding: UTF-8
Database Encoding: UTF8
Schema dir: /usr/local/share/tinyows/schema/
Display bbox: Yes
Estimated extent: No
Check schema: Yes
Check valid geoms: No
Available layers:
- public.commune (2154) -> tows.commune [RW]
- public.world (4326) -> tows.world [RW]

12.1. TinyOWS 928



MapServer Documentation, Release 7.6.6

Structure of the config.xml file

TinyOWS Element

TinyOWS is the root element. He is mandatory, and must contains some system information about the service itself.
Some globals service options could also be switched on or off at this level.

At-
tribute

Re-
quired?

De-
fault

Description

on-
line_resource

manda-
tory

URL where the service is located, e.g: http://127.0.0.1/cgi-bin/tinyows

schema_dirmanda-
tory

Path where TinyOWS schema dir is located e.g: /usr/local/tinyows/schema/

log op-
tional

Path where TinyOWS logs input requests. e.g: /var/log/tinyows.log. This file must be
writable by the user that owns the TinyOWS process.

log_level op-
tional

0 Bit field value to indicate what to log: 1: ERROR, 2: EVENT, 4: HTTP QUERY, 8:
SQL. e.g: 15 to log all.

de-
gree_precision

op-
tional

6 Indicate how many digits of decimal precision when coordinates are express in lati-
tude/longitude.

me-
ter_precision

op-
tional

0 Indicate how many digits of decimal precision to use when coordinates are projected (so
meter unit).

dis-
play_bbox

op-
tional

1 Flag to indicate if bounding box should be computed for WFS GML GetFeature output.
It’s mandatory in WFS specification. But as it’s time consuming it could be interesting
to be able to deactivate it.

esti-
mated_extent

op-
tional

0 Flag to indicate if TinyOWS should use estimated_extent (faster but slightly less accu-
rate).

check_schemaop-
tional

1 Flag to indicate if input data must be checked against schema before to be executed.
Caution, schema validation is an important part of security. Disable this attribute at your
peril.

check_valid_geomop-
tional

1 Flag to indicate if OGC SFS 1.1 geometry validation should be done prior to execute a
transaction.

encod-
ing

op-
tional

UTF-
8

Output encoding. Other values could be ISO-8859-1 for instance. No encoding conver-
sion is done on data; this attribute is declarative.

ex-
pose_pk

op-
tional

0 Flag to indicate if TinyOWS should expose PK in schema (and so require them in Trans-
action query).

wfs_default_versionop-
tional

String version to indicate WFS default version, 1.0.0 or 1.1.0 for instance.

Limits Element

Limits Element provides a maximum for the server output. It could help to prevent a denial of service attack, or an
abnormally large user query, from crashing your server. This element is optional.

Limits attributes

At-
tribute

Re-
quired?

De-
fault

Description

features optional Use to set maximum number of features returned to WFS client, on GetFeature
request

geob-
box

optional Geographic bounding bbox, used to indicate maximum extent:
East,West,North,South
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<tinyows>
...
<limits features="10000" />
...
</tinyows>

PostgreSQL Connection

PostgreSQL connection element. This element is mandatory.

At-
tribute

Re-
quired?

De-
fault

Description

host op-
tional

local-
host

Name (or IP) to PostgreSQL server (default is localhost)

user op-
tional

PostgreSQL user to connect (default is the system user used to run the server)

pass-
word

op-
tional

PostgreSQL password connection

db-
name

op-
tional

PostGIS database (by default, same as the system user used to run the server

port op-
tional

5432 PostgreSQL port number

en-
cod-
ing

op-
tional

UTF-
8

PostgreSQL DB encoding, as specified in http://www.postgresql.org/docs/9.0/static/
multibyte.html#CHARSET-TABLE

<tinyows>
...
<pg host="127.0.0.1"

user="postgres"
password="postgres"
dbname="gis_data"
port="5432" />

...
</tinyows>
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Metadata and Contact Elements

Used to provide information about the service itself. These two elements are mandatory.

Metadata attributes

Attribute Required? Default Description
name mandatory Web Service Name
title mandatory Web Service Title
keywords optional Web Service Keywords list (comma separated list)
fees optional Web Service Fees
access_constraints optional Web Service Access Constraints

Abstract Element

The Abstract element is an optional child element of Metadata. It is a place for a free-formatted text description of the
service.

Contact attributes

Attribute Required? Default Description
name mandatory Web Service Contact Name
site mandatory Web Service Contact URL
email mandatory Web Service Contact Email
individual_name optional Web Service Contact Individual Name
position optional Web Service Contact Position
phone optional Web Service Contact Phone
fax optional Web Service Contact Fax
online_resource optional Web Service Contact URL (e.g additional Metadatas)
address optional Web Service Contact Postal Address
postcode optional Web Service Contact Postcode
city optional Web Service Contact City
administrative_area optional Web Service Contact Administrative Area
country optional Web Service Contact Country
hours_of_service optional Web Service Contact Hours of Services
contact_instructions optional Web Service Contact Instructions ||

Contact and Metadata example with only mandatory attributes:

<metadata name="TinyOWS Server"
title="TinyOWS Server - Demo Service" />

<contact name="TinyOWS Server"
site="http://www.mapserver.org/tinyows/"
email="tinyows-users@lists.maptools.org" />
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Layer Element

Layer element is used to set all layers provided by the service. Although this element is technically optional, omitting
it will cause no layer at all to be provided.

Attribute Re-
quired?

De-
fault

Inher-
its?

Description

ns_prefix manda-
tory

Yes Layer’s Namespace Prefix used in WFS

ns_uri manda-
tory

Yes Layer’s Namespace URI used in WFS

name manda-
tory

No Layer’s Name

title op-
tional

No Layer’s Title

retriev-
able

op-
tional

false Yes If true, layer is retrievable on WFS GetFeature request

writable op-
tional

false Yes If true, layer is editable with WFS Transaction request

schema op-
tional

‘pub-
lic’

Yes PostgreSQL Schema name.

table op-
tional

No PostgreSQL table name (default is to use layer’s name).

abstract op-
tional

No Abstract text

keywords op-
tional

Yes Keywords (comma separated list)

srid op-
tional

Yes Comma separated list of output SRID

geobbox op-
tional

Yes WGS-84 bbox of max extent: East,West,North,South

in-
clude_items

op-
tional

Yes Comma separated list of columns to retrieve (only)

ex-
clude_items

op-
tional

Yes Comma separated list of columns to not retrieve

pkey op-
tional

Yes Column name to use as a Primary Key, when there’s no PostgreSQL one
(e.g useful to use with VIEW)

<tinyows>
...

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.mapserver.org/tinyows/"
name="world"
title="World Administrative Boundaries" />

...
</tinyows>
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Nested Layers

Layer entities could be nested, properties in this case are inherited. A Layer without title is then considered as a ‘virtual’
layer.

<tinyows>
...

<layer name="root"
retrievable="1" writable="1"
ns_prefix="tows"
ns_uri="http://www.mapserver.org/tinyows/"
schema="my_db_schema">

<layer name="foo" title="foo" />
<layer name="bar" title="bar" />

</layer>

...
</tinyows>

12.1.3 Configuring TinyOWS with a standard Mapfile

Mapfile Config File support for TinyOWS

TinyOWS supports as a configuration file a standard MapServer Mapfile. This allow a single file to configure both
MapServer and TinyOWS. (e.g could be useful if you use them both, as one for WMS and the other as WFS-T)

TinyOWS does not handle all of the parameters in a Mapfile, but will ignore, without error, any extra parameters that
are not implemented in TinyOWS.

If you prefer, you can configure TinyOWS using an XML file (Configuring TinyOWS with an XML File).

To indicate where your Mapfile is located, to TinyOWS binary, use the ‘’TINYOWS_MAPFILE” environment variable.

Here an example of a single Mapfile:

MAP
NAME "TinyOWS"

WEB
METADATA

"tinyows_schema_dir" "/usr/local/share/tinyows/schema/"
"tinyows_onlineresource" "127.0.0.1/cgi-bin/tinyows.fcgi"
"wfs_title" "TinyOWS service provided by a MapFile"
"wfs_contact" "foo@bar.net"

END
END

LAYER
NAME 'France'
CONNECTIONTYPE postgis
CONNECTION "host=127.0.0.1 user=postgres password=postgres dbname=tinyows_

→˓demo port=5432"
(continues on next page)
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(continued from previous page)

METADATA
'wfs_title' 'France'
'wfs_namespace_prefix' 'tows'
'wfs_namespace_uri' 'http://www.mapserver.org/tinyows/'
'wfs_srs' 'EPSG:27582'
'tinyows_table' 'france'
'tinyows_writable' '1'
'tinyows_retrievable' '1'

END
DUMP TRUE

END
END

Current concepts and limitations:

• Only the PostGIS CONNECTIONTYPE is handled

• TinyOWS does not support all of the WFS parameters available in a Mapfile. But on the other hand, you are able
to configure every part of TinyOWS with a Mapfile.

• The CONNECTION string value in each layer must be the same.

• Mapfile PROJECTION content is not parsed, so use explicit wfs_srs.

• Mapfile LAYER and FILTER are not parsed.

• Default values are TinyOWS ones, even for common properties shared by both TinyOWS and MapServer.

• TinyOWS does not use DATA element from Mapfile, so you have to use tinyows_table (and tinyows_schema if
needed) in each layer.

• If DUMP is not set to TRUE on a layer, both read and write access are disabled for the layer.

Mapfile path of each TinyOWS config element

Original TinyOWS XML Config File Mapfile counterpart
/tinyows@online_resource /map/metadata@tinyows_onlineresource
/tinyows@schema_dir /map/metadata@tinyows_schema_dir
/tinyows@log /map/metadata@tinyows_log
/tinyows@log_level /map/metadata@tinyows_log_level
/tinyows@degree_precision /map/metadata@tinyows_degree_precision
/tinyows@meter_precision /map/metadata@tinyows_meter_precision
/tinyows@display_bbox /map/metadata@tinyows_display_bbox
/tinyows@estimated_extent /map/metadata@tinyows_estimated_extent
/tinyows@check_schema /map/metadata@tinyows_check_schema
/tinyows@check_valid_geom /map/metadata@tinyows_check_valid_geom
/tinyows@encoding /map/metadata@wfs_encoding
/tinyows@db_encoding /map/metadata@tinyows_db_encoding
/tinyows@expose_pk /map/metadata@tinyows_expose_pk
/tinyows/limits@features /map/metadata@wfs_maxfeatures
/tinyows/limits@geobbox /map/metadata@tinyows_geobbox
/tinyows/pg@host /map/layer@connection
/tinyows/pg@user /map/layer@connection
/tinyows/pg@password /map/layer@connection

continues on next page
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Table 1 – continued from previous page
Original TinyOWS XML Config File Mapfile counterpart
/tinyows/pg@dbname /map/layer@connection
/tinyows/pg@port /map/layer@connection
/tinyows/pg@encoding /map/metadata@tinyows_db_encoding
/tinyows/metadata@name /map@name
/tinyows/metadata@title /map/metadata@wfs_title
/tinyows/metadata@keywords /map/metadata@wfs_keywordlist
/tinyows/metadata/abstract /map/metadata@wfs_abstract
/tinyows/metadata@fees /map/metadata@wfs_fees
/tinyows/metadata@access_constraints /map/metadata@wfs_accessconstraints
/tinyows/layer@ns_prefix /map/layer/metadata@wfs_namespace_prefix or /map/metadata@wfs_namespace_prefix
/tinyows/layer@ns_uri /map/layer/metadata@wfs_namespace_uri or /map/metadata@wfs_namespace_uri
/tinyows/layer@name /map/layer@name
/tinyows/layer@title /map/layer/metadata@wfs_title
/tinyows/layer@retrievable /map/layer/metadata@tinyows_retrievable and /map/layer@dump
/tinyows/layer@writable /map/layer/metadata@tinyows_writable and /map/layer@dump
/tinyows/layer@schema /map/layer/metadata@tinyows_schema
/tinyows/layer@keywords /map/layer/metadata@wfs_keywordlist
/tinyows/layer/abstract /map/layer/metadata@wfs_abstract
/tinyows/layer@srid /map/metadata@wfs_srs and /map/layer/metadata@wfs_srs
/tinyows/layer@geobbox /map/layer/metadata@tinyows_geobbox
/tinyows/layer@include_items /map/layer/metadata@include_items
/tinyows/layer@exclude_items /map/layer/metadata@exclude_items
/tinyows/layer@pkey /map/layer/metadata@pkey
/tinyows/contact@name /map/metadata@ows_contactorganization
/tinyows/contact@site
/tinyows/contact@email /map/metadata@ows_contactelectronicmailaddress
/tinyows/contact@individual_name /map/metadata@ows_contactperson
/tinyows/contact@position /map/metadata@ows_contactposition
/tinyows/contact@phone /map/metadata@ows_contactvoicetelephone
/tinyows/contact@fax /map/metadata@ows_contactfacsimiletelephone
/tinyows/contact@online_resource
/tinyows/contact@address /map/metadata@ows_address
/tinyows/contact@city /map/metadata@ows_city
/tinyows/contact@administrative_area
/tinyows/contact@country /map/metadata@ows_country
/tinyows/contact@hours_of_service
/tinyows/contact@contact_instructions

12.1.4 Sample: WFS-T with TinyOWS and OpenLayers

0) Install PostGIS and TinyOWS (TinyOWS Installation)

1) Within PostGIS, create a spatial database called ‘tinyows’

createdb -U postgres tinyows
psql -U postgres -d tinyows < `pg_config --sharedir`/contrib/postgis-2.0/postgis.sql
psql -U postgres -d tinyows < `pg_config --sharedir`/contrib/postgis-2.0/spatial_ref_sys.
→˓sql

2) Import Frida data (we will use the parks layer) into your PostGIS database
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wget ftp://ftp.intevation.de/freegis/frida/frida-1.0.1-shp.tar.gz
tar xvzf frida-1.0.1-shp.tar.gz
cd frida-1.0.1-shp
shp2pgsql -g geom -s 31467 -W LATIN1 -I gruenflaechen.shp frida | psql -U postgres -d␣
→˓tinyows

3) Configure TinyOWS by editing /usr/local/tinyows/config.xml

<tinyows online_resource="http://127.0.0.1/cgi-bin/tinyows"
schema_dir="/usr/local/share/tinyows/schema/">

<pg host="127.0.0.1" user="postgres" password="postgres" dbname="tinyows" port="5432"/>

<metadata name="TinyOWS Server"
title="TinyOWS Server - WFS-T Frida Service" />

<contact name="TinyOWS Server"
site="http://www.mapserver.org/tinyows/"
email="tinyows-users@lists.maptools.org" />

<layer retrievable="1"
writable="1"
ns_prefix="tows"
ns_uri="http://www.mapserver.org/tinyows/"
name="frida"
title="Frida Parks" />

</tinyows>

4) Test your installations of TinyOWS and PostGIS

./YOUR_CGI-BIN_PATH/tinyows --check
TinyOWS version: 1.2.0
FCGI support: Yes
Config File Path: /etc/tinyows.xml (TinyOWS XML)
PostGIS Version: 3.1.1
PostGIS dsn: host=127.0.0.1 user=postgres password=postgres dbname=tinyows␣
→˓port=5432
Output Encoding: UTF-8
Database Encoding: UTF8
Schema dir: /usr/local/share/tinyows/schema/
Display bbox: Yes
Estimated extent: No
Check schema: Yes
Check valid geoms: Yes
Available layers:
- public.frida (31467) -> tows:frida [RW]

5) Install OpenLayers

wget http://openlayers.org/download/OpenLayers-2.12.tar.gz
tar xvzf OpenLayers-2.12.tar.gz
sudo mv OpenLayers-2.12 /YOUR/SERVER/HTDOCS/
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6) Install the OpenLayers proxy (you need the Python interpreter to make it work)

sudo cp OpenLayers-2.12/examples/proxy.cgi /YOUR/SERVER/CGI-BIN/

7) Add your server IP to proxy allowedHosts in (/YOUR/SERVER/CGI-BIN/proxy.cgi)

allowedHosts = ['127.0.0.1', 'www.openlayers.org', 'openlayers.org', ... ]

8) Create a new file at OpenLayers-2.12/examples/tinyows.html

<html>
<head>

<link rel="stylesheet" href="../theme/default/style.css" type="text/css" />
<link rel="stylesheet" href="style.css" type="text/css" />
<script src="../lib/OpenLayers.js"></script>
<style>

#map {
width: 800px;
height: 500px;
float: left;
border: 1px solid #ccc;

}
#message {

position: relative;
left: 5px;

}
#docs {

float: left;
}
.customEditingToolbar {

float: right;
right: 0px;
height: 30px;
width: 200px;

}
.customEditingToolbar div {

float: right;
margin: 5px;
width: 24px;
height: 24px;

}
.olControlNavigationItemActive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -103px -23px;

}
.olControlNavigationItemInactive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -103px -0px;

}
.olControlDrawFeaturePolygonItemInactive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;

(continues on next page)
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background-position: -26px 0px;
}
.olControlDrawFeaturePolygonItemActive {

background-image: url("../theme/default/img/editing_tool_bar.png");
background-repeat: no-repeat;
background-position: -26px -23px ;

}
.olControlModifyFeatureItemActive {

background-image: url(../theme/default/img/move_feature_on.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlModifyFeatureItemInactive {

background-image: url(../theme/default/img/move_feature_off.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlDeleteFeatureItemActive {

background-image: url(../theme/default/img/remove_point_on.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
.olControlDeleteFeatureItemInactive {

background-image: url(../theme/default/img/remove_point_off.png);
background-repeat: no-repeat;
background-position: 0px 1px;

}
</style>
<script src="tinyows.js"></script>
</head>
<body onload="init()">

<h1 id="title">WFS Transaction Example, (TinyOWS ans OpenLayers)</h1>
<div id="tags"></div>
<p id="shortdesc">

Shows the use of the WFS Transactions (WFS-T).
Parks of Osnabruck (Frida).

<br />
Base layers is OpenStreetMap from Omniscale WMS Server.

</p>
<div id="map"></div>

<div id="message"></div>
<div id="docs">

<p>
The WFS protocol allows for creation of new features and
reading, updating, or deleting of existing features.

</p>
<p>

Use the tools to create, modify, and delete (in order from left
to right) features. Use the save tool (picture of a disk) to
save your changes. Use the navigation tool (hand) to stop
editing and use the mouse for map navigation.

(continues on next page)
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</p>
<p>

See the <a href="tinyows.js" target="_blank">
wfs-protocol-transactions.js source</a> to see how this is done.

</p>
</div>

</body>
</html>

9) Create a new file at OpenLayers-2.12/examples/tinyows.js (and replace all 127.0.0.1 addresses by your IP server
if necessary)

var map, wfs;
OpenLayers.ProxyHost = "/cgi-bin/proxy.cgi?url=";
var DeleteFeature = OpenLayers.Class(OpenLayers.Control, {
initialize: function(layer, options) {

OpenLayers.Control.prototype.initialize.apply(this, [options]);
this.layer = layer;
this.handler = new OpenLayers.Handler.Feature(

this, layer, {click: this.clickFeature}
);

},
clickFeature: function(feature) {

// if feature doesn't have a fid, destroy it
if(feature.fid == undefined) {

this.layer.destroyFeatures([feature]);
} else {

feature.state = OpenLayers.State.DELETE;
this.layer.events.triggerEvent("afterfeaturemodified",

{feature: feature});
feature.renderIntent = "select";
this.layer.drawFeature(feature);

}
},
setMap: function(map) {

this.handler.setMap(map);
OpenLayers.Control.prototype.setMap.apply(this, arguments);

},
CLASS_NAME: "OpenLayers.Control.DeleteFeature"

});
function showMsg(szMessage) {
document.getElementById("message").innerHTML = szMessage;
setTimeout(

"document.getElementById('message').innerHTML = ''",2000);
}
function showSuccessMsg(){
showMsg("Transaction successfully completed");

};
function showFailureMsg(){
showMsg("An error occurred while operating the transaction");

};
function init() {

(continues on next page)
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map = new OpenLayers.Map('map', {
projection: new OpenLayers.Projection("EPSG:31467"),
units: "m",
maxResolution: "auto",
maxExtent: new OpenLayers.Bounds(3427000,5788000,3444000,5800000),
controls: [

new OpenLayers.Control.PanZoom()
]

});
var osm = new OpenLayers.Layer.WMS(

"OSM by Omniscale WMS",
"http://osm.omniscale.net/proxy/service",
{layers: 'osm', format: 'image/jpeg'},
{projection:"EPSG:31467", units: "m", maxResolution: "auto", maxExtent: new␣

→˓OpenLayers.Bounds(3427000,5788000,3444000,5800000)}
);
var saveStrategy = new OpenLayers.Strategy.Save();
saveStrategy.events.register("success", '', showSuccessMsg);
saveStrategy.events.register("fail", '', showFailureMsg);
wfs = new OpenLayers.Layer.Vector("Editable Features", {

strategies: [new OpenLayers.Strategy.BBOX(), saveStrategy],
projection: new OpenLayers.Projection("EPSG:31467"),
protocol: new OpenLayers.Protocol.WFS({

version: "1.1.0",
srsName: "EPSG:31467",
url: "http://127.0.0.1/cgi-bin/tinyows",
featureNS : "http://www.mapserver.org/tinyows/",
featureType: "frida",
geometryName: "geom",
schema: "http://127.0.0.1/cgi-bin/tinyows?service=wfs&

→˓request=DescribeFeatureType&version=1.1.0&typename=tows:frida"
})

});
map.addLayers([osm, wfs]);
var panel = new OpenLayers.Control.Panel(

{'displayClass': 'customEditingToolbar'}
);
var navigate = new OpenLayers.Control.Navigation({

title: "Pan Map"
});
var draw = new OpenLayers.Control.DrawFeature(

wfs, OpenLayers.Handler.Polygon,
{

title: "Draw Feature",
displayClass: "olControlDrawFeaturePolygon",
multi: true

}
);
var edit = new OpenLayers.Control.ModifyFeature(wfs, {

title: "Modify Feature",
displayClass: "olControlModifyFeature"

});

(continues on next page)
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var del = new DeleteFeature(wfs, {title: "Delete Feature"});
var save = new OpenLayers.Control.Button({

title: "Save Changes",
trigger: function() {

if(edit.feature) {
edit.selectControl.unselectAll();

}
saveStrategy.save();

},
displayClass: "olControlSaveFeatures"

});
panel.addControls([navigate, save, del, edit, draw]);
panel.defaultControl = navigate;
map.addControl(panel);
map.zoomToMaxExtent();

}

12.1.5 Server Tuning: How to speed up your TinyOWS server

Tips and Tricks for PostgreSQL / PostGIS databases

• Use Spatial Indexes on your geometry/geography columns PostGIS Spatial Indexes.

• Index any column that could be used frequently as a filter

• General PostGIS Performance tips

• General PostgreSQL Performance tips

• Even more tips on Tuning PostgreSQL

Tips and Tricks for Apache

Using Fast-CGI

• Check that your TinyOWS is compiled with FastCGI support:

[user@host mapserver]$ tinyows --check
TinyOWS version: 1.2.0
FCGI support: Yes
...
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Fast-CGI in Apache

• In Apache, activate mod_fastcgi

$ sudo apt-get install -y libapache2-mod-fastcgi
$ sudo a2enmod fastcgi

• Apache fast-cgi configuration:

#in your cgi-bin directive, add the following to run all cgi-bin using FastCGI
SetHandler fastcgi-script

#in your FastCGI config file (typically something like /etc/apache2/mods-enabled/
→˓fastcgi.conf)
FastCgiServer /usr/lib/cgi-bin/tinyows.fcgi -processes 10

Fast-CGI in MS4W

• Please refer to the fastcgi doc in ms4w

• Add the following 2 lines:

DefaultInitEnv TINYOWS_CONFIG_FILE "/ms4w/apps/tinyows/config.xml"
DefaultInitEnv TINYOWS_SCHEMA_DIR "/ms4w/apps/tinyows/schema/"

HTTP GZip compression

• In Apache, activate mod_deflate

• Deflate basic configuration, (note we’re including xml so gml and json):

AddOutputFilterByType DEFLATE text/html text/plain text/xml application/xml␣
→˓application/json

12.1.6 Working Around the LibXML2 XSD Schema GML Bug

Issue

TinyOWS makes use of GML, an XML-based language that encodes geometry. Frequently the input and the output of
TinyOWS are in GML.

Even if LibXML2 is a great lib, older versions (i.e previous to 2.8) didn’t handled correctly GML 3.1.1 XSD Schema
(see https://bugzilla.gnome.org/show_bug.cgi?id=630130).
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Workaround and options

For TinyOWS users, you have several options

• Take a recent libxml2 version (i.e 2.8 or later)

• Patch your oldest copy of LibXML2 release and link TinyOWS against your local copy:

--- xmlschemas.c.orig 2011-04-24 14:58:16.000000000 +0000
+++ xmlschemas.c 2011-04-24 15:47:50.000000000 +0000
@@ -15158,7 +15158,11 @@

}
if ( (WXS_IS_LIST(type) || WXS_IS_UNION(type)) &&

(WXS_IS_RESTRICTION(type) == 0) &&
- (! WXS_IS_ANY_SIMPLE_TYPE(baseType))) {
+ (
+ (! WXS_IS_ANY_SIMPLE_TYPE(baseType))
+ && (baseType->type != XML_SCHEMA_TYPE_SIMPLE)
+ )
+ ) {

xmlSchemaPCustomErr(ctxt,
XML_SCHEMAP_ST_PROPS_CORRECT_1,
WXS_BASIC_CAST type, NULL,

}}}

• Modify the XSD GML Schema itself (but you violate the OGC License if you do this!):

Index: schema/gml/3.1.1/base/valueObjects.xsd
===================================================================
--- schema/gml/3.1.1/base/valueObjects.xsd (revision 550)
+++ schema/gml/3.1.1/base/valueObjects.xsd (revision 561)
@@ -200,11 +200,13 @@

<group name="ValueExtent">
<choice>

+<!--
<element ref="gml:CategoryExtent"/>
<element ref="gml:QuantityExtent"/>

+-->
<element ref="gml:CountExtent"/>

</choice>
</group>

- <!-- ======================================================================
- <element name="QuantityExtent" type="gml:QuantityExtentType" substitutionGroup=
→˓"gml:_Value"> -->
+ <!-- ======================================================================
+ <element name="QuantityExtent" type="gml:QuantityExtentType" substitutionGroup=
→˓"gml:_Value">

<element name="QuantityExtent" type="gml:QuantityExtentType">
<annotation>

@@ -212,5 +214,4 @@
</annotation>

</element>
- <!-- -->

<complexType name="QuantityExtentType">
<annotation>

(continues on next page)
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@@ -223,6 +224,7 @@
</simpleContent>

</complexType>
+-->

<!-- ======================================================================
- <element name="CategoryExtent" type="gml:CategoryExtentType" substitutionGroup=
→˓"gml:_Value"> -->
+ <element name="CategoryExtent" type="gml:CategoryExtentType" substitutionGroup=
→˓"gml:_Value">

<element name="CategoryExtent" type="gml:CategoryExtentType">
<annotation>

@@ -230,5 +232,4 @@
</annotation>

</element>
- <!-- -->

<complexType name="CategoryExtentType">
<annotation>

@@ -241,4 +242,5 @@
</simpleContent>

</complexType>
+-->

<!-- ======================================================================
<element name="CountExtent" type="gml:CountExtentType" substitutionGroup="gml:_

→˓Value"> -->

• Or choose to use only GML 2.1.2 in the meantime.

See also:
OGC’s WFS homepage
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Introduction

When developing an application for the Internet, you will inevitably across problems many problems in your environ-
ment. The goal of this guide is to assist you with locating the problem with your MapServer application.

Links to Related Information

• RFC 28: Redesign of LOG/DEBUG output mechanisms

• MapServer Errors

Steps to Enable MapServer Debugging

Starting with MapServer 5.0, you are able to control the levels of debugging/logging information returned to you by
MapServer, and also control the location of the output log file.

In technical terms, there are msDebug() calls in various areas of the MapServer code that generate information that
may be useful in tuning and troubleshooting applications.

Step 1: Set the MS_ERRORFILE Variable

The MS_ERRORFILE variable is used to specify the output of debug messages from MapServer. You can pass the
following values to MS_ERRORFILE:

[filename]
Full path and filename of a log file, to contain MapServer’s debug messages. Any file extension can be used, but
.log or .txt is recommended. The file will be created, if it does not already exist.

Starting with MapServer 6.0, a filename with relative path can be passed via the CONFIG MS_ERRORFILE
directive, in which case the filename is relative to the mapfile location. Note that setting MS_ERRORFILE
via an environment variable always requires an absolute path since there would be no mapfile to make the path
relative to.

stderr
Use this to send MapServer’s debug messages to the Web server’s log file (i.e. “standard error”). If you are using
Apache, your debug messages will be placed in the Apache error_log file. If you are using Microsoft IIS, your
debug messages will be sent to stdout (i.e. the browser), so its use is discouraged. With IIS it is recommended
to direct output to a file instead.

stdout
Use this to send MapServer’s debug messages to the standard output (i.e. the browser), combined with the rest
of MapServer’s output.

windowsdebug
Use this to send MapServer’s debug messages to the Windows OutputDebugString API, allowing the use of
external programs like SysInternals debugview to display the debug output.
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Through the Mapfile

The recommended way to set the MS_ERRORFILE variable is in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER
...

END
END

Through an Environment Variable

You can also set the MS_ERRORFILE variable as an environment variable on your system. Apache users can set the
environment variable in Apache’s httpd.conf file, such as:

SetEnv MS_ERRORFILE "/ms4w/tmp/ms_error.txt"

Windows users can alternatively set the environment variable through the Windows System Properties; but make sure
to set a SYSTEM environment variable.

Note: If both the MS_ERRORFILE environment variable is set and a CONFIG MS_ERRORFILE is also set, then the
CONFIG directive takes precedence.

Step 2: Set the DEBUG Level

You can retrieve varying types of debug messages by setting the DEBUG parameter in the Mapfile. You can place the
DEBUG parameter in any LAYER in the mapfile for layer-specific debug information, or instead, set it once in the
MAP object to get general debug information. Use the value of the DEBUG parameter to set the type of information
returned, as follows:

DEBUG Levels

Level 0
Errors only (DEBUG OFF, or DEBUG 0)

In level 0, only msSetError() calls are logged to MS_ERORFILE. No msDebug() output at all. This is the default
and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

Level 1
Errors and Notices (DEBUG ON, or DEBUG 1)

Level 1 includes all output from Level 0 plus msDebug() warnings about common pitfalls, failed assertions or
non-fatal error situations (e.g. missing or invalid values for some parameters, missing shapefiles in tileindex,
timeout error from remote WMS/WFS servers, etc.)

Level 2
Map Tuning (DEBUG 2)
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Level 2 includes all output from Level 1 plus notices and timing information useful for tuning mapfiles and
applications. this is the recommended minimal debugging level

Level 3
Verbose Debug (DEBUG 3)

All of Level 2 plus some debug output useful in troubleshooting problems such as WMS connection URLs being
called, database connection calls, etc.

Level 4
Very Verbose Debug (DEBUG 4)

Level 3 plus even more details. . .

Level 5
Very Very Verbose Debug (DEBUG 5)

Level 4 plus any msDebug() output that might be more useful to developers than to users.

Mapfile Example: Map-Level Debug

The following example is the recommended method to set the DEBUG parameter for the map-level:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
DEBUG 5
...
LAYER
...

END
END

Mapfile Example: Layer-Level Debug

The following example is the recommended method to set the DEBUG parameter for a layer:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER
DEBUG 5
...

END
END
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The MS_DEBUGLEVEL Environment Variable

Instead of setting the DEBUG Debug level in each of your mapfiles, you can also be set the level globally by using the
MS_DEBUGLEVEL environment variable.

Tip: Although setting the MS_DEBUGLEVEL environment variable is possible, it is strongly encouraged to set
DEBUG inside your mapfile for the map, layer, or class objects instead.

When set, this value is used as the default debug level value for all map and layer objects as they are loaded by the
mapfile parser. This option also sets the debug level for any msDebug() call located outside of the context of a map or
layer object, for instance for debug statements relating to initialization before a map is loaded. If a DEBUG value is
also specified in the mapfile in some map or layer objects then the local value (in the mapfile) takes precedence over
the value of the environment variable; debug info coming from outside of the context of a map or layer object cannot
be turned off by having DEBUG OFF in the mapfile.

Setting this option (MS_DEBUGLEVEL) is mostly useful when tuning applications by enabling timing/debug output
before the map is loaded, to capture the full process initialization and map loading time, for instance.

Apache users can set the environment variable in Apache’s httpd.conf file, such as:

SetEnv MS_DEBUGLEVEL 5

Windows users can alternatively set the environment variable through the Windows System Properties; but make sure
to set a SYSTEM environment variable.

Step 3: Turn on CPL_DEBUG (optional)

MapServer relies on the GDAL library to access most data layers, so you may wish to turn on GDAL debugging, to
hopefully get more information on how GDAL is accessing your data file. This could be very helpful for problems with
accessing raster files and PostGIS tables. You can trigger this GDAL output by setting the CPL_DEBUG variable in
your mapfile, within the MAP object, such as:

MAP
...
CONFIG "CPL_DEBUG" "ON"
...
LAYER
...

END
END

You can also add a timestamp (a date/time on each line) to that report with the CPL_TIMESTAMP variable, such as:

MAP
...
CONFIG "CPL_DEBUG" "ON"
CONFIG "CPL_TIMESTAMP" "ON"
...
LAYER
...

END
END
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Note: For a good list of GDAL’s possible variables to use, see the GDAL wiki. The main GDAL site also has a list.

See also:
Additional PostGIS debugging for MapServer

Step 4: Turn on PROJ_DEBUG (optional)

MapServer relies on the PROJ library to handle data projections, so you may wish to turn on PROJ debugging, to hope-
fully get more information back from the PROJ library. You can trigger this PROJ output by setting the PROJ_DEBUG
variable in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "CPL_DEBUG" "ON"
CONFIG "PROJ_DEBUG" "ON"
...
LAYER
...

END
END

Note: You can set “CPL_DEBUG” “PROJ” to restrict the information returned to PROJ (and not GDAL in general)

Note: For the full list of possible PROJ variables to use see the official list.

Step 5: Test your Mapfile

Once you have set the MS_ERRORFILE and DEBUG level in your mapfile, you should now test your mapfile and read
your generated log file.

Using shp2img

The recommended way to test your mapfile is to use the MapServer commandline utility shp2img, to verify that your
mapfile creates a valid map image. shp2img should be included in your MapServer installation (MS4W users need to
execute setenv.bat before using the utility).

You can set the DEBUG level by passing the shp2img following parameters to your commandline call:

Note: If you have already set MS_ERRORFILE in your mapfile, you must comment this out in order to use these
shp2img options

Note: When using shp2img to debug, your layer’s STATUS should be set to ON or DEFAULT. If the layer’s STATUS
is set to OFF, you must additionally pass the layer name to shp2img by using the “-l layername” syntax

13.1. Optimization 950

https://trac.osgeo.org/gdal/wiki/ConfigOptions
https://gdal.org/user/configoptions.html#list-of-configuration-options-and-where-they-apply
https://proj.org/
https://proj.org/usage/environmentvars.html
http://www.ms4w.com


MapServer Documentation, Release 7.6.6

-all_debug

Use this setting to set the debug level for the MAP object and all layers. this is the recommended switch to use

shp2img -m spain.map -o test.png -all_debug 5

msLoadMap(): 0.002s
msDrawMap(): Layer 0 (spain provinces), 0.012s
msDrawRasterLayerLow(orthophoto): entering.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
msDrawMap(): Layer 1 (orthophoto), 0.150s
msDrawMap(): Layer 2 (urban areas), 0.004s
msDrawMap(): Layer 3 (species at risk), 0.008s
msDrawMap(): Layer 4 (populated places), 1.319s
msDrawMap(): Drawing Label Cache, 0.014s
msDrawMap() total time: 1.513s
msSaveImage() total time: 0.039s
msFreeMap(): freeing map at 0218C1A8.
freeLayer(): freeing layer at 0218F5E0.
freeLayer(): freeing layer at 030C33A0.
freeLayer(): freeing layer at 030C3BC8.
freeLayer(): freeing layer at 030C4948.
freeLayer(): freeing layer at 030C7678.
shp2img total time: 1.567s

-map_debug

Use this setting to set the debug level for the MAP object only.

shp2img -m spain.map -o test.png -map_debug 5

msDrawMap(): Layer 0 (spain provinces), 0.012s
msDrawRasterLayerLow(orthophoto): entering.
msDrawMap(): Layer 1 (orthophoto), 0.144s
msDrawMap(): Layer 2 (urban areas), 0.004s
msDrawMap(): Layer 3 (species at risk), 0.008s
msDrawMap(): Layer 4 (populated places), 1.323s
msDrawMap(): Drawing Label Cache, 0.013s
msDrawMap() total time: 1.511s
msSaveImage() total time: 0.039s
msFreeMap(): freeing map at 0205C1A8.
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-layer_debug

Use this setting to set the debug level for one layer object only.

shp2img -m spain.map -o test.png -layer_debug orthophoto 5

msDrawRasterLayerLow(orthophoto): entering.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
msDrawMap(): Layer 1 (orthophoto), 0.151s
freeLayer(): freeing layer at 02F23390.

Set CPL_DEBUG

At the commandline execute the following:

set CPL_DEBUG=ON

shp2img -m spain.map -o test.png -layer_debug orthophoto 5

msDrawRasterLayerLow(orthophoto): entering.
GDAL: GDALOpen(D:\ms4w\apps\spain\map/.\../data/ov172068_200904_c100u50x75c24n.jpg,␣

→˓this=0
4059840) succeeds as JPEG.
msDrawGDAL(): src=0,0,3540,2430, dst=188,48,1,1
source raster PL (-793.394,-1712.627) for dst PL (188,48).
msDrawGDAL(): red,green,blue,alpha bands = 1,2,3,0
GDAL: GDALDefaultOverviews::OverviewScan()
msDrawMap(): Layer 1 (orthophoto), 0.155s
freeLayer(): freeing layer at 03113390.
GDAL: GDALDeregister_GTiff() called.

Reading Errors Returned by shp2img

If there is a problem with your mapfile, shp2img should output the line number in your mapfile that is causing the
trouble. The following tells us that there is a problem on line 85 of my mapfile:

getSymbol(): Symbol definition error. Parsing error near (truetype2):(line 85)

If you are using mapfile INCLUDEs, it may be tricky to track down this line number, but most of the time the line
number is useful.
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Using mapserv CGI

Another handy way to test your mapfile is to call the mapserv CGI executable at the commandline, such as the following:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/spain/map/spain.map&mode=map"

ON_MISSING_DATA

If you are using tile indexes to access your data, you should also be aware of the configuration settings added in
MapServer 5.4 that allow you to tell MapServer how to handle missing data in tile indexes. Please see the CONFIG
parameter’s ON_MISSING_DATA setting in the MAP object for more information.

Hint: You can check the attributes in the tileindex by executing “ogrinfo -al” on your data file

Step 6: Check your Web Server Logs

Once you have verified that there are no problems with you mapfile, next you should check your Web server log files,
for any related information that may help you narrow down your problem.

Apache

Unix users will usually find Apache’s error_log file in a path similar to:

/var/log/apache2/

Windows users will usually find Apache’s log files in a path similar to:

C:\Program Files\Apache Group\Apache2\logs

MapServer for Windows (MS4W) users will find Apache’s log files at:

\ms4w\Apache\logs

Microsoft IIS

IIS log files can be located by:

1. Go to Start -> Control Panel -> Administrative Tools

2. Open the Internet Information Services (IIS) Manager.

3. Find your Web site under the tree on the left.

4. Right-click on it and choose Properties.

5. On the Web site tab, you will see an option near the bottom that says “Active Log Format.” Click on the Properties
button.
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6. At the bottom of the General Properties tab, you will see a box that contains the log file directory and the log file
name. The full log path is comprised of the log file directory plus the first part of the log file name, for example:

C:\WINDOWS\system32\LogFiles\W3SVC1\ex100507.log

You may also want to check the Windows Event Viewer logs, which is located at:

1. Go to Start -> Control Panel -> Administrative Tools

2. Computer Management

3. Event Viewer

Warning: As mentioned previously, in IIS the MapServer stderr debug output is returned to the client instead of
routed to the Web Server logs, so be sure to log the output to a file, by setting the following in your mapfile:

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
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CGI Error - The specified CGI application misbehaved by not returning a complete set of HTTP head-
ers

This error is often caused by missing DLL files. You should try to execute “mapserv -v at the commandline, to make
sure that MapServer loads properly.

Step 7: Verify your Application Settings

If you have verified that MapServer creates a valid map image through shp2img, you’ve checked your MapServer
log files, and there are no problems noted in your Web server logs, then you should focus your attention on possible
application configuration problems. “Application” here means how you are displaying your map images on the Web
page, such as with OpenLayers.

Step 8: Use QGIS to test your OGC services

When configuring MapServer for OGC services (WMS, WFS, etc.) it sometimes happens that users of your services
report map issues in a desktop GIS or online application, even though no errors, logs, or local shp2img tests give any
hints; this is where the QGIS Network Logger can really help to get the exact problem request. For steps on how to
implement the network logger see here.

Tip: To get the exact problem request, add your MapServer service as a QGIS layer, then right-click on the request in
the Network Logger and select “Open URL” to see the full request and resulting map image in your browser.
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PHP MapScript

If you are using PHP MapScript in your application, here are some important notes for debugging:

1. Make sure your php.ini file is configured to show all errors, by setting:

display_errors = On

2. To enable debugging in PHP MapScript, if you are using MapServer 5.6.0 or more recent, make sure to define
ZEND_DEBUG in the PHP source.

If you are using MapServer < 5.6.0, then:

• open the file /mapscript/php3/php_mapscript.c

• change the following:

#define ZEND_DEBUG 0

to

#define ZEND_DEBUG 1

Debugging MapServer using Compiler Debugging Tools

Running MapServer in GDB (Linux/Unix)

Section author: Frank Warmerdam

Building with Symbolic Debug Info

It is not strictly necessary to build MapServer with debugging enabled in order to use GDB on linux, but it does ensure
that more meaningful information is reported within GDB. To enable full symbolic information use the –enable-debug
configure switch. Note that use of this switch disables optimization and so it should not normally be used for production
builds where performance is important.

./configure --enable-debug <other switches>
make clean
make

Running in the Debugger

To run either mapserv or shp2img, give the name of the executable as an argument to the “gdb” command. If it is not
in the path, you will need to provide the full path to the executable.

gdb shp2img
GNU gdb (GDB) 7.0-ubuntu
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

(continues on next page)
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(continued from previous page)

This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /wrk/home/warmerda/mapserver/shp2img...done.
(gdb)

Once you are at the “(gdb)” prompt you can use the run command with the arguments you would normally have passed
to the mapserv or shp2img executable.

(gdb) run -m test.map -o out.png
Starting program: /wrk/home/warmerda/mapserver/shp2img -m test.map -o out.png
[Thread debugging using libthread_db enabled]

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff67594a2 in JP2KAKDataset::Identify (poOpenInfo=0x0)
at jp2kakdataset.cpp:962

962 if( poOpenInfo->nHeaderBytes < (int) sizeof(jp2_header) )
Current language: auto
The current source language is "auto; currently c++".
(gdb)

If the program is crashing, you will generally get a report like the above indicating the function the crash occurred in,
and some minimal information on why. It is often useful to request a traceback to see what functions led to the function
that crashed. For this use the “where” command.

(gdb) where
#0 0x00007ffff67594a2 in JP2KAKDataset::Identify (poOpenInfo=0x0)

at jp2kakdataset.cpp:962
#1 0x00007ffff67596d2 in JP2KAKDataset::Open (poOpenInfo=0x7fffffffb6f0)

at jp2kakdataset.cpp:1025
#2 0x00007ffff6913339 in GDALOpen (

pszFilename=0x83aa60 "/home/warmerda/data/jpeg2000/spaceimaging_16bit_rgb.jp
2", eAccess=GA_ReadOnly) at gdaldataset.cpp:2170
#3 0x00007ffff69136bf in GDALOpenShared (

pszFilename=0x83aa60 "/home/warmerda/data/jpeg2000/spaceimaging_16bit_rgb.jp
2", eAccess=GA_ReadOnly) at gdaldataset.cpp:2282
#4 0x0000000000563c2d in msDrawRasterLayerLow (map=0x81e450, layer=0x839140,

image=0x83af90, rb=0x0) at mapraster.c:566
#5 0x000000000048928f in msDrawRasterLayer (map=0x81e450, layer=0x839140,

image=0x83af90) at mapdraw.c:1390
#6 0x0000000000486a48 in msDrawLayer (map=0x81e450, layer=0x839140,

image=0x83af90) at mapdraw.c:806
#7 0x00000000004858fd in msDrawMap (map=0x81e450, querymap=0) at mapdraw.c:459
#8 0x0000000000446410 in main (argc=5, argv=0x7fffffffd918) at shp2img.c:300
(gdb)

It may also be helpful to examine variables used in the line where the crash occurred. Use the print command for this.

(gdb) print poOpenInfo
$1 = (GDALOpenInfo *) 0x0

In this case we see that the program crashed because poOpenInfo was NULL (zero). Including a traceback like the
above in bug report can help the developers narrow down a problem more quickly, especially if it is one that is difficult
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for the developers to reproduce themselves.

Debugging Older Versions of MapServer (before 5.0)

1. Make sure that MapServer is compiled in debug mode (on unix this is enabled through ./configure –enable-
debug).

You can verify that your build was compiled in debug mode, by executing the following at the commandline
(look for “DEBUG=MSDEBUG”):

./mapserv -v

MapServer version 4.10.2 OUTPUT=GIF OUTPUT=PNG OUTPUT=WBMP
OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=THREADS SUPPORTS=GEOS
INPUT=EPPL7 INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE
DEBUG=MSDEBUG

2. Set the MS_ERRORFILE variable is in your mapfile, within the MAP object, such as:

MAP
...
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
...
LAYER
...

END
END

3. If you don’t use the MS_ERRORFILE variable, you can use the LOG parameter in your WEB object of the mapfile,
such as:

MAP
...
WEB
LOG "mapserver.log"

END
...
LAYER
...

END
END

4. Specify DEBUG ON in your MAP object, or in your LAYER objects, such as:

MAP
...
WEB
LOG "mapserver.log"

END
DEBUG ON
...
LAYER
...

(continues on next page)
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(continued from previous page)

END
END

5. Note that only errors will be written to the log file; all DEBUG output goes to stderr, in the case of Apache that
is Apache’s error_log file. If you are using Microsoft IIS, debug output is routed to stdout (i.e. the browser), so
be sure to remove DEBUG ON statements if using IIS on a production server.

.

13.1.2 Environment Variables

Table of Contents

• Environment Variables

– Background

– List of all possible MapServer Environment Variables

Background

A number of environment variables can be used to control MapServer’s behavior or specify the location of some
resources.

Tip: In terms of GDAL, for a good list of GDAL’s possible variables to use (to help control data access in MapServer),
see the GDAL wiki. The main GDAL site also has a list.

List of all possible MapServer Environment Variables

CURL_CA_BUNDLE
Added in version 5.4.1.

Used to specify the location of the Certificate Authority (CA) bundle file to be used by Curl when using HTTPS
connections in WMS/WFS client layers. Curl comes bundled with its own CA bundle by default, so this variable
is not required unless you have an unusual installation:

export CURL_CA_BUNDLE=/path/to/ca-bundle.crt

MS_DEBUGLEVEL
Added in version 5.0.

A default DEBUG level value can be set using the MS_DEBUGLEVEL environment variable in combination
with the MS_ERRORFILE variable.

When set, this value is used as the default debug level value for all map and layer objects as they are loaded by
the mapfile parser. This option also sets the debug level for any msDebug() call located outside of the context
of a map or layer object, for instance for debug statements relating to initialization before a map is loaded. If a
DEBUG value is also specified in the mapfile in some map or layer objects then the local value (in the mapfile)
takes precedence over the value of the environment variable.
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This option is mostly useful when tuning applications by enabling timing/debug output before the map is loaded,
to capture the full process initialization and map loading time, for instance.

See also:
Debugging MapServer

MS_ENCRYPTION_KEY
Added in version 4.10.

See also:
msencrypt

MS_ERRORFILE
The MS_ERRORFILE environment variable specifies the location of the logging/debug output, with possible
values being either a file path on disk, or one of the following special values:

• “stderr” to send output to standard error. Under Apache stderr is the Apache error_log file. Under IIS stderr
goes to stdout so its use is discouraged. With IIS it is recommended to do direct output to a file on disk
instead.

• “stdout” to send output to standard output, combined with the rest of MapServer’s output.

• “windowsdebug” to send output to the Windows OutputDebugString API, allowing the use of external
programs like SysInternals debugview to display the debug output.

It is possible to specify MS_ERRORFILE either as an environment variable or via a CONFIG directive inside a
mapfile:

CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"

or:

CONFIG "MS_ERRORFILE" "stderr"

If both the MS_ERRORFILE environment variable is set and a CONFIG MS_ERRORFILE is set, then the CON-
FIG directive takes precedence.

If MS_ERRORFILE is not set, then error/debug logging is disabled. During parsing of a mapfile, error/debug
logging may become available only after the MS_ERRORFILE directive has been parsed.

See also:
Debugging MapServer

MS_MAP_NO_PATH
Added in version 5.4.

The MS_MAP_NO_PATH environment variable can be set to any value to forbid the use of explicit
paths in the map=. . . URL parameter. Setting MS_MAP_NO_PATH to any value forces the use of the
map=<env_variable_name> mechanism in mapserv CGI URLs.

If this variable is not set then nothing changes and the mapserv CGI still accepts explicit file paths via the map=. . .
URL parameter.

Example, set set MS_MAP_NOPATH and some mapfile paths in Apache’s httpd.conf:

SetEnv MS_MAP_NO_PATH "foo"
SetEnv MY_MAPFILE "/opt/mapserver/map1/mymapfile.map"

and then calls the mapserv CGI must use environment variables for the map=. . . parameter:
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http://localhost/cgi-bin/mapserv?map=MY_MAPFILE&mode=...

See also:
Limit Mapfile Access & rfc56

MS_MAPFILE
The mapfile to use if the map=. . . URL parameter is not provided.

It is also possible to use an environment variable name as the value of the map=. . . URL parameter. The value
of this environment variable will be used as the mapfile path:

map=ENV_VAR

MS_MAPFILE_PATTERN
MS_MAPFILE_PATTERN can be used to override the default regular expression which is used to validate mapfile
filename extensions.

The default value for this variable is:

MS_MAPFILE_PATTERN='\.map$'

MS_MAP_BAD_PATTERN
Added in version 7.6.3.

The MS_MAP_BAD_PATTERN environment variable can be used to specify a Regular Expression to catch &
not allow problematic character sequences in any mapfile paths passed to the mapserv CGI in the map=. . . URL
parameter. If the value matches then an error is generated. By default all MapServer installations (since 7.6.3)
set a hardcoded value for MS_MAP_BAD_PATTERN of:

[/\\]{2}|[/\\]?\\.+[/\\]|,

which will therefore not allow “/../” or “//” in the map value.

For Windows users, MS4W uses the PCRE regex library (which requires a slightly different regex syntax), so all
future MS4W releases will contain the following default MS_MAP_BAD_PATTERN enabled (to not allow “/../”
or “//” in the map value) :

[\/\\\\]{2}|[\/\\\\]?\.{2,}[\/\\\\]|,

For more Windows information see Securing your MS4W Installation

See also:
Limit Mapfile Access & Associated Pull Request for the 7.6.3 release

MS_MAP_PATTERN
Added in version 5.4.

The MS_MAP_PATTERN environment variable can be used to specify a Regular Expression that must be
matched by all mapfile paths passed to the mapserv CGI in the map=. . . URL parameter.

If MS_MAP_PATTERN is not set then any .map file can be loaded.

Apache’s SetEnv directive can be used to restrict mapfiles to a specific directory and subdirectories.

• Unix users may set the following expression in Apache to restrict mapfiles to the /opt/mapserver directory
and subdirectories:

SetEnv MS_MAP_PATTERN "^\/opt\/mapserver\/([^\.][_A-Za-z0-9\-\.]+\/{1})*([_A-Za-
→˓z0-9\-\.]+\.(map))$"
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• Windows Apache/MS4W users can set the following expression in the Apache conf file, to limit the possible
MAP= paths to the common C:/ms4w/apps/ directory (where all MS4W mapfiles and applications live),
allow encoded urls, allow “.” or “_” or “-” in MAP= paths but disallow “..” directory traversing:

SetEnv MS_MAP_PATTERN "^(C:)?\/ms4w\/apps\/((?!\.{2})[_A-Za-z0-9\-\.]+\/{1})*([_
→˓A-Za-z0-9\-\.]+\.(map))$"

Note: MS4W users can see specific examples at: https://ms4w.com/README_INSTALL.html#
securing-your-ms4w-installation

See also:
Limit Mapfile Access & rfc56

MS_MODE
Default value for the mode=. . . URL parameter. Setting mode=. . . in the URL takes precedence over the envi-
ronment variable.

MS_OPENLAYERS_JS_URL
The URL to the OpenLayers javascript library (can be used when testing WMS services using imagetype appli-
cation/openlayers), for instance:

http://openlayers.org/api/OpenLayers.js

MS_TEMPPATH
Set the WEB TEMPPATH.

Added in version 6.0.

MS_XMLMAPFILE_XSLT
Used to enable XML Mapfile support. Points to the location of the XSLT to use for the XML->text mapfile
conversion.

See also:
XML Mapfile support

PROJ_LIB
The PROJ_LIB environment variable or CONFIG directive can be used to specify the directory where the PROJ
data files are located (including the “proj.db” file, or “epsg” file for older PROJ versions), if they are not in the
default directory where PROJ expects them.

Note: For the full list of possible PROJ variables to use see the official list.

See also:
Setting the location of the epsg file in Errors.
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13.1.3 FastCGI

Author
Frank Warmerdam

Contact
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Author
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Contact
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Last Updated
2008-07-15
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• FastCGI

– Introduction

– Obtaining the necessary software

– mod_fcgid Configuration

– Deprecated mod_fcgi Configuration

– Common mod_fcgid/mod_fcgi Configuration

– Common Problems

– FastCGI on Win32

Introduction

FastCGI is a protocol for keeping cgi-bin style web applications running as a daemon to take advantage of preserving
memory caches, and amortizing other high startup costs (like heavy database connections) over many requests.

Obtaining the necessary software

1. There are three pieces to the MapServer FastCGI puzzle. First, you need the actual FastCGI library. This can be
downloaded from https://fastcgi-archives.github.io//. This library does the usual configure, make, make install
dance. One added complication is that it installs by default in /usr/local, and you might give the configure
command a –prefix=/usr to put it in a location that is already visible to ldconfig.

2. Assuming you are running Apache, the next piece you need is the fastcgi module. There are two fastcgi imple-
mentations for apache:

• mod_fcgid: mod_fcgid is the newer and recommended way to run fastcgi programs under recent apache
versions. It can be downloaded from the Apache fcgid homepage

• deprecated mod_fcgi: Mod_fcgi depends on the version of Apache you are running, so make sure to
download the correct fork (Apache 1.3 vs. Apache 2).

3. The third and final piece is to compile MapServer with FastCGI support. This is pretty straightforward, and
all you need to do is tell configure where the FastCGI library is installed. If you changed the prefix variable as
described above, this would be:
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./configure [other options] --with-fastcgi=/usr/local

With those pieces in place, the MapServer CGI (mapserv) should now be FastCGI-enabled. You can verify this by
testing it on with the command line:

[hobu@kenyon mapserver-6.2.0]# ./mapserv -v
MapServer version 6.2.0 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=FASTCGI INPUT=EPPL7
INPUT=SDE INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE DEBUG=MSDEBUG

mod_fcgid Configuration

1. Modify http.conf to load the FastCGI module.

LoadModule fcgid_module modules/mod_fcgid.so

2. Add an Apache handler for FastCGI applications.

AddHandler fcgid-script fcgi

3. Set FastCGI processing information

<IfModule mod_fcgid.c>
FcgidMaxProcessesPerClass 30
FcgidInitialEnv PROJ_LIB /usr/local/share/proj
FcgidInitialEnv LD_LIBRARY_PATH "/usr/local/lib:/usr/local/pgsql/lib:/usr3/pkg3/

→˓oracle9/lib"
</IfModule>

Deprecated mod_fcgi Configuration

This section is left for reference. The recommended way to run fastcgi programs under apache is to use mod_fcgid, as
detailed above.

1. Modify http.conf to load the FastCGI module.

LoadModule fastcgi_module /usr/lib/apache/1.3/mod_fastcgi.so

2. Add an Apache handler for FastCGI applications.

AddHandler fastcgi-script fcgi

3. Set FastCGI processing information

FastCgiConfig -initial-env PROJ_LIB=/usr/local/share/proj
-initial-env LD_LIBRARY_PATH=/usr/local/lib:/usr/local/pgsql/lib:/usr3/pkg3/oracle9/
→˓lib
-appConnTimeout 60 -idle-timeout 60 -init-start-delay 1
-minProcesses 2 -maxClassProcesses 20 -startDelay 5
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Common mod_fcgid/mod_fcgi Configuration

1. Install a copy of the mapserv executable (originally mapserv or mapserv.exe) into the cgi-bin directory with the
extension .fcgi (ie. mapserv.fcgi). Use this executable when you want to utilize fastcgi support.

For some platforms, the MapServer link would then have to changed from:

http://your.domain.name/cgi-bin/mapserv?MAP=/path/to/mapfile.map

To:

http://your.domain.name/cgi-bin/mapserv.fcgi?MAP=/path/to/mapfile.map

For other platforms, the MapServer link would then have to changed from:

http://your.domain.name/cgi-bin/mapserv.exe?MAP=/path/to/mapfile.map

To:

http://your.domain.name/cgi-bin/mapserv.fcgi?MAP=/path/to/mapfile.map

2. In your mapfile, set a PROCESSING directive to tell FastCGI to cache the connections and layer information on
all layers for which connection caching is desired - ie. all slow layers.

PROCESSING "CLOSE_CONNECTION=DEFER"

Common Problems

File permissions

Fedora Core 3 doesn’t allow FastCGI to write to the process logs (when you use RedHat’s Apache 2 rather than your
own). This is described here.

Also, FastCGI needs to write its socket information somewhere. This can be directed with the FastCgiIpcDir directive.

FastCGI on Win32

MS4W Users

MS4W (MapServer for Windows) >= version 2.2.2 contains MapServer compiled with FastCGI support. MS4W ver-
sion >= 2.2.8 also contains the required Apache module (mod_fcgid), and users must follow the README instructions
to setup FastCGI with their application.

Building fcgi-2.4.0

I used libfcgi-2.4.0 for use with Apache2 from https://fastcgi-archives.github.io/.
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Binary IO Patch

It is critical that stdio be in binary mode when PNG and other binary images are written to it. To accomplish this for
stdio handled through the FastCGI library, I had to do the following hack to libfcgi/fcgi_stdio.c within the fcgi-2.4.0
distribution.

In FCGI_Accept() made he following change

if(isCGI) {
FCGI_stdin->stdio_stream = stdin;
FCGI_stdin->fcgx_stream = NULL;
FCGI_stdout->stdio_stream = stdout;
FCGI_stdout->fcgx_stream = NULL;
FCGI_stderr->stdio_stream = stderr;
FCGI_stderr->fcgx_stream = NULL;

/* FrankWarmerdam: added so that returning PNG and other binary data
will still work */

#ifdef _WIN32
_setmode( _fileno(stdout), _O_BINARY);
_setmode( _fileno(stdin), _O_BINARY);

#endif

} else {

Also, add the following just before the FCGI_Accept() function

#ifdef _WIN32
#include <fcntl.h>
#include <io.h>
#endif

I’m sure there is a better way of accomplishing this. If you know how, please let me know!

Building libfcgi

The makefile.nt should be fine. Just ensure you have run VCVARS32.BAT (as is needed for building MapServer) and
then issue the command:

nmake /f makefile.nt

Then the .lib and .dll will be in libfcgi/Debug?. Make sure you copy the DLL somewhere appropriate (such as your
cgi-bin directory).
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Other Issues

1) FastCGI’s receive a very limited environment on win32, seemingly even more restricted than normal cgi’s started by
apache. Make sure that all DLLs required are either in the fastcgi directory or in windowssystem32. Any missing DLLs
will result in very cryptic errors in the error_log, including stuff about Overlapping read requests failing or something
like that.

2) Make sure you use a libfcgi.dll built against the same runtime library as your mapserv.exe (and possibly
libmap_fcgi.dll) or you will suffer a world of pain! Different runtime libraries have different “environ” variables (as well
as their own stdio and heaps). You can check that everything is using MSVCRT.DLL (or all using MSVCRTD.DLL)
using the MS SDK Dependency Walker.

13.1.4 Limit Mapfile Access

Author
Stephen Lime

Contact
sdlime at gmail.com

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-06-03

The MapServer CGI, by default, will happily attempt to process any mapfile it is asked to. While this might be desireable
in a development environment, it is not acceptable for public-facing installations. MapServer supports the use of specific
environment variables, set at the web server tier, to limit access. Since the MapServer 7.6.3 release, you are required
to use (a combination of) these environment variables to secure your installation; for earlier MapServer versions these
environment variables are strongly recommended.

Warning: The vulnerability CVE-2021-32062 was fixed through the MapServer 7.6.3 release, through requiring
the use of the environment variables described in this MapServer document.

Note: Environment variables are only referenced by the MapServer CGI and are not used by MapScript in any way.

Key Environment Variables

See also:
Environment Variables

See also:
rfc56

See also:
Associated Pull Request for the 7.6.3 release

13.1. Optimization 967

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32062
https://github.com/MapServer/MapServer/pull/6314


MapServer Documentation, Release 7.6.6

Tip: The online tools RegExr & RegEx101 are great for testing regular expressions.

MS_MAP_BAD_PATTERN
Added in version 7.6.3.

If set, this environment variable is interpreted as regular expression that is used to test the value of the CGI map pa-
rameter, by specifying which problematic character sequences to avoid. If the value matches then an error is generated.
By default all MapServer installations (since 7.6.3) set a hardcoded value for MS_MAP_BAD_PATTERN of:

[/\\]{2}|[/\\]?\\.+[/\\]|,

which will therefore not allow “/../” or “//” in the map value.

Note: For Windows users, MS4W uses the PCRE regex library (which requires a slightly different regex syntax), so
all future MS4W releases will contain the following default MS_MAP_BAD_PATTERN enabled (to not allow “/../” or
“//” in the map value) :

[\/\\\\]{2}|[\/\\\\]?\.{2,}[\/\\\\]|,

For more information see Securing your MS4W Installation

MS_MAP_NO_PATH
Added in version 5.4.0.

If set, this environment variable limits values for the CGI map parameter to a curated (prepared) set of mapfiles explicitly
defined by additional environment variables. This is the recommended way to secure mapfile access if at all possible.

Note: Mapfile-based environment variables (such as MS_MAPFILE) can be used without setting
MS_MAP_NO_PATH.

MS_MAP_PATTERN
Added in version 5.4.0.

If set, this environment variable is interpreted as regular expression that is used to test the value of the CGI map
parameter. If the value does not match then an error is generated.

Care must be taken to craft regular expressions that limit access to specific, trusted directories and limit path traversal:.
See the Environment Variables guide for examples.

Note: If defined, the MS_MAP_PATTERN variable only applies to mapfiles not already defined through an environ-
ment variable.
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Setting Environment Variables

Mechanisms to set environment variables vary from web server to web server, but all provide the capability. (regular
expression feature sets can vary by operating system and version)

• Apache - https://httpd.apache.org/docs/current/env.html

Apache’s SetEnv directive (available through the mod_env module) allows you to set environment variables in
the Apache conf file with a single command:

– Unix users may set the following expression in Apache to restrict mapfiles to the /opt/mapserver directory
and subdirectories:

SetEnv MS_MAP_PATTERN "^\/opt\/mapserver\/([^\.][_A-Za-z0-9\-\.]+\/{1})*([_A-Za-
→˓z0-9\-\.]+\.(map))$"

Warning: During testing during this documentation process, the above MS_MAP_PATTERN failed
on an old Debian Wheezy server, on a valid path such as MAP=/opt/mapserver/ogc-demos/wms.map
(the dash in the ‘ogr-demos’ folder caused much grief) even though the dash was escaped in the provided
character set of the expression.

Therefore those running older regex libs should use the following instead, which puts the dash at the
beginning of the character set of the expression, avoiding the escaping issue:

SetEnv MS_MAP_PATTERN “^/osgeo/mapserver/([^.][-_A-Za-z0-9.]+/{1})*([-_A-Za-z0-
9.]+.(map))$”

– Windows Apache/MS4W users can set the following expression in the Apache conf file, to limit the possible
MAP= paths to the common C:/ms4w/apps/ directory (where all MS4W mapfiles and applications live),
allow encoded urls, allow “.” or “_” or “-” in MAP= paths but disallow “..” directory traversing:

SetEnv MS_MAP_PATTERN "^(C:)?\/ms4w\/apps\/((?!\.{2})[_A-Za-z0-9\-\.]+\/{1})*([_
→˓A-Za-z0-9\-\.]+\.(map))$"

• Nginx - http://nginx.org/en/docs/ngx_core_module.html#env

• IIS - https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/applicationpools/add/
environmentvariables/

13.1.5 Mapfile Tuning & Management

Author
David Fawcett

Contact
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Author
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Last Updated
2021-04-13
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Introduction

The contents of a .map file (‘mapfile’) are used by MapServer for configuration, data access, projection, and more.
Because the mapfile is parsed every time a map image is requested, it is important to think about what you include in
the file in order to optimize performance. The optimal mapfile is one that doesn’t include or reference anything that
isn’t needed. The following steps will help you both manage and optimize your mapfiles.

Note: As you optimize your setup, it is strongly recommended to review the security steps for the MAP= call to the
MapServer executable, by setting MS_MAP_PATTERN or MS_MAP_NO_PATH or hiding the MAP= parameter on
public servers, as recommended in the document Limit Mapfile Access. All possible environment variables to secure
your server are listed in Environment Variables.

Steps to Possibly Review

1. Use a MapServer Syntax file for your Favorite Text Editor

Although it’s maybe not be classed as an ‘optimization’, using a syntax file to add color-coding to MapServer mapfile
parameters in your text editor, can help save you time and make your MapServer-mapfile-management-life much easier.
You can find a helpful list of these syntax color-coding tools for MapServer listed on the page at editing.
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2. Testing your Mapfile for Speed

If optimization and performance are important to you, then get to know and love the MapServer commandline utility
shp2img. shp2img will verify that your mapfile creates a valid map image, but it can also display draw times (length
of time it takes MapServer to process each layer and the final map image) with the -map_debug 3 setting:

shp2img -m osm.map -o ttt.png -map_debug 3

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 95 (land13), 0.001s
msDrawMap(): Layer 96 (landuse13), 0.051s
msDrawMap(): Layer 97 (transport_areas13), 0.002s
msDrawMap(): Layer 98 (waterarea13), 0.003s
msDrawMap(): Layer 99 (waterways13), 0.002s
msDrawMap(): Layer 100 (railways13), 0.003s
msDrawMap(): Layer 101 (roads13), 0.024s
msDrawMap(): Layer 102 (aeroways13), 0.002s
msDrawMap(): Layer 103 (buildings13), 0.245s
msDrawMap(): Layer 104 (borders13), 0.197s
msDrawMap(): Layer 105 (places13), 0.078s
msDrawLabelCache(): labelcache_map_edge_buffer = 10
msDrawMap(): Drawing Label Cache, 0.020s
msDrawMap() total time: 0.772s
msSaveImage(ttt.png) total time: 0.056s

The above example generates a map image in 0.772 seconds.

Hint: If you want maximum (verbose) messages, try the -all_debug 5 setting instead.

You can also just get draw times for a single layer with the -l layername switch, such as:

shp2img -m osm.map -o ttt.png -map_debug 3 -l buildings13

(continues on next page)
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(continued from previous page)

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 103 (buildings13), 0.119s
msDrawLabelCache(): labelcache_map_edge_buffer = 10
msDrawMap(): Drawing Label Cache, 0.001s
msDrawMap() total time: 0.120s
msSaveImage(ttt.png) total time: 0.016s

Note: shp2img should be included in your MapServer installation (MS4W users need to execute setenv.bat before
using the utility).

3. Use the various CONFIG settings for debugging

Review the Debugging MapServer document and try setting the CONFIG parameter at the MAP-level in your mapfile,
to hopefully get more information from various sources such as from the PROJ library, GDAL library, etc.

MAP
...
CONFIG "CPL_DEBUG" "ON"
CONFIG "PROJ_DEBUG" "ON"
...
LAYER
...

END
END

Note: You can set “CPL_DEBUG” “PROJ” to restrict the information returned to PROJ (and not GDAL in general)

4. Test the full Map Request through the mapserv Executable

There are times when your mapfile generates a valid map image with a local shp2img command, but then the same
mapfile will cause an error in a map request through the web server, such as Apache. It is these times when you
should try the same request, that was sent through your web server, at the commandline with the actual mapserv (or on
Windows, the mapserv.exe) utility.

The following request will take a full MAP=. . .&MODE=map request, and try to save the request to an image, or report
an error:

mapserv -nh "QUERY_STRING=MAP=/ms4w/apps/local-demo/local.map&MODE=map" > test.png

You can use this to also test problematic WMS GetMap requests as well:

mapserv -nh "QUERY_STRING=SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&BBOX=41.
→˓42710000000000292,-173.4329999999999927,83.74660000000000082,-13.04809999999999981&
→˓CRS=EPSG:4326&WIDTH=369&HEIGHT=98&LAYERS=park&STYLES=&FORMAT=image/png&DPI=96&MAP_
→˓RESOLUTION=96&FORMAT_OPTIONS=dpi:96&TRANSPARENT=TRUE" > test.png
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Note: Besides checking your web server logs, you can also use QGIS to get the exact request to your OWS (WMS/WFS
etc.) service: see https://github.com/mapserver/mapserver/wiki/Get-the-Raw-WMS-Request-Generated-by-QGIS

5. Projections

There are two ways to define projections in a mapfile. You can either use inline projection parameters or specify an
EPSG code for that projection. If you use the EPSG code method, PROJ looks up the projection parameters in the
PROJ database using the EPSG code as an ID. This database lookup takes significantly more resources than when the
projection parameters are defined inline. This lookup takes place for each projection definition using EPSG codes in a
mapfile.

See also:
PROJECTION

Projection defined using inline projection parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Projection defined using EPSG Code

PROJECTION
"init=epsg:26915"

END

Optimization Suggestions
• Use inline projection parameter definitions in place of EPSG codes.

• It should be stated that for optimal performance you could have MapServer not do any projections on-demand
(in other words, have all of your source data in the same projection, and have MapServer output requests in that
same projection) but obviously this is not always possible for all scenarios.

• If you want to use EPSG codes, remove all unneeded projection definition records from the PROJ EPSG database.

Note: This was a common trick for PROJ versions <6 (and its epsg file), but for PROJ >= 6 a proj.db SQLite
database is used to store these EPSG lookup codes, and optimizations for that will take some time to be developed
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and shared).

6. Use INCLUDEs

Implemented back in MapServer 4.10, the mapfile INCLUDE parameter is possibly one of the best ways to help manage
your large mapfiles (you might argue that this is not ‘optimization’ for speed again, but for it is very important for
managing large mapfiles with many layers).

Any part of the mapfile can be referenced through an INCLUDE, besides the obvious layers.

Note: Common file extensions for includes are: .lyr, .include, or even .map . You can name them any file extension
that you wish.

You could have something like:

MAP
...
WEB
INCLUDE "metadata.include"

END
...
INCLUDE "elevation.lyr"
INCLUDE "country.lyr"
INCLUDE "city.lyr"
...

END

Where metadata.include could contain:

METADATA
"wms_title" "WMS Demo Server" ##required
"wms_onlineresource" "http://yourpath/cgi-bin/mapserv.exe?" ##required
"wms_srs" "EPSG:3857 EPSG:4326 EPSG:4269 EPSG:3978" ##recommended
"wms_enable_request" "*" ##necessary

END

7. Layers

For every layer in a mapfile that has a status of ON or DEFAULT, MapServer will load that layer and prepare it for
display, even if that layer never gets displayed.

Optimization Suggestions
• Build lean mapfiles, only include layers that you plan to use.

• Turn off unnecessary layers; the more layers MapServer is displaying, the more time it takes. Have your opening
map view show only the minimum necessary to orient the user, and allow them to turn on additional layers as
needed. This is particularly true of remote WMS or very large rasters.

• Related to turning off layers, is turning them on but using MINSCALEDENOM and MAXSCALEDENOM to
determine at what zoomlevels the layer is available. If a map’s display is outside of the layer’s MINSCALEDE-
NOM and MAXSCALEDENOM range, then MapServer can skip processing that layer. It also makes for a really
cool effect, that the national boundaries magically change to state boundaries.
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• If you have a complex application, consider using multiple simple and specific mapfiles in place of one large ‘do
everything’ mapfile.

• In a similar vein, each class also supports MINSCALEDENOM and MAXSCALEDENOM. If your dataset has
data that are relevant at different zoomlevels, then you may find this a very handy trick. For example, give a MIN-
SCALEDENOM of 1:1000000, county roads a MINSCALEDENOM of 1:100000, and streets a MAXSCALE-
DENOM of 1:50000. You get the cool effect of new data magically appearing, but you don’t have MapServer
trying to draw the nation’s roads when the entire nation is in view!

• Classes are processed in order, and a feature is assigned to the first class that matches. So try placing the most
commonly-used classes at the top of the class list, so MapServer doesn’t have to try as many classes before finding
a match. For example, if you wanted to highlight the single state of Wyoming, you would probably do this:

CLASS
EXPRESSION ('[NAME]' eq 'WY'])
STYLE
COLOR 255 0 0

END
END
CLASS
STYLE
COLOR 128 128 128
END

END

But it would be a lot more efficient to do this, since 98% of cases will be matched on the first try:

CLASS
EXPRESSION ('[NAME]' ne 'WY'])
STYLE
COLOR 128 128 128

END
END
CLASS
STYLE
COLOR 255 0 0

END
END

• Use tile indexes instead of multiple layers.

8. Yes Data Formats Matter

This is often not written in documents, yet is often taught in hands-on workshops (as maybe readers or developers can
be reading the document here and become offended if it differs in their thinking or the purpose of their software design,
as some formats may be deemed ‘uncool’ by some crowds, but in reality, we don’t care about coolness here, we care
about making MapServer fast). So the following advice is by the authors of this document (disclaimer), and may offend
some readers, therefore ‘viewer discretion is advised’.

Although MapServer can read any GDAL supported vector or raster source (and the fact that not all users will be setting
up tile caching beforehand), the following is still recommended for MapServer for optimal performance in terms of data
formats.

Optimization Suggestions
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• The best/optimal data sources for MapServer in terms of speed-of-display is .shp (for vectors) and GeoTIFF (for
rasters).

• For databases, MapServer displays PostGIS layers very fast, and some custom tricks are included in the
MapServer source specifically for PostGIS + MapServer draw speed. PostGIS is therefore recommended.

• SpatiaLite is recommended for those who require a portable format, and works very well with MapServer.

• For whatever formats you choose, definitely review the associated GDAL format (driver) page for that specific
format, and enable indexing (spatial or also attribute indexing).

• Rasters, and of course GeoTIFFs, should also have overviews included, through the gdaladdo utility.

• Raster layers can also include various PROCESSING directives, specific to raster display in MapServer (such as
displaying specific bands, or choosing a resampling method, but for resampling do experiment with the fastest
display option versus display quality).

• If you do use .shp files (and many still do) you must always enable fast quadtree index lookups in MapServer
through the shptree utility.

• Wherever possible, making your source dataset as lightweight as possible, will assist MapServer in processing
your data (for vectors, this could mean removing unused data fields).

• As mentioned earlier, if you must display various rasters or vectors as a ‘mosaic’ together, implement Tile Indexes,
to implement the mosaic as a single layer in MapServer.

• GDAL’s virtual format (VRT) is very powerful also for mosaicing or transforming data on-demand, and has
specific VRT driver instructions for vector and raster .

• There are times when splitting .shp files (shapefiles) into smaller files, make it more efficient to display in
MapServer; the shp2tile utility is a wonderful commandline tool for this.

Note: For Windows users, MS4W includes the shp2tile utility, and all utilities mentioned above.

9. Enable Caching through MapCache

If your mapfile serves any OGC-related service (such as WMS, WFS, etc.) you should consider enabling Map-
Cache, an Apache module, for your services. Caching common map results (as an image file, or inside a SQLite
db for example) for common map extents, will obviously drastically improve speed, and cancel-out any format discus-
sions/benefits/arguments mentioned above.

10. Symbols

When the mapfile is loaded, each raster symbol listed in the symbols file is located on the filesystem and loaded.

Optimization Suggestions
• Only include raster symbols in your symbols file if you know that they will be used by your application.
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11. Fonts

To load a font, MapServer opens up a lookup file (often named fonts.list or fonts.txt) FONTSET which contains an alias
for the font and the path for that font file. If you have a fonts.list file with a long list of fonts, it will take more time for
MapServer to locate and load the font that you need.

Optimization Suggestions
• Limit the entries in fonts.list to fonts that you actually use.

12. Use MapScript

MapScript, in your favorite language such as PHP or Python, can be used to manipulate mapfiles on-the-fly. Some
common use cases are:

• adding a layer into an existing mapfile

• modifying an existing layer

• generating a new mapfile/service on-demand

The options here are limitless, for what you can do with MapScript. The full list of available parameters and functions
(methods) are listed in the SWIG MapScript API Reference.

13. Don’t expose your MAP path

This is more obvious if your mapfile serves OGC services, such as set in the wms_onlineresource metadata parameter
in your WEB object, which by default must contain the MAP=path/to/your/mapfile, but exposing paths on your public
server can open you to possible malicious attacks on your filesystem. You should take some time to review the possible
steps in the document Limit Mapfile Access.

At the minimum, you should enable the MS_MAPFILE environment variable so that your CGI mapserv requests, and
your onlineresource OGC requests, do not require a visible MAP= path. The WMS Server document has several
examples of how to enable these environment variables.

13.1.6 Raster Management & Optimization
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– Spend time to review GDAL’s associated driver page for your chosen format

– Connect to your data through GDAL

– Overviews

– Tileindexes and Internal Tiling

– Learn & Review the various GDAL utilities to manage your rasters

– Handling your raster LAYERS in the mapfile

– Remote WMS

See also:
Raster Data

Choose the right raster format for your needs

The best/optimal data sources for MapServer in terms of speed-of-display is GeoTIFF for rasters.

Here are some other points to consider:

• The GeoTIFF image format is the fastest to “decipher”, but once you get beyond a certain point, the disk reading
may become slow enough to make it worthwhile to consider other image formats.

• For GeoTIFFs larger than 1 GB, ECW images tend to render faster than GeoTIFFs, since decompressing the
data (CPU and RAM) is faster than reading the uncompressed data (disk). The downside is that ECW is not
open-source, and the licensing is often prohibitive. MrSID is another compressed image format that can be used.

• JPEG2000 is a very slow image format, as is JPEG.

Spend time to review GDAL’s associated driver page for your chosen format

This is a critical step, as MapServer relies on GDAL for raster data access. Each driver (GDAL format) has its own set
of abilities and switches. Find your raster format and review its options here.

Connect to your data through GDAL

For data management in MapServer, this should always be one of your first steps. Sometimes desktop GIS programs
will display a format in a certain way but your data might not display in MapServer; checking how GDAL reads your
raster file, will help you manage and understand the data. Here is an example using gdalinfo to read and return various
important metadata regarding a specific raster, in this case a MrSID raster:

gdalinfo ortho_1-1_hc_s_mn163_2019_1.sid

Driver: MrSID/Multi-resolution Seamless Image Database (MrSID)
Files: ortho_1-1_hc_s_mn163_2019_1.sid

ortho_1-1_hc_s_mn163_2019_1.sid.aux.xml
Size is 50249, 116781
Coordinate System is:
PROJCS["NAD83 / UTM zone 15N",

GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,
(continues on next page)
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(continued from previous page)

AUTHORITY["EPSG","7019"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-93],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH],
AUTHORITY["EPSG","26915"]]

Origin = (494792.400000000023283,5018068.799999999813735)
Pixel Size = (0.600000000000000,-0.600000000000000)
Metadata:
GEOTIFF_CHAR__GeogAngularUnitsGeoKey=Angular_Degree
GEOTIFF_CHAR__GTModelTypeGeoKey=ModelTypeProjected
GEOTIFF_CHAR__GTRasterTypeGeoKey=RasterPixelIsArea
GEOTIFF_CHAR__ProjectedCSTypeGeoKey=PCS_NAD83_UTM_zone_15N
GEOTIFF_CHAR__ProjLinearUnitsGeoKey=Linear_Meter
GEOTIFF_NUM__1024__GTModelTypeGeoKey=1
GEOTIFF_NUM__1025__GTRasterTypeGeoKey=1
GEOTIFF_NUM__1026__GTCitationGeoKey=NAD83 / UTM zone 15N
GEOTIFF_NUM__2049__GeogCitationGeoKey=NAD83
GEOTIFF_NUM__2054__GeogAngularUnitsGeoKey=9102
GEOTIFF_NUM__2062__GeogTOWGS84GeoKey=0.000000,0.000000,0.000000
GEOTIFF_NUM__3072__ProjectedCSTypeGeoKey=26915
GEOTIFF_NUM__3076__ProjLinearUnitsGeoKey=9001
IMAGE__ENCODING_APPLICATION=GeoExpress 10.0.1.5035
IMAGE__FORMAT=MrSID/MG3
IMAGE__INPUT_FILE_SIZE=30104685840.000000
IMAGE__INPUT_FORMAT=GeoTIFF
IMAGE__LTI_ESDK_VERSION=9.5.4.5035.Bob_5011_br win64-vc15/Release_md

IMAGE__MODIFICATIONS=COMPRESSED CROPPED EMBEDDED REORDERED-BANDS MOSAICKED␣
→˓REPROJECTED

IMAGE__PRINT_DENSITY_UNIT=in
IMAGE__PRINT_X_DENSITY=200.000000
IMAGE__PRINT_Y_DENSITY=200.000000
VERSION=MG3

Image Structure Metadata:
INTERLEAVE=PIXEL

Corner Coordinates:
Upper Left ( 494792.400, 5018068.800) ( 93d 3'59.18"W, 45d18'57.98"N)
Lower Left ( 494792.400, 4948000.200) ( 93d 3'56.57"W, 44d41' 7.27"N)

(continues on next page)
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(continued from previous page)

Upper Right ( 524941.800, 5018068.800) ( 92d40'54.44"W, 45d18'56.45"N)
Lower Right ( 524941.800, 4948000.200) ( 92d41' 6.94"W, 44d41' 5.78"N)
Center ( 509867.100, 4983034.500) ( 92d52'29.30"W, 45d 0' 2.48"N)
Band 1 Block=1024x128 Type=Byte, ColorInterp=Red
Min=0.000 Max=228.000
Minimum=0.000, Maximum=228.000, Mean=86.853, StdDev=53.485
Overviews: 25125x58391, 12563x29196, 6282x14598, 3141x7299, 1571x3650, 786x1825,␣

→˓393x913, 197x457, 99x229, 50x115, 25x58, 13x29, 7x15, 4x8
Metadata:
STATISTICS_APPROXIMATE=YES
STATISTICS_MAXIMUM=228
STATISTICS_MEAN=86.853391304348
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=53.485489960597
STATISTICS_VALID_PERCENT=100

Band 2 Block=1024x128 Type=Byte, ColorInterp=Green
Min=0.000 Max=224.000
Minimum=0.000, Maximum=224.000, Mean=81.011, StdDev=45.552
Overviews: 25125x58391, 12563x29196, 6282x14598, 3141x7299, 1571x3650, 786x1825,␣

→˓393x913, 197x457, 99x229, 50x115, 25x58, 13x29, 7x15, 4x8
Metadata:
STATISTICS_APPROXIMATE=YES
STATISTICS_MAXIMUM=224
STATISTICS_MEAN=81.010782608696
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=45.552372785005
STATISTICS_VALID_PERCENT=100

Band 3 Block=1024x128 Type=Byte, ColorInterp=Blue
Min=0.000 Max=211.000
Minimum=0.000, Maximum=211.000, Mean=90.109, StdDev=48.708
Overviews: 25125x58391, 12563x29196, 6282x14598, 3141x7299, 1571x3650, 786x1825,␣

→˓393x913, 197x457, 99x229, 50x115, 25x58, 13x29, 7x15, 4x8
Metadata:
STATISTICS_APPROXIMATE=YES
STATISTICS_MAXIMUM=211
STATISTICS_MEAN=90.109217391304
STATISTICS_MINIMUM=0
STATISTICS_STDDEV=48.70795205406
STATISTICS_VALID_PERCENT=100

Note: You can use the extent values returned from gdalinfo (using Lower Left and Upper Right values) to paste into
your mapfile’s EXTENT parameter. You can also notice in that summary the PROJCS/AUTHORITY line, which states
that this data is currently in the EPSG:26915 projection.

Note: For Windows users, MS4W includes the gdalinfo utility, and all utilities mentioned here.
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Overviews

GeoTIFF supports the creation of “overviews” within the file, which is basically a downsampled version of the raster
data suitable for use at lower resolutions. Use the gdaladdo program to add overviews to a GeoTIFF, and MapServer
(via GDAL) will automagically choose which downsampled layer to use. Note that overviews significantly increase
the disk space required by a GeoTIFF, and in some cases the extra disk reading may offset the performance gained by
MapServer not having to resample the image. You’ll just have to try it for yourself and see how it works.

Tileindexes and Internal Tiling

Tiling is mostly effective for cases where one commonly requests only a very small area of the image.

A tileindex is how one creates an on-the-fly mosaic from many rasters. This is described in the Tile Indexes MapServer
document. That document describes common cases where a tileindex makes sense. In particular, if you have a very large
raster and most requests are for a very small spatial area within it, you may want to consider slicing it and tileindexing
it.

As an alternative to slicing and mosaicing, TIFFs do support a concept of internal tiling. Like a tileindex, this is mostly
effective when the requests are for a small portion of the raster. Internal tiling is done by adding “-co TILED=YES” to
gdal_translate, e.g.:

gdal_translate -co TILED=YES original.tif tiled.tif

Learn & Review the various GDAL utilities to manage your rasters

GDAL raster commandline utilities are very powerful, and the more processing that you can do offline, the faster and
easier it will be for MapServer to display your raster. For example, you might need a colorful ‘shaded relief’ from a
raw DEM raster, in which case you could use the gdaldem utility, and then point your MapServer layer to that shaded
relief raster. Or you might want to reproject all of your rasters to the desired output/display projection beforehand, by
using the gdalwarp utility. Review all of the available GDAL raster utilities here.

Handling your raster LAYERS in the mapfile

Please review the notes in the document Mapfile Tuning & Management.

Remote WMS

Some remote WMS/OGC services (as WMS actually returns an image from a request sent to a remote server) can be
slow or unreliable. Optionally you can use a monitoring service, such as GeoHealthCheck, to keep track of the service’s
reliability for you.

You can also consider when the remote WMS layer or remote service should be used. For example, there may be a
different WMS server (or a different set of imagery, or even vector outline maps) suitable for drawing the countries
or states to orient the user. You could then have the WMS layer come on at a certain scale, or have the layer always
available but turned off so the user can choose when to turn it on.
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Introduction

Tileindexes are MapServer’s method for doing on-the-fly mosaicing.

What is a tileindex and how do I make one?

A tileindex is a dataset (usually a shapefile) that ties together several datasets into a single layer. Therefore, you don’t
need to create separate layers for each piece of imagery or each county’s road data; make a tileindex and let MapServer
piece the mosaic together on the fly.

Making a tileindex is easy using gdaltindex for GDAL data sources (rasters) and ogrtindex for OGR data sources
(vectors). You just run them, specifying the index file to create and the list of data sources to add to the index.

Note: There is also the tile4ms utility, but it only handles shapefile mosaic/indexing.

For example, to make a mosaic of several GeoTIFFs, creating an index file named tileindex-tif.shp:

gdaltindex tileindex-tif.shp folder/*.tif

And to make a mosaic of vectors, creating an index file named tileindex-tiger.shp:
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ogrtindex tileindex-tiger.shp tiger/CA/*.shp tiger/NV/*.shp

If your data files are in different subfolders, you can use the –optfile switch for vectors or rasters to pass a file list to
ogrtindex/gdaltindex, such as:

#windows (create a file listing all .tif in subfolders)
dir /s/b *.tif > tif_list.txt
#unix
find . -name "*.tif" > tif_list.txt

#call gdaltindex with the --optfile switch
gdaltindex gdaltindex-dirs.shp --optfile tif_list.txt

Note: ogrtindex and gdaltindex add the specified files to the index. Sometimes you’ll have to delete the index file to
avoid creating duplicate entries.

Using the tileindex in your mapfile

Using a tileindex as a layer is best explained by an example:

LAYER
NAME "Roads"
STATUS ON
TYPE LINE
TILEINDEX "tiger/index.shp"
TILEITEM "LOCATION"

END

There are two items of note here: TILEINDEX and TILEITEM. TILEINDEX is simply the path to the index file, and
TILEITEM specifies the field in the shapefile which contains the filenames referenced by the index. The TILEITEM
will usually be “LOCATION” unless you specified the -tileindex option when running gdaltindex or ogrtindex.

Two important notes about the pathnames:

• The path to TILEINDEX follows the same conventions as for any other data source, e.g. using the SHAPEPATH
or else being relative to the location of the mapfile.

• The filenames specified on the command line to gdaltindex or ogrtindex will be used with the same conventions
as well, following the SHAPEPATH or else being relative to the mapfile’s location. You might find it useful
to change into the SHAPEPATH directory and then run ogrtindex/gdaltindex from there; this ensures correct
pathnames.

Tileindexes may make your map faster

A tileindex is often a performance boost for two reasons:

• It’s more efficient than having several separate layers.

• MapServer will examine the tileindex to determine which datasets fall into the map’s view, and will open only
those datasets. This can result in a great savings for a large dataset, especially for use cases where most of the
time only a very small spatial region of the data is being used. (for example, citywide maps with nationwide
street imagery)
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Tip: You can also run shptree on your tileindex file, so that MapServer can locate the associated feature/record faster.

A tileindex will not help in the case where all/most of the data sources will usually be opened anyway (e.g. street data
by county, showing states or larger regions). In that case, it may even result in a decrease in performance, since it may
be slower to open 100 files than to open one giant file.

The ideal case for a tileindex is when the most typically requested map areas fall into very few tiles. For example, if
you’re showing state and larger regions, try fitting your data into state-sized blocks instead of county-sized blocks; and
if you’re showing cities and counties, go for county-sized blocks.

You’ll just have to experiment with it and see what works best for your use cases.

Tileindexes with tiles in different projections

Starting with MapServer 6.4 for raster layers, and MapServer 7.2 for vector layers, a tileindex can contain rasters/layers
in different projections. Such tileindex can be generated with gdaltindex (GDAL 1.11 or later) and ogrtindex (GDAL
2.2 or later), with the -t_srs and -src_srs_name options. The -t_srs instructs gdaltindex/ogrtindex to write the envelope
of each tile into a common target projection, so that the geometries written in the tile index are consistent. This common
projection must be the projection of the raster/vector layer.

gdaltindex -t_srs EPSG:4326 -src_srs_name src_srs imagery.shp imagery/*.tif

The corresponding LAYER definition will need to specify the TILESRS keyword with the value of the -src_srs_name
option.

e.g:

LAYER
NAME "My Imagery"
STATUS ON
TYPE RASTER
TILEINDEX "imagery.shp"
TILEITEM "LOCATION"
TILESRS "src_srs"
PROJECTION

AUTO
# or :
# "+init=EPSG:4326"

END
END

MapServer will then be able to proceed to on-the-fly mosaicing and reprojection.

Note for WCS layers

For layers that must be exposed as WCS layers, a few metadata fields (“wcs_extent”, “wcs_size”, “wcs_resolution”)
must be specified in the LAYER definition, so as to define a “virtual dataset” coverage (see WCS Server). The GDAL
wcs_virtds_params.py sample script can help generating those metadata fields.
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Long ogrtindex example

This example uses TIGER Census data, where the data contains files divided up by county. In this example we will
show how to display all lakes for the state of Minnesota. The TIGER Census data for Minnesota is made up of 85
different counties, each containing its own lakes file (‘xxxx_areawater.shp’).

Figure 1: County lake files displayed in QGIS

Our directory structure looks like the following (‘tiger2020’ contains the 85 shapefiles):

- mainfolder
- data
- tiger2020

- tileindex.map

1. We need to generate the index file with ogrtindex. First we will change directory into the data folder, so that the
index file is generated there, then execute ogrtindex:

cd data
ogrtindex lakes-ogrtindex.shp tiger2020/*.shp

2. We can now load that new index file lakes-ogrtindex.shp into QGIS to examine it.

Figure 2: Index file created by ogrtindex utility
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Figure 3: Attributes of index file created by ogrtindex utility
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Note: Notice the relative paths in the LOCATION field, which is the default (and recommended) for ogrtindex. If you
need full/absolute paths you can use the -write_absolute_path switch.

3. A protip is to then run shptree on the ogrtindex file and all of the .shp files used, so MapServer can access them
quickly.

cd data
#windows command:
for /R %f in (*.shp) do shptree %f
#unix command:
find /path/to/data -name "*.shp" -exec shptree {} \;

You should now see associated .qix files created for each shapefile.

4. The final step is to use this in your mapfile.

• LAYER object’s TILEINDEX - must point to the location of the index file
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• LAYER object’s TILEITEM - specify the name of the field in the index file containing the paths (default
is ‘location’)

• do not need to use the LAYER’s DATA parameter

• the location path inside your tileindex file will be relative to the SHAPEPATH, as shown below:

For example:

MAP
NAME "tileindex-map"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -99.99 43.13 -86.70 49.60
UNITS DD
SHAPEPATH "./data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"
PROJECTION
"init=epsg:4269"

END # projection

/* Lakes: Tiger Census 2020 */
LAYER
NAME "lakes"
TYPE POLYGON
STATUS OFF
TILEITEM "LOCATION"
TILEINDEX "lakes-ogrtindex.shp"
PROJECTION
"init=epsg:4269"

END # projection
CLASS
NAME "Lakes"
STYLE
COLOR 134 204 249

END # style
END # class

END # layer

END # Map File

5. And of course use shp2img to generate your map image.

shp2img -m tileindex.map -o ttt.png -map_debug 3
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When you view the layer in a MapServer application, you will notice that when you are zoomed into a small
area of the state (such as a single county) only the necessary lake shapefiles are loaded, which speeds up the
application.

Long gdaltindex example

This example uses NAIP ortho imagery, for counties in the state of Minnesota. The format is MrSID. Since the data is so
large, for this exercise 6 counties were used (so 6 MrSID raster files). An example filename in this case is ortho_xxxx.sid

Figure 1: MrSID imagery displayed in QGIS
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Our directory structure looks like the following (‘naip2019’ contains the 6 MrSID images):

- mainfolder
- data
- naip2019

- tileindex.map

1. We need to generate the index file with gdaltindex. First we will change directory into the data folder, so that the
index file is generated there, then execute gdaltindex:

cd data
gdaltindex naip-imagery-gdaltindex.shp naip2019/*.sid

2. We can now load that new index file naip-imagery-gdaltindex.shp into QGIS to examine it.

Figure 2: Index file created by gdaltindex utility
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Figure 3: Attributes of index file created by gdaltindex utility

Note: Notice the relative paths in the LOCATION field, which is the default (and recommended) for gdaltindex. If
you need full/absolute paths you can use the -write_absolute_path switch.

3. A protip is to then run shptree on the gdaltindex file so MapServer can access it quickly.

cd data
shptree naip-imagery-gdaltindex.shp
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You should now see a .qix file created.

4. The final step is to use this in your mapfile.

• LAYER object’s TILEINDEX - must point to the location of the index file

• LAYER object’s TILEITEM - specify the name of the field in the index file containing the paths (default
is ‘location’)

• do not need to use the LAYER’s DATA parameter

• the location path inside your tileindex file will be relative to the SHAPEPATH, as shown below:

For example:

MAP
NAME "tileindex-map"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -99.99 43.13 -86.70 49.60
UNITS DD
SHAPEPATH "./data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"
PROJECTION
"init=epsg:4269"

END # projection

/* Ortho imagery: NAIP 2019 */
LAYER
NAME "ortho"
TYPE RASTER
STATUS ON
TILEITEM "LOCATION"
TILEINDEX "naip-imagery-gdaltindex.shp"
PROJECTION
"init=epsg:26915"

END # projection
END # layer

END # Map File

5. And of course use shp2img to generate your map image.

shp2img -m tileindex.map -o ttt.png -map_debug 3
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When you view the layer in a MapServer application, you will notice that when you are zoomed into a small
area of the state (such as a single county) only the necessary MrSID images are loaded, which speeds up the
application.
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– Index your data

∗ Tileindexing

∗ Add a Spatial Index to your data

∗ Add an Attribute Index to your data
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– Handling your vector LAYERS in the mapfile

– Shapefile Notes
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∗ Indexing with PostGIS
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∗ Verify that your table has a Spatial Index

∗ For WFS services, prevent using default/full extent

Choose the right vector format for your needs

• The best/optimal vector data source for MapServer in terms of speed-of-display is Shapefile.

• A recent format designed for vector performance, with similar map draw speed in MapServer as Shapefile, is
FlatGeobuf , and is recommended for cloud performance.

• For databases, MapServer displays PostGIS layers very fast, and some custom tricks are included in the
MapServer source specifically for PostGIS + MapServer draw speed. PostGIS is therefore recommended.

• SpatiaLite is recommended for those who require a portable format, and works very well with MapServer.

• GeoPackage (“GPKG”) is also very popular for portability, and works very well with MapServer.

Here are some rudimentary map draw speed results, with the upcoming MapServer 8.0 release code (running on Win-
dows with MS4W):

Shapefile 0.011s
FlatGeobuf 0.014s
GeoPackage 0.042s
SpatiaLite 0.045s
PostGIS 0.053s
GeoJSON 0.089s
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Spend time to review GDAL’s associated driver page for your chosen format

This is a critical step, as MapServer relies on GDAL (actually the OGR part of the project, which handles vectors) for
vector data access. Each driver (OGR format) has its own set of abilities and switches. Find your vector format and
review its options here.

Connect to your data through OGR/GDAL

For data management in MapServer, this should always be one of your first steps. Sometimes desktop GIS programs will
display a format or its attributes in a certain way (such as in uppercase) but your data might not display in MapServer;
checking how OGR/GDAL reads your data file or database table, will help you manage the data. The OGR Vector
Layers Through MapServer document has excellent examples (for ogrinfo and other commands) to connect to your
data. Here is an example connecting to a PostGIS database, and returning a list of spatial tables:

ogrinfo -ro PG:"host=127.0.0.1 user=postgres password=postgres port=5432 dbname=mydb"

INFO: Open of `PG:host=127.0.0.1 user=postgres password=postgres port=5432␣
→˓dbname=mydb'

using driver `PostgreSQL' successful.
1: popplace (Point)
2: province (Multi Polygon)

Then get a summary of the ‘popplace’ table through ogrinfo:

ogrinfo -ro PG:"host=127.0.0.1 user=postgres password=postgres port=5433 dbname=mydb"␣
→˓popplace -summary

INFO: Open of `PG:host=127.0.0.1 user=postgres password=postgres port=5433␣
→˓dbname=mydb'

using driver `PostgreSQL' successful.

Layer name: popplace
Geometry: Point
Feature Count: 497
Extent: (-2303861.750000, -681502.875000) - (2961766.250000, 3798856.750000)
Layer SRS WKT:
PROJCS["NAD83 / Canada Atlas Lambert",

GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4269"]],
PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["standard_parallel_1",49],
PARAMETER["standard_parallel_2",77],
PARAMETER["latitude_of_origin",49],

(continues on next page)
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(continued from previous page)

PARAMETER["central_meridian",-95],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AXIS["Easting",EAST],
AXIS["Northing",NORTH],
AUTHORITY["EPSG","3978"]]

FID Column = gid
Geometry Column = geom
area: Real (0.0)
perimeter: Real (0.0)
popplace_: Real (0.0)
popplace_i: Real (0.0)
unique_key: String (5.0)
name: String (25.0)
name_e: String (20.0)
name_f: String (20.0)
reg_code: Real (0.0)
nts50: String (7.0)
lat: String (7.0)
long: String (7.0)
sgc_code: Real (0.0)
capital: Real (0.0)
pop_range: Real (0.0)

Note: You can use the extent values returned from ogrinfo, to paste into your mapfile’s EXTENT parameter. You can
also notice in that summary the PROJCS/AUTHORITY line, which states that this data is currently in the EPSG:3978
projection.

Learn & Review the various OGR utilities to manage your vectors

OGR commandline utilities are very useful, making it easy to manipulate your source vector file or database, before
display in MapServer. For example, you might want to import a spatial file into your existing PostGIS database, which
you can do easily through ogr2ogr as the following (that takes a shapefile, imports it into an existing PostGIS database,
and renames the new table to ‘roadways’) :

ogr2ogr PG:"host=127.0.0.1 user=postgres password=postgres port=5432 dbname=mydb" road.
→˓shp -nln roadways

Note: where ogr2ogr syntax is actually: ogr2ogr destination source

You might also import a spatial file, and reproject it to another EPSG projection, as the following (that takes a shapefile,
reprojects it into the web mercator EPSG:3857, imports it into an existing PostGIS database, and renames the new table
to ‘roadways3857’) :

ogr2ogr -t_srs EPSG:3857 -s_srs EPSG:3978 PG:"host=127.0.0.1 user=postgres␣
→˓password=postgres port=5432 dbname=mydb" road.shp -nln roadways3857
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Note: where ogr2ogr syntax is actually: ogr2ogr -t_srs (ouput projection) -s_srs (source projection) destination
source

Review all of the available OGR vector utilities here.

Index your data

This of course is an important step for any vector layer, for fast display in MapServer. There are several types of indexes
that you can enable to speed up the display of your vector data with MapServer:

Tileindexing

See Tile Indexes for more detailed information about on-the-fly mosaicing with MapServer.

Add a Spatial Index to your data

Make sure that your geometry has a spatial index.

• Shapefile: see shptree

• See below for databases (and GPKG)

Add an Attribute Index to your data

If you will be querying or filtering by a specific column in your data, you should setup an attribute index on your vector
data.

Shapefiles:

ogrinfo -sql "CREATE INDEX ON province USING NAME_E" province.shp

2 files should be created with extensions: .ind & .idm

GeoPackage:

ogrinfo -sql "CREATE INDEX IDXnewindexname ON yourtable (yourcolumn)" file.gpkg

Splitting your data

If you find yourself making several layers, all of them using the same dataset but filtering to only use some of the
records, you could probably do it better. If the criteria are static, one approach is to pre-split the data.

The ogr2ogr utility can select on certain features from a datasource, and save them to a new data source. Thus, you
can split your dataset into several smaller ones that are already effectively filtered, and remove the FILTER statement.

If you are using shapefiles, the shp2tile utility is a wonderful commandline tool for this.

Note: For Windows users, MS4W includes the shp2tile utility, and all utilities mentioned here.
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Handling your vector LAYERS in the mapfile

Please review the notes in the document Mapfile Tuning & Management. You should also check for any specific
MapServer notes for your format in the Vector Data document.

Shapefile Notes

Use shptree to generate a spatial index on your shapefile. This is quick and easy (“shptree foo.shp”) and generates a
.qix file. MapServer will automagically detect an index and use it.

Note: Tileindexes can also be indexed with shptree.

MapServer also comes with the sortshp utility. This reorganizes a shapefile, sorting it according to the values in one
of its columns. If you’re commonly filtering by criteria and it’s almost always by a specific column, this can make the
process slightly more efficient.

Although shapefiles are a very fast data format, PostGIS is pretty speedy as well, especially if you use indexes well and
have memory to throw at caching.

PostGIS Notes

See also:
PostGIS Input in MapServer

Indexing with PostGIS

The single biggest boost to performance is indexing. Make sure that there’s a GIST index on the geometry column, and
each record should also have an indexed primary key. If you used shp2pgsql, then these statements should create the
necessary indexes:

ALTER TABLE table ADD PRIMARY KEY (gid);
CREATE INDEX table_the_geom ON table (the_geom) USING GIST;

PostgreSQL also supports reorganizing the data in a table, such that it’s physically sorted by the index. This allows
PostgreSQL to be much more efficient in reading the indexed data. Use the CLUSTER command, e.g.

CLUSTER the_geom ON table;

Then there are numerous optimizations one can perform on the database server itself, aside from the geospatial com-
ponent. The easiest is to increase shared_buffers in the postgresql.conf file, which allows PostgreSQL to use more
memory for caching. It is worth the time to investigate the various options in the Resource Consumption section of the
PostgreSQL documentation.
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Specifying a Unique ID column

To handle queries, MapServer requires a unique ID column, as part of your PostgreSQL table. MapServer will try to
guess the unique ID column, but that is costly as several more database queries have to be made; instead, you should
always specify a unique ID column in your DATA statement of the layer, with the using unique syntax, such as:

DATA "geom FROM mydata USING UNIQUE myid USING SRID=3857"

If your table does not have a unique ID column, you can add one such as:

ALTER TABLE mytable ADD COLUMN unique_id SERIAL PRIMARY KEY;

Warning: In older PostgreSQL versions, a (dirty) trick was to use the existing OID as the unique ID, however
OIDs were removed from PostgreSQL as of the PostgreSQL 12.0 release. So always specify an actual unique ID
column instead, in your layer’s DATA statement, of your mapfile.

Debugging speed issues with PostGIS

You may face a situation where your PostGIS table is drawing slowly in MapServer. The following steps will help you
examine the issue (using a WFS case) :

See also:
Debugging MapServer

• Always start by getting the draw time for your layer, with a shp2img command:

shp2img -m postgis-wfs.map -o ttt.png -map_debug 3

msDrawMap(): Layer 0 (provinces), 1.587s
msDrawMap(): Drawing Label Cache, 0.000s
msDrawMap() total time: 1.589s
msSaveImage(ttt.png) total time: 0.005s
freeLayer(): freeing layer at 010E0EC0.
msPostGISLayerIsOpen called.
msConnPoolClose(host=127.0.0.1 user=postgres password=postgres port=5432␣

→˓dbname=gmap,01197840)

• To diagnose if the problem is with your PostGIS table configuration, or with MapServer, execute the exact request
sent by MapServer, at the psql.exe commandline, by doing the following steps:

– add into your MAP-level of your mapfile:

CONFIG "CPL_DEBUG" "ON"
CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"
DEBUG 5

– add into your PostGIS LAYER of your mapfile:

DEBUG 5

– now use a WFS client such as QGIS and add your WFS PostGIS layer

– open “/ms4w/tmp/ms_error.txt” in Notepad++

13.1. Optimization 999



MapServer Documentation, Release 7.6.6

– search for “msPostGISLayerWhichShapes query:”

– that line should list the long exact query sent from MapServer to the PostreSQL instance, it may look like:

[Mon Apr 12 11:27:34 2021].207000 msPostGISLayerWhichShapes query:
SELECT "gid"::text,"area"::text,"perimeter"::text,"province_"::text,
→˓"province_i"::text,"status"::text,"name"::text,"name_e"::text,"name_f
→˓"::text,"reg_code"::text,"poly_featu"::text,"island"::text,"island_e
→˓"::text,"island_f"::text,ST_AsBinary(("geom"),'NDR')
as geom,"gid"::text FROM province WHERE "geom" &&
ST_GeomFromText('POLYGON((-5814679.36987815
-1504714.04276694,-5814679.36987815 4439806.52253364,5943763.33635122
4439806.52253364,5943763.33635122 -1504714.04276694,-5814679.36987815
-1504714.04276694))',3978) LIMIT 2 OFFSET 0

Note: For one QGIS action, there could be several queries sent to MapServer, so also look for other
“msPostGISLayerWhichShapes query:” instances in that error log.

– now connect to that database through psql.exe

psql -U postgres -p 5432 -d mydb

– using that error file line, grab everything from “SELECT”, and inside your database prompt, start the
command with “EXPLAIN ANALYZE” and then paste your full query, such as:

mydb=# EXPLAIN ANALYZE SELECT
"gid"::text,"area"::text,"perimeter"::text,"province_"::text,"province_i
→˓"::text,"status"::text,"name"::text,"name_e"::text,"name_f"::text,"reg_
→˓code"::text,"poly_featu"::text,"island"::text,"island_e"::text,"island_
→˓f"::text,ST_AsBinary(("geom"),'NDR')
as geom,"gid"::text FROM province WHERE "geom" &&
ST_GeomFromText('POLYGON((-5814679.36987815
-1504714.04276694,-5814679.36987815 4439806.52253364,5943763.33635122
4439806.52253364,5943763.33635122 -1504714.04276694,-5814679.36987815
-1504714.04276694))',3978) LIMIT 2 OFFSET 0;

– the response will tell you how long that query took, such as:

Execution time: 0.293 ms

– if the query takes a long time to execute at the psql commandline, then you know to focus your efforts on
improving the indexing/settings of your PostGIS table.

Databases in General (PostGIS, Oracle, SpatiaLite, GeoPackage, Microsoft SQL Server, MySQL)

Enable Connection Pooling

By default, MapServer opens and closes a new database connection for each database-driven layer in the mapfile. If
you have several layers reading from the same database, this doesn’t make a lot of sense. And with some databases
(such as Oracle) establishing connections takes enough time that it can become significant.

Try adding this line to your database layers:
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PROCESSING "CLOSE_CONNECTION=DEFER"

This causes MapServer to not close the database connection for each layer until after it has finished processing the
mapfile and this may shave a few seconds off of map generation times.

Set EXTENT at the LAYER level of mapfile

Also for performance, each of your LAYERs with a database connection should have EXTENT set at the layer level
(as well as ows_extent metadata if you are serving through OGC services), such as:

/* my database layer */
LAYER
NAME "provinces"
METADATA
"wms_title" "Land"
"wms_extent" "-2340603.75 -719746.0625 3009430.5 3836605.25" #this helps␣

→˓for performance
END #metadata
TYPE POLYGON
STATUS ON
CONNECTIONTYPE postgis
CONNECTION "host=127.0.0.1 user=postgres password=postgres port=5432␣

→˓dbname=gmap"
DATA "geom FROM province USING unique gid using srid=3978"
EXTENT -2340603.75 -719746.0625 3009430.5 3836605.25 #this helps for␣

→˓performance
PROJECTION
"init=epsg:3978"

END # projection
...

END # layer

Tip: PostGIS users can use the ST_Extent() spatial function to get the bounding box of a table, such as

SELECT ST_Extent(geom) as table_extent FROM province;

table_extent
----------------------------------------------------

BOX(-2340603.75 -719746.0625,3009430.5 3836605.25)
(1 row)
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Verify that your table has a Spatial Index

PostgreSQL/PostGIS example

Once connected through psql commandline, describe the table and look for an “Indexes” section, mentioning geometry,
such as:

Indexes:
"province_pkey" PRIMARY KEY, btree (ogc_fid)
"province_wkb_geometry_geom_idx" gist (wkb_geometry)

GeoPackage example

You can use ogrinfo to verify that your GPKG table’s geometry has a spatial index, which is very important for perfor-
mance (look for HasSpatialIndex (Integer) = 1 to confirm that the spatial index exists) :

ogrinfo -sql "SELECT HasSpatialIndex('countries', 'GEOMETRY')" countries.gpkg

Layer name: SELECT
Geometry: Unknown (any)
Feature Count: 1
Layer SRS WKT:
(unknown)
HasSpatialIndex: Integer (0.0)
OGRFeature(SELECT):0
HasSpatialIndex (Integer) = 1

and then add a spatial index with ogrinfo :

ogrinfo -sql "SELECT CreateSpatialIndex('parcelle_graphique', 'geom')" PARCELLES_
→˓GRAPHIQUES.gpkg

For WFS services, prevent using default/full extent

For your database connections, MapServer may (by default) use the full extents of your data while performing a query
(which can cause slow responses >30seconds). You should likely set the following layer METADATA to disable this:

METADATA
"wfs_use_default_extent_for_getfeature" "false"

END

Here is a fully enhanced layer example:

LAYER
NAME "CLUS"
METADATA
"ows_title" "CLUS"
"ows_srs" "EPSG:3857 EPSG:4326 EPSG:2154"
"wfs_getfeature_formatlist" "geojson"
"wfs_geomtype" "MultiPolygon"
"gml_featureid" "fid"

(continues on next page)
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(continued from previous page)

"gml_include_items" "all"
"gml_types" "auto"
"wfs_extent" "115134 6049690 1242200 7108930" #set to improve␣

→˓performance for all DB layers
"wfs_use_default_extent_for_getfeature" "false" #set to improve performance for all␣

→˓DB layers
"ows_enable_request" "*"

END #metadata
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "C:/ms4w/apps/RPG_2-0_GPKG_LAMB93_FR-2019/PARCELLES_GRAPHIQUES.gpkg"
DATA "parcelle_graphique"
EXTENT 115134 6049690 1242200 7108930 #set to improve performance for all DB layers
PROCESSING "CLOSE_CONNECTION=DEFER" #set to improve performance for all DB layers
STATUS ON
PROJECTION
"init=epsg:2154"

END #proj
COMPOSITE
OPACITY 100

END #composite
CLASS
NAME "CLUS"
STYLE
OUTLINECOLOR 255 0 255

END #style
END #class

END #layer
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FOURTEEN

UTILITIES

14.1 Utilities

14.1.1 legend

Purpose

Creates a legend from a mapfile. Output format depends on the graphics library used for rendering.

Syntax

legend [mapfile] [output image]

14.1.2 msencrypt

Purpose

Used to create an encryption key or to encrypt portions of connection strings for use in mapfiles (added in v4.10).
Typically you might want to encrypt portions of the CONNECTION parameter for a database connection. The following
CONNECTIONTYPEs are supported for using this encryption method:

• OGR

• Oracle Spatial

• PostGIS

• Microsoft SQL Server

Note also passwords for accessing secured WFS services can also be encrypted.
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Syntax

To create a new encryption key:

msencrypt -keygen [key_filename]

To encrypt a string:

msencrypt -key [key_filename] [string_to_encrypt]

Use in Mapfile

The location of the encryption key can be specified by two mechanisms, either by setting the environment variable
MS_ENCRYPTION_KEY or using a CONFIG directive in the MAP object of your mapfile. For example:

CONFIG MS_ENCRYPTION_KEY "/path/to/mykey.txt"

Use the { and } characters as delimiters for encrypted strings inside database CONNECTIONs in your mapfile. For
example:

CONNECTIONTYPE ORACLESPATIAL
CONNECTION "user/{MIIBugIBAAKBgQCP0Yj+Seh8==}@service"

Example

LAYER
NAME "provinces"
TYPE POLYGON
CONNECTIONTYPE POSTGIS
CONNECTION "host=127.0.0.1 dbname=gmap user=postgres password=iluvyou18 port=5432"
DATA "the_geom FROM province using SRID=3978"
STATUS DEFAULT
CLASS
NAME "Countries"
STYLE

COLOR 255 0 0
END

END
END

Here are the steps to encrypt the password in the above connection:

1. Generate an encryption key (note that this key should not be stored anywhere within your web server’s accessible
directories):

msencrypt -keygen "E:\temp\mykey.txt"

And this generated key file might contain something like:

2137FEFDB5611448738D9FBB1DC59055

2. Encrypt the connection’s password using that generated key:
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msencrypt -key "E:\temp\mykey.txt" "iluvyou18"

Which returns the password encrypted, at the commandline (you’ll use it in a second):

3656026A23DBAFC04C402EDFAB7CE714

3. Edit the mapfile to make sure the ‘mykey.txt’ can be found, using the “MS_ENCRYPTION_KEY” environment
variable. The CONFIG parameter inside the MAP object can be used to set an environment variable inside a
mapfile:

MAP
...
CONFIG "MS_ENCRYPTION_KEY" "E:/temp/mykey.txt"
...

END #mapfile

4. Modify the layer’s CONNECTION to use the generated password key, making sure to use the “{}” brackets
around the key:

CONNECTION "host=127.0.0.1 dbname=gmap user=postgres
password={3656026A23DBAFC04C402EDFAB7CE714} port=5432"

5. Done! Give your new encrypted mapfile a try with the shp2img utility!

14.1.3 scalebar

Purpose

Creates a scalebar from a mapfile. Output is either PNG or GIF depending on what version of the GD library used.

Syntax

scalebar [mapfile] [output image]

14.1.4 shp2img

Author
Jeff McKenna

Contact
jmckenna at gatewaygeomatics.com

Last Updated
2021-05-06

Table of Contents

• shp2img

– Purpose
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– Syntax

∗ Example #1 Generate a Map Image

∗ Example #2 Generate a Map Image with Draw Speeds

∗ Example #3 Generate a Map Image with Debug Information for all Layers

∗ Example #4 Generate a Map Image for a Specific Layer

∗ Example #5 Generate a Map Image for Specific (Multiple) Layers

Purpose

Creates a map image from a mapfile. Output is by default PNG, but you can specify other output formats defined in the
mapfile. This is a very useful utility to test your mapfile (and should always be your first test, before any tests through
a web browser or OGC client). You can simply provide the path to your mapfile and the name of an output image, and
an image should be returned. If an image cannot be created an error will be displayed at the commandline that should
refer to a line number in the mapfile.

Syntax

shp2img -m mapfile [-o image] [-e minx miny maxx maxy] [-s sizex sizey]
[-l "layer1 [layers2...]"] [-i format]
[-all_debug n] [-map_debug n] [-layer_debug n] [-p n] [-c n] [-d layername␣

→˓datavalue]
-m mapfile: Map file to operate on - required
-i format: Override the IMAGETYPE value to pick output format
-o image: output filename (stdout if not provided)
-e minx miny maxx maxy: extents to render
-s sizex sizey: output image size
-l layers: layers / groups to enable - make sure they are quoted and space separated if␣
→˓more than one listed
-all_debug n: Set debug level for map and all layers
-map_debug n: Set map debug level
-layer_debug layer_name n: Set layer debug level
-c n: draw map n number of times
-p n: pause for n seconds after reading the map
-d layername datavalue: change DATA value for layer

See also:
Debugging MapServer
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Example #1 Generate a Map Image

shp2img -m local.map -o test.png

Result
A file named ‘test.png’ is created, that you can drag into your browser to view.

Tip: These examples use the distributed working mapfile that every MS4W instance contains at /ms4w/apps/local-
demo/local.map

Example #2 Generate a Map Image with Draw Speeds

shp2img -m local.map -o test2.png -map_debug 3

Result
A file named ‘test2.png’ is created, and layer draw speeds are returned such as:

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 0 (ocean), 0.081s
msDrawMap(): Layer 1 (countries), 0.026s
msDrawMap(): Layer 2 (lakes), 0.009s
msDrawMap(): Layer 3 (ocean-labels), 0.010s
msDrawMap(): Drawing Label Cache, 0.039s
msDrawMap() total time: 0.167s
msSaveImage(test2.png) total time: 0.019s

Example #3 Generate a Map Image with Debug Information for all Layers

shp2img -m local.map -o test3.png -all_debug 3

Result
A file named ‘test3.png’ is created, layer draw speeds are returned, and some warnings that index qix files are
not found, such as:

msLoadMap(): 0.006s
msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msOGRFileOpen(demo.sqlite)...
OGROPen(D:\ms4w\apps\local-demo/.\./data/demo.sqlite)
msConnPoolRegister(ocean,demo.sqlite,015672C8)
msOGRLayerClose(demo.sqlite).
msOGRFileClose(D:\ms4w\apps\local-demo/.\./data/demo.sqlite,3).
msConnPoolRelease(ocean,demo.sqlite,015672C8)
msConnPoolClose(demo.sqlite,015672C8)
msDrawMap(): Layer 0 (ocean), 0.030s
msOGRFileOpen(demo.sqlite)...
OGROPen(D:\ms4w\apps\local-demo/.\./data/demo.sqlite)

(continues on next page)
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(continued from previous page)

msConnPoolRegister(countries,demo.sqlite,03561F40)
msOGRLayerClose(demo.sqlite).
msOGRFileClose(D:\ms4w\apps\local-demo/.\./data/demo.sqlite,0).
msConnPoolRelease(countries,demo.sqlite,03561F40)
msConnPoolClose(demo.sqlite,03561F40)
msDrawMap(): Layer 1 (countries), 0.020s
msOGRFileOpen(demo.sqlite)...
OGROPen(D:\ms4w\apps\local-demo/.\./data/demo.sqlite)
msConnPoolRegister(lakes,demo.sqlite,03517620)
msOGRLayerClose(demo.sqlite).
msOGRFileClose(D:\ms4w\apps\local-demo/.\./data/demo.sqlite,2).
msConnPoolRelease(lakes,demo.sqlite,03517620)
msConnPoolClose(demo.sqlite,03517620)
msDrawMap(): Layer 2 (lakes), 0.009s
msOGRFileOpen(demo.sqlite)...
OGROPen(D:\ms4w\apps\local-demo/.\./data/demo.sqlite)
msConnPoolRegister(ocean-labels,demo.sqlite,03517620)
msOGRLayerClose(demo.sqlite).
msOGRFileClose(D:\ms4w\apps\local-demo/.\./data/demo.sqlite,4).
msConnPoolRelease(ocean-labels,demo.sqlite,03517620)
msConnPoolClose(demo.sqlite,03517620)
msDrawMap(): Layer 3 (ocean-labels), 0.012s
msLayerIsVisible(): Skipping layer (places) because no CLASS in the layer is in-scale␣
→˓for this MAP scale
msDrawMap(): Drawing Label Cache, 0.004s
msDrawMap() total time: 0.075s
msSaveImage(test3.png) total time: 0.013s
shp2img total time: 0.096s

Example #4 Generate a Map Image for a Specific Layer

shp2img -m local.map -o test4.png -l "countries" -map_debug 3

Result
A file named ‘test4.png’ is created, and layer draw speeds are returned for 1 layer only, such as:

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 1 (countries), 0.036s
msDrawMap(): Drawing Label Cache, 0.002s
msDrawMap() total time: 0.038s
msSaveImage(test4.png) total time: 0.026s
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Example #5 Generate a Map Image for Specific (Multiple) Layers

Note: The syntax for specifying multiple layers is: -l “layer1 layer2 layer3 layer4”

shp2img -m local.map -o test5.png -l "countries lakes" -map_debug 3

Result
A file named ‘test5.png’ is created, and layer draw speeds are returned for only the 2 specified layers, such as:

msDrawMap(): rendering using outputformat named png (AGG/PNG).
msDrawMap(): WMS/WFS set-up and query, 0.000s
msDrawMap(): Layer 1 (countries), 0.037s
msDrawMap(): Layer 2 (lakes), 0.008s
msDrawMap(): Drawing Label Cache, 0.002s
msDrawMap() total time: 0.049s
msSaveImage(test5.png) total time: 0.011s

14.1.5 shptree

Purpose

Creates a quadtree-based spatial index for a Shape data set. The default tree depth is calculated so that each tree node
(quadtree cell) contains 8 shapes. Do not use the default with point files, a value between 6 and 10 seems to work ok.
Your millage may vary and you’ll need to do some experimenting.

The shptree wiki page may also contain information on this utility.

Description

This utility is a must for any MapServer application that uses Shape data sets. Shptree creates a spatial index of your
Shape data set, using a quadtree method. This means that MapServer will use this index to quickly find the appropriate
shapes to draw. It creates a file of the same name as your Shape data set, with a .qix file extension. The quadtree
method breaks the file into 4 quadrants, recursively until only a few shapes are contained in each quadrant. This
minimum number can be set with the <depth> parameter of the command.

Syntax

shptree <shpfile> [<depth>] [<index_format>]
Where:
<shpfile> is the name of the .shp file to index.
<depth> (optional) is the maximum depth of the inde

to create, default is 0 meaning that shptre
will calculate a reasonable default depth.

<index_format> (optional) is one of:
NL: LSB byte order, using new index format
NM: MSB byte order, using new index format

The following old format options are deprecated
N: Native byte order

(continues on next page)
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L: LSB (intel) byte order
M: MSB byte order

The default index_format on this system is: NL

Example

shptree us_states.shp
creating index of new LSB format

Result
A file named ‘us_states.qix’ is created in the same location. (note that you can use the shptreevis utility, described
next, to view the actual quadtree quadrants that are used by MapServer in this qix file)

Mapfile Notes

Shape data sets are native to MapServer, and therefore do not require the .shp extension in the DATA path of the
LAYER. In fact, in order for MapServer to use the .qix extension you MUST NOT specify the extension, for example:

LAYER
...
DATA "us_states" #MapServer will search for us_states.qix and will use it
...

END

LAYER
...
DATA "us_states.shp" #MapServer will search for us_states.shp.qix and won't find it
...

END

Note: As of MapServer 5.2 the qix will be used even when the .shp extension is specified

14.1.6 shptreetst

Purpose

Executes a spatial query on an existing spatial index (.qix), that was created by the shptree utility. This utility is useful
to understand how a search of a Shape data set and its qix index works.
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Syntax

shptreetst shapefile {minx miny maxx maxy}

Example

shptreetst esp 879827.480246 4317203.699447 884286.289767 4321662.508967

This new LSB index supports a shapefile with 48 shapes, 4 depth
shapes 6, node 4, -13702.315770,3973784.599548,1127752.921471,4859616.714055
shapes 5, node 3, -13702.315770,3973784.599548,614098.064712,4460992.262527
shapes 1, node 1, -13702.315770,3973784.599548,331587.893495,4241748.814186
shapes 1, node 0, 141678.278400,3973784.599548,331587.893495,4121164.917599
shapes 1, node 0, 268807.855447,4193028.047889,614098.064712,4460992.262527
shapes 1, node 0, 268807.855447,3973784.599548,614098.064712,4241748.814186
shapes 7, node 4, -13702.315770,4372409.051076,614098.064712,4859616.714055
shapes 1, node 0, -13702.315770,4372409.051076,331587.893495,4640373.265714
shapes 3, node 1, -13702.315770,4591652.499417,331587.893495,4859616.714055
shapes 1, node 0, -13702.315770,4712236.396004,176207.299326,4859616.714055
shapes 2, node 0, 268807.855447,4372409.051076,614098.064712,4640373.265714
shapes 3, node 2, 268807.855447,4591652.499417,614098.064712,4859616.714055
shapes 2, node 0, 424188.449617,4712236.396004,614098.064712,4859616.714055
shapes 1, node 0, 424188.449617,4591652.499417,614098.064712,4739032.817468
shapes 2, node 1, 499952.540988,3973784.599548,1127752.921471,4460992.262527
shapes 2, node 0, 499952.540988,4193028.047889,845242.750254,4460992.262527
shapes 5, node 3, 499952.540988,4372409.051076,1127752.921471,4859616.714055
shapes 1, node 1, 499952.540988,4372409.051076,845242.750254,4640373.265714
shapes 1, node 0, 655333.135158,4372409.051076,845242.750254,4519789.369127
shapes 1, node 0, 499952.540988,4591652.499417,845242.750254,4859616.714055
read entire file now at quad box rec 20 file pos 1084
result of rectangle search was
8, 10, 36, 37, 38, 39, 42, 46,

Result
The above output from the shptreetst command tells us that the existing .qix index is for a Shape data set that
contains 48 shapes; indeed the Shape data set used in this example, esp.shp, contains 48 polygons of Spain. The
command also tells us that qix file has a quadtree depth of 4.

Most importantly, the resulting shape IDs (or feature IDs) that were contained in the bounding box that we passed
in our example were returned at the bottom of the output: “8, 10, 36, 37, 38, 39, 42, 46”. You can use a tool such
as QGIS to view those feature IDs and check what shapes MapServer is querying when a user clicks within that
bounding box.

. index::
pair: Utility; shptreevis
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14.1.7 shptreevis

Purpose

This utility can be used to view the quadtree quadrants that are part of a .qix file (that was created with the shptree
utility).

Syntax

shptreevis shapefile new_shapefile

Example

shptreevis us_states.shp quad.shp
This new LSB index supports a shapefile with 2895 shapes, 10 depth

Result
A Shape data set named ‘quad.shp’ is created. You can now view this Shape data set in a desktop GIS (such as
QGIS for example) to see the quadtrees that were created with the shptree command, as shown below.

Figure: shptreevis result displayed in QGIS
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14.1.8 sortshp

Purpose
Sorts a Shape data set based on a single column in ascending or descending order. Supports IN-
TEGER, DOUBLE and STRING column types. Useful for prioritizing shapes for rendering and/or
labeling.

Description
The idea here is that if you know that you need to display a certain attribute classed by a certain value,
it will be faster for MapServer to access that value if it is at the beginning of the attribute file.

Syntax

sortshp [infile] [outfile] [item] [ascending|descending]

Example
This example uses a roads file (‘roads_ugl’) that has a field with road classes in integer format
(‘class1’).

sortshp roads_ugl roads-sort class1 ascending

Result
A new Shape data set named ‘roads-sort.shp’ is created with shapes sorted in ascending order, ac-
cording to the values in the ‘class1’ field, as shown below.

Figure1: Attributes Before sortshp

Figure2: Attributes After sortshp
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14.1.9 sym2img

Purpose

Creates a graphic dump of a symbol file. Output is either PNG or GIF depending on what version of the GD library
used. (this utility is not currently included in pre-compiled packages, due to issues mentioned in bug#506)

Syntax

sym2img [symbolfile] [outfile]

14.1.10 tile4ms

Purpose

Creates a tile index shapefile for use with MapServer’s TILEINDEX feature. The program creates a shapefile of rect-
angles from extents of all the shapefiles (.shp) listed in [metafile] (one shapefile name per line) and the associated DBF
with the filename for each shape tile in a column called LOCATION as required by mapserv.

Note: Similar functionality can be found in the GDAL commandline utilities ogrtindex (for vectors) and gdaltindex
(for rasters), that have the added benefit of supporting indexing of any supported GDAL driver/format. For more
information (and detailed steps) see Tile Indexes.
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Description

This utility creates a shapefile containing the MBR (minimum bounding rectangle) of all shapes in the files (actually
shapefiles) provided, which can then be used in the LAYER object’s TILEINDEX parameter of the mapfile. The new
filed created with this command is used by MapServer to only load the files associated with that extent (or tile).

Syntax

tile4ms <meta-file> <tile-file> [-tile-path-only]
<meta-file> INPUT file containing list of shapefile names

(complete paths 255 chars max, no extension)
<tile-file> OUTPUT shape file of extent rectangles and names

of tiles in <tile-file>.dbf
-tile-path-only Optional flag. If specified then only the path to the

shape files will be stored in the LOCATION field
instead of storing the full filename.

Short Example

Create tileindex.shp for all tiles under the /path/to/data directory:

<on Unix>

cd /path/to/data
find . -name "/*.shp" -print > metafile.txt
tile4ms metafile.txt tileindex

<on Windows>

dir /b /s *.shp > metafile.txt
tile4ms metafile.txt tileindex

Long Example

This example uses TIGER Census data, where the data contains files divided up by county (in fact there are over 3200
counties, a very large dataset indeed). In this example we will show how to display all lakes for the state of Minnesota.
(note that here we have already converted the TIGER data into Shape format, but you could keep the data in TIGER
format and use the ogrtindex utility instead) The TIGER Census data for Minnesota is made up of 87 different counties,
each containing its own lakes file (‘wp.shp’).

1. We need to create the ‘meta-file’ for the tile4ms command. This is a text file of the paths to all ‘wp.shp’ files for
the MN state. To create this file we can use a few simple commands:

DOS: dir wp.shp /b /s > wp_list.txt
(this includes full paths to the data, you might want to edit the txt
file to remove the full path)

UNIX: find -name *wp.shp -print > wp_list.txt

The newly created file might look like the following (after removing the full path):
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001\wp.shp
003\wp.shp
005\wp.shp
007\wp.shp
009\wp.shp
011\wp.shp
013\wp.shp
015\wp.shp
017\wp.shp
019\wp.shp
...

2. Execute the tile4ms command with the newly created meta-file to create the index file:

tile4ms wp_list.txt index
Processed 87 of 87 files

3. A new file named ‘index.shp’ is created. This is the index file with the MBRs of all ‘wp.shp’ files for the entire
state, as shown in Figure1. The attribute table of this file contains a field named ‘LOCATION’, that contains the
path to each ‘wp.shp file’, as shown in Figure2.

Figure 1: Index file created by tile4ms utility

Figure 2: Attributes of index file created by tile4ms utility
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4. The final step is to use this in your mapfile.

• LAYER object’s TILEINDEX - must point to the location of the index file

• LAYER object’s TILEITEM - specify the name of the field in the index file containing the paths (default
is ‘location’)

• do not need to use the LAYER’s DATA parameter

For example:

LAYER
NAME 'mn-lakes'
STATUS ON
TILEINDEX "index"
TILEITEM "location"
TYPE POLYGON
CLASS
NAME "mn-lakes"
STYLE
COLOR 0 0 255

END
END

END

When you view the layer in a MapServer application, you will notice that when you are zoomed into a small area of
the state (such as a single county) only those necessary lake shapefiles are loaded, which speeds up the application.
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14.1.11 Batch Scripting

If you need to run the utilities on multiple files/folders, here are some commands that will help you:

Windows

type the following at the command prompt:

for %f in (*.shp) do shptree %f

or to run recursively (throughout all subfolders):

for /R %f in (*.shp) do shptree %f

Linux

find /path/to/data -name "*.shp" -exec shptree {} \;

14.1.12 File Management

File Placement

MapServer requires a number of different files to execute. Except for graphics that are referenced in output templates
(i.e. web pages) none of the data or configuration files need be accessible via a web server. File naming for MapServer
follows two rules:

1. Files may be given using their full system path. or

2. Files may be given using a relative path where the path is relative to the location of the file they are being
referenced from.

So, for files referenced in the Mapfile they can be given relative to the location of the Mapfile. Same holds true for
symbol sets and font sets.

Temporary Files

MapServer also can produce a number of files (i.e. maps, legends, scalebars, etc. . . ). These files must be accessible
using a web server. To accomplish this MapServer creates these files in a scratch directory. The location of that
directory is given using the IMAGEPATH and IMAGEURL parameters in the web section of a Mapfile. The scratch
directory must be writable by the user that the web server runs under, usually nobody. It is recommended for security
reasons that the web user own the scratch directory rather than making it world writable. The scratch area will need to
be cleaned periodically. On busy sites this may need to happen several times an hour. Here’s an example shell script
that could be run using cron:

#!/bin/csh

find /usr/local/www/docs/tmp -follow -name "*.gif" -exec rm {} \;
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Windows

The following .bat file can be used in ‘Scheduled Tasks’ to remove these temporary images daily:

REM this script deletes the contents of the ms_tmp directory
REM (i.e. the MapServer-created gifs)

cd D:\ms4w\tmp\ms_tmp
echo Y | del *.*
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15.1.1 MapServer CGI Introduction

Notes

• Variable names are not case sensitive.

• In cases where multiple values are associated with a variable (eg. mapext), the values must be separated by
spaces (or their escaped equivalents for GET requests).

• Variable contents are checked for appropriate data types and magnitude as they are loaded.

• Any CGI Variable not listed below is simply stored and can be referenced within a template file.
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Changes

From MapServer version 4.x to version 5.x

• Modifying map parameters through a URL has changed to allow for chunks of a mapfile to be modified at once.
The syntax has changed accordingly, so please see the Changing map file parameters via a form or a URL section.

From MapServer version 3.x to version 4.x

• New way to perform attribute queries: No longer do you set a layer filter, but rather you pass a query string (and
optionally a query item) to the query function. To do this two new CGI parameters were added to MapServer:
QSTRING and QITEM.

• SAVEMAP is switched off: The SAVEMAP functionality is considered insecure, since the saved files are acces-
sible by everyone.

• TEMPLATE has been removed, since the map_web_template syntax can be used to alter a template file. Simpli-
fies security maintenance by only having to deal with this option in a single place. Note that the TEMPLATEPAT-
TERN of the mapfile has to be used to enable this feature.

15.1.2 mapserv

The CGI interface can be tested at the commandline by using the “QUERY_STRING” switch, such as:

mapserv "QUERY_STRING=map=/ms4w/apps/local-demo/local.map&mode=map"

To suppress the HTTP headers, you can use the “-nh” switch, such as:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/local-demo/local.map&mode=map"

To save the output into an image file, use the pipe command such as:

mapserv -nh "QUERY_STRING=map=/ms4w/apps/local-demo/local.map&mode=map" > test.png

15.1.3 Map Context Files

Support for Local Map Context Files

There is a CGI parameter called CONTEXT that is used to specify a local context file. The user can then use MapServer
to request a map using the following syntax:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
/path/to/contextfile.xml&LAYERS=layer_name1 layers_name2

Note: All layers created from a context file have their status set to ON. To be able to display layers, the user needs to
add the LAYERS argument in the URL.
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Support for Context Files Accessed Through a URL

The syntax of using a web accessible context file would be similar to accessing a local context file:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
http://URL/path/to/contextfile.xml&LAYERS=layers_name1 layer_name2

Due to security concerns loading a file from a URL is disabled by default. To enable this functionality, the user needs to
set a CONFIG parameter called CGI_CONTEXT_URL in the default map file that will allow this functionality. Here
is an example of a map file with the CONFIG parameter:

# Start of map file
NAME DEMO
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
CONFIG "CGI_CONTEXT_URL" "1"
...

Default Map File

To smoothly run a MapServer CGI application with a Map Context, the application administrator needs to provide a
default map file with at least the basic required parameters that will be used with the Context file. This default map file
can contain as little information as the imagepath and imageurl or contain a list of layers. Information coming from the
context (e.g.: layers, width, height, â€¦) would either be appended or will replace values found in the map file.

Here is an example of a default map file containing the minimum required parameters:

NAME CGI-CONTEXT-DEMO
STATUS ON
SIZE 400 300
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
IMAGECOLOR 255 255 255
IMAGETYPE png
#
# Start of web interface definition
#
WEB
MINSCALE 2000000
MAXSCALE 50000000

#
# On Windows systems, /tmp and /tmp/ms_tmp/ should be created at the root
# of the drive where the .MAP file resides.
#
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END
END # Map File
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15.1.4 MapServer CGI Controls

Variables

Variable names are not case sensitive.

BUFFER [distance]
A distance, in the same coordinate system as the map file, used in conjunction with MAPXY to create an new
map extent.

CLASSGROUP [name]
The name of a LAYER CLASSGROUP. Set the LAYER CLASSGROUP to name for all layers that have at least
one CLASS that is using the given CLASSGROUP name.

CONTEXT [filename]
Path to a context file. Path is relative to the map file to be used, or can also be a URL path (See the section “Map
Context Support Through CGI” below for more details).

ICON [layername],[classindex]
Used in MODE=legendicon to generate a legend icon for a layer. The class index value is optional and defaults
to 0.

ID [id-string]
By default MapServer generates a unique session id based on system time and process id. This parameter over-
writes the default.

IMG
The name associated with the inline map image used to record user clicks. What actually is passed are two
variables, img.x and img.y.

For the CGI Applications this is an essential variable, see the examples for sample usage.

IMGBOX [x1] [y1] [x2] [y2]
Coordinates (in pixels) of a box drag in the image. Most often used in conjunction with Java based front ends to
the MapServer.

IMGEXT [minx] [miny] [maxx] [maxy]
The spatial extent of the existing inline image, that is, the image the users can see in their browser.

IMGSHAPE [x1 y1 x2 y2 x3 y3 . . . ] | [WKT]
An arbitrary polygon shape (specified using image coordinates) to be used for query purposes.

The polygon is specified by listing its coordinates (multiple instances simply add parts to the shape so it is possible
to construct a shape with holes) or by specifying the WKT (Well Known Text) representation.

Used with the NQUERY mode.

IMGSIZE [cols] [rows]
The size (in pixels) of the exiting inline image.

IMGXY [x] [y]
Coordinates (in pixels) of a single mouse click. Used most often in conjunction with Java based front ends to the
MapServer.

LAYER [name]
The name of a layer as it appears in the map file. Sending mapserv a layer name sets that layer’s STATUS to ON.

LAYERS [name name . . . ]
The names of the layers to be turned on. Layer names must be separated by spaces.

Version 4.4 and above: passing ‘LAYERS=all’ will automatically turn on all layers.
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MAP [filename]
Path, relative to the CGI directory, of the map file to be used.

MAPEXT [minx] [miny] [maxx] [maxy] , MAPEXT (shape)
The spatial extent of the map to be created.

Can be set to shape as an alternative option. In this case mapextent is set to the extent of a selected shape. Used
with queries.

MAPSHAPE [x1 y1 x2 y2 x3 y3 . . . ] | [WKT]
An arbitrary polygon shape (specified using map coordinates) to be used for query purposes.

The polygon is specified by listing its coordinates (multiple instances simply add parts to the shape so it is possible
to construct a shape with holes) or by specifying a WKT (Well Known Text) representation of the polygon.

Used with the NQUERY mode.

MAPSIZE [cols] [rows]
The size (in pixels) of the image to be created. Useful for allowing users to change the resolution of the output
map dynamically.

MAPXY [x] [y] , MAPXY (shape)
A point, in the same coordinate system as the shapefiles, to be used in conjunction with a buffer or a scale to
construct a map extent.

Can be set to shape as an alternative option. In this case mapextent is set to the extent of a selected shape. Used
with queries.

MINX | MINY | MAXX | MAXY [number]
Minimum/Maximum x/y coordinate of the spatial extent for a new map/query. This set of parameters are the
pieces of MAPEXT.

MODE [value]
Mode of operation. The following options are supported:

BROWSE
Fully interactive interface where maps (and interactive pages) are created. This is the default mode.

COORDINATE
Returns a string of map coordinates based on a user click on an image.

mapserv.exe?map=/ms4w/apps/local-demo/local.map&MODE=coordinate&IMGEXT=0 0 100␣
→˓100&IMGXY=10 10

FEATURENQUERY
A spatial search that uses multiple features from SLAYER to query other layers.

FEATUREQUERY
A spatial search that uses one feature from SLAYER to query other layers.

INDEXQUERY
Looks up a feature based on the values of SHAPEINDEX and TILEINDEX parameters. SHAPEINDEX
is required, TILEINDEX is optional and is only used with tiled shapefile layers.

ITEMFEATURENQUERY
A text search of attribute data is triggered using a QSTRING. Returns all matches. Layer to be searched is
defined using slayer parameter. The results of this search are applied to other searchable layers (which can
be limited using the QLAYER parameter).

ITEMFEATUREQUERY
A text search of attribute data is triggered using a QSTRING. Returns first match. Layer to be searched is
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defined using slayer parameter. The results of this search are applied to other searchable layers (which can
be limited using the QLAYER parameter).

ITEMNQUERY
A text search of attribute data is triggered using a QSTRING. Returns all matches.

ITEMQUERY
A text search of attribute data is triggered using a layer QSTRING. Returns 1st match.

LEGEND
The created legend is returned. Used within an <img . . . > tag.

LEGENDICON
A legend icon is returned. The ICON parameter must also be used to specify the layername and a class
index. Class index value is optional and defaults to 0. For example:

mapserv.exe?map=/ms4w/apps/local-demo/local.map&MODE=legendicon&ICON=countries,0

MAP
The created map is returned. Used within an <img . . . > tag.

NQUERY
A spatial search (finds all) is triggered by a click in a map or by user-define selection box.

QUERY
A spatial search (finds closest) is triggered by a click in a map.

REFERENCE
The created reference map is returned. Used within an <img . . . > tag.

SCALEBAR
The created scalebar is returned. Used within an <img . . . > tag.

TILE
Generate a map tile. See Tile Mode for details.

ZOOMIN
Switch to mode BROWSE with ZOOMDIR=1

ZOOMOUT
Switch to mode BROWSE with ZOOMDIR=-1

Note: The previously available map-only query modes, e.g. ITEMQUERYMAP, are no longer supported. The
QFORMAT parameter is now used instead.

QFORMAT [outputformat | mime/type] (optional)
The OUTPUTFORMAT name or mime/type to be used to process a set of query results (corresponds to the WEB
object’s QUERYFORMAT parameter). The parameter is optional and used in conjunction with query MODEs.
The default is text/html.

Example (map output):

...&mode=nquery&qformat=png24&...

QITEM [name] (optional)
The name of an attribute in a layer attribute table to query on. The parameter is optional and used in conjunction
with the QSTRING for attribute queries.

QLAYER [name]
Query layer. The name of the layer to be queried as it appears in the map file.

15.1. CGI 1026



MapServer Documentation, Release 7.6.6

QSTRING [expression]
Attribute queries: Query string passed to the query function. Since 5.0, qstring will have to be specified in
the VALIDATION parameter of the LAYER for qstring queries to work (qstring_validation_pattern LAYER-level
METADATA for MapServer versions prior to 5.4).

QUERYFILE [filename]
Used with BROWSE or NQUERY mode. This option identifies a query file to load before any regular processing.
In BROWSE mode this result in a query map being produced instead of a regular map. This is useful when you
want to hilite a feature while still in a pan/zoom mode. In NQUERY mode you’d gain access to any of the
templates used in normally presenting the query, so you have access to query maps AND attribute information.
See the SAVEQUERY option.

REF
The name associated with the inline reference map image used to record user clicks. What actually is passed are
two variables, ref.x and ref.y.

For the CGI Applications this is an essential variable when reference maps are used, see the examples for sample
usage.

REFXY [x] [y]
Coordinates (in pixels) of a single mouse click in the reference image. Used in conjunction with Java based front
ends to the MapServer.

SAVEQUERY
When used with any of the query modes this tells the MapServer to save the query results to a temporary file for
use in subsequent operations (see QUERYFILE). Useful for making queries persistent.

SCALEDENOM [number]
Scale to create a new map at. Used with mapxy. Scale is given as the denominator of the actual scale fraction, for
example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated
SCALE parameter.

SCALE [number] - deprecated
Since MapServer 5.0 the proper parameter to use is SCALEDENOM instead. The deprecated SCALE is the
scale to create a new map at. Used with mapxy. Scale is given as the denominator of the actual scale fraction,
for example for a map at a scale of 1:24,000 use 24000.

SEARCHMAP
It is possible to do pan/zoom interfaces using querymaps. In these cases you will likey want information about the
contents of the new map rather than the previous map which is the normal way queries work. When searchmap
is specified the new map is created and it’s extent is used to query layers. Useful with NQUERY mode only.

SHAPEINDEX [index]
Used for index queries (in conjunction with INDEXQUERY).

SLAYER [name]
Select layer. The name of the layer to be used for any of the feature (i.e. staged) query modes. The select layer
must be a polygon layer. The selection feature(s) are available for presentation to the user.

TILEINDEX [index]
Used for index queries (in conjunction with INDEXQUERY), used with tiled shapefile layers.

ZOOM [number]
Zoom scaling to apply to the creation of the new map. Values greater than 0 resulting in zooming in, 0 is a pan,
and values less than zero are for zooming out. A value of 2 means “zoom in twice”.

ZOOM can be used as a shortcut for the combination ZOOMDIR/ZOOMSIZE. The zoom is limited by the
MINZOOM/MAXZOOM settings compiled into the MapServer (-25/25) by default.

ZOOMDIR [1 | 0 | -1]
Direction to zoom. See above.
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ZOOMSIZE [number]
Absolute magnitude of a zoom. Used with ZOOMDIR.

ZOOMDIR is limited to MAXZOOM compiled into the MapServer (25 by default).

Changing map file parameters via a form or a URL

Beginning with version 3.3 it is possible to change virtually any map file value from a form or a URL (see Run-time
Substitution). The syntax for this is fairly straightforward, and depends on what version of MapServer you are using.
One potentially very powerful use of this ability to change mapfile parameters through a URL involves changing class
expressions on-the-fly. VALIDATION is used to control run-time substition. Try it out.

Warning: This functionality is only available via the mapserv CGI application. Within MapScript this is easy to
do by yourself since the developer has complete control over how input is handled.

Using MapServer version >= 5

Previous versions of the MapServer CGI program allowed certain parameters to be changed via a URL using a cum-
bersome syntax such as map_layer_0_class_0_color=255+0+0 which changes the color in one classObj. So, in the past
you had to change parameters one-at-a-time. Now you can pass chunks of mapfiles (with security restrictions) to the
CGI interface. The map_object notation is still necessary to identify which object you want to modify but you can
change multiple properties at one time. Note that you can use either a ‘_’ or a ‘.’ to separate identifiers.

Example 1, changing a scalebar object:

...&map.scalebar=UNITS+MILES+COLOR+121+121+121+SIZE+300+2&...

Example 2, changing a presentation style:

...&map.layer[lakes].class[0].style[0]=SYMBOL+crosshatch+COLOR+151+51+151+SIZE+15&...

Example 3, creating a new feature:

...&map_layer[3]=FEATURE+POINTS+500000+1000000+END+TEXT+'A+test+point'+END&...

Example 4, set multiple web object parameters:

...&map_web=imagepath+/ms4w/tmp/ms_tmp/+imageurl+/ms_tmp/

Example 5, set the map size:

...&map_size=800+400

The variable identifies an object uniquely (by name or index in the case of layerObj’s and classObj’s). The value is a
snippet of a mapfile. You cannot create new objects other than inline features at this point.
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Using MapServer version < 5

For MapServer version < 5, any value can be expressed using the hierarchy used in a map file. A map contains a
layer, which contains a class, which contains a label, which has a color. This hierarchy is expressed as a sequence of
MapServer keywords separated by underscores. For example to change the color of a layer called “lakes” with only one
class defined you would use a form variable named “map_lakes_class_color” and could assign it a color like “0 0 255”.
Layers can be referenced by index (i.e. map_layer_0. . . ) or by name as shown above. Layer classes are referenced by
index value (i.e. map_layer_0_class_2). If there is only 1 class for a layer then the index should be omitted. These
variables must always begin with the sequence “map_”. Values assigned must conform to the syntax of a map file.

It is also possible to define inline features using this mechanism. This is the only case where you can add on to the
map file. You can edit/change layer parameters but you cannot create a new layer. With inline features you have to first
create a feature and then build upon it, however, the layer the feature belongs to must exist. Here’s a snippet from a
GET request that adds a feature to a webuser layer:

...&map_webuser_feature=new&map_webuser_feature_points=12345.6789+12345.6789
&map_webuser_feature_text=My+House!&...

The “map_webuser_feature=new” creates a new feature for the webuser layer. All subsequent calls to the feature object
for that layer will modify the new feature. You can repeat the process to create additional features. This is really
intended for very small (point, rectangle) amounts of data.

Specifying the location of mapfiles using an Apache variable

Apache variables can be used to specify the location of map files (instead of exposing full mapfile paths to the outside
world).

1. Set the variable (in this example MY_MAPFILE) in Apache’s httpd.conf:

SetEnv MY_MAPFILE "/opt/mapserver/map1/mymapfile.map"

2. Refer to the variable in the mapserver CGI URL:

http://localhost/cgi-bin/mapserv?map=MY_MAPFILE&mode=...

ROSA-Applet Controls

note: Active development and maintenance of the ROSA Applet has stopped

The ROSA Applet parameters were added to the CGI MapServer in version 3.6. This Java Applet provides a more
intuitive user interface to MapServer. The MapTools site provides detailed information on the ROSA Applet.

The parameters can also be used by other interfaces/tools, if set to the right values. Please note that the two parameters
have to be handed over to te CGI application in the order identified below.

INPUT_TYPE (auto_rect | auto_point)
The INPUT_TYPE parameter is needed to identify if the coordinates handed over to the mapserver have to be
interpreted as rectangular or point data.

INPUT_COORD [minx,miny;maxx,maxy]
The ROSA-Applet always fills the pair of coordinates. In case of a point (input_type=auto_point) min and max
coordinate are equal (MapServer uses the min value).

15.1. CGI 1029



MapServer Documentation, Release 7.6.6

15.1.5 Run-time Substitution
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Steve Lime

Contact
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Last Updated
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– Default values if not provided in the URL

– VALIDATION

– Magic values

Introduction

Run-time substitution for the MapServer CGI has been around since version 4.0 and it’s use has continued to expand.
In short, it allows you to alter portions of a mapfile based on data passed via a CGI request.

Warning: This functionality is only available via the mapserv CGI application. Within MapScript this is easy to
do by yourself since the developer has complete control over how input is handled.

Case sensitivity

Since version 6.4, CGI parameter names are not case sensitive. CGI parameter values are case sensitive.

Basic Example

Let’s say you’d like the user to dynamically set a portion of an expression so they could highlight a certain land cover
class, and you have a form element (called ctype) that allows them to choose between: forest, water, wetland and
developed.

A request should look like (assuming “marsh” is a valid land cover class):

http://...mapserv?map=....&ctype=marsh

You could then set up a layer like so:
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LAYER
NAME 'covertypes'
...
VALIDATION

"ctype" "^[a-z]{5,10}$"
END
CLASSITEM 'type'
CLASS # highlighted presentation

EXPRESSION '%ctype%'
...

END
CLASS # default presentation

...
END

END

Values for the ctype parameter are limited to lower-case characters a to z and the value can be from 5 to 10 characters
long. The regex start (^) and end ($) anchors are important in limiting values - always use them.

When a request is processed, the value for ctype is substituted for the string %ctype% and the mapfile is processed as
normal. If no ctype is passed in, the EXPRESSION will never be true so it doesn’t really hurt anything except for a
slight performance hit. Often you would set a default class to draw features that don’t match, but that is not required.

Parameters Supported

Not every mapfile parameter supports run-time substitution and care has been taken to try and support those that
make the most sense. All parameters must be validated. Remember, you also can do run-time configuration using the
map_object_property type syntax detailed in Changing map file parameters via a form or a URL. Below is a list of
properties that do allow run-time substitution:

• CLASS: EXPRESSION

• CLASS: TEXT

• CLASS: TITLE

• LAYER: CONNECTION

• LAYER: DATA

• LAYER: FILTER

• LAYER: TILEINDEX

Added in version 7.0.

• LAYER: METADATA

Added in version 7.0.

• LAYER: PROCESSING

Added in version 6.2.

• OUTPUTFORMAT: FORMATOPTION: FILENAME (must have a MAP VALIDATION pattern)

Added in version 7.0.

• OUTPUTFORMAT: all FORMATOPTIONs

Added in version 7.0.
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• MAP->WEB: METADATA (values only, not keys)

FILTERs

You can use runtime substitutions to change values within a FILTER as you go. For example your FILTER could be
written like so:

FILTER (multimedia='%multimedia%' and seats >= '%nseats%' and Sound= '%sound%')

Then (assuming you’re using the CGI interface) you could pass in variables named multimedia, nseats and sound with
values defined by the user in an HTML form.

You should also define VALIDATION expressions on these variables to guard against unintentional SQL being submit-
ted to postgis (since version 6.0, validation is mandatory). Within the layer you’d do the following:

VALIDATION
'multimedia' '^yes|no$'
'sound' '^yes|no$'
'nseats' '^[0-9]{1,2}$'

END

The validation strings are regular expressions that are applied against the appropriate variable value before being added
to the FILTER. The first two limit the value of multimedia and sound to yes or no. The third limits the value for nseats
to a 2 digit integer.

Default values if not provided in the URL

The runtime substitution mechanism will usually create syntactically incorrect, and almost always semantically incor-
rect mapfiles if the substitution parameter was not provided in the calling URL.

Since version 5.6, you can provide a default value for any substitution parameter, that will be applied if the parameter
was not found in the url. You do this by providing special entries inside CLASS, LAYER or WEB validation blocks:

VALIDATION
'default_sound' 'yes'
'default_nseats' '5'
'default_multimedia' 'yes'

END

In this example, the mapfile will be created as if the url contained “&sound=yes&nseats=5&multimedia=yes”.

Providing a default value for a substitution parameter in the WEB section of the MAP wasn’t implemented until version
7.0.7.

If identical default keys appear in more than one validation block then keys in more specialised blocks override those
in more generalised blocks. i.e. CLASS overrides LAYER which overrides WEB. The same functionality is available
using METADATA blocks instead of VALIDATION but this is deprecated as of MapServer 5.4.0. This behavior is also
accessible in the shp2img utility, allowing you to test runtime substitution mapfiles without using a webserver.
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VALIDATION

Because runtime substitution affects potentially sensitive areas of your mapfile, such as database columns and filenames,
it is mandatory that you use pattern validation (since version 6.0)

Pattern validation uses regular expressions, which are strings that describe how to compare strings to patterns. The
exact functionality of your systems’ regular expressions may vary, but you can find a lot of general information by a
Google search for “regular expression tutorial”.

As of MapServer 5.4.0 the preferred mechanism is a VALIDATION block in the LAYER definition. This is only slightly
different from the older METADATA mechanism. VALIDATION blocks can be used with CLASS, LAYER and WEB.

VALIDATION
# %firstname% substitutions can only have letters and hyphens
'firstname' '^[a-zA-Z\-]+$'

# %parcelid% must be numeric and between 5 and 8 characters
'parcelid' '^[0-9]{5,8}$'

# %taxid% must be two capital letters and six digits
'taxid' '^[A-Z]{2}[0-9]{6}$'

END

If identical keys appear in more than one validation block then keys in more specialised blocks override those in more
generalised blocks. i.e. CLASS overrides LAYER which overrides WEB.

Magic values

Some runtime substitutions have special caveats.

ID
In addition to any defined METADATA or VALIDATION, the ‘id’ parameter will be subjected to a special check.
It must be alphanumeric and cannot be longer than 63 characters.

15.1.6 A Simple CGI Wrapper Script

Author
Steven Monai

Last Updated
2006/01/26

Table of Contents
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Introduction

This document presents a simple shell script that can be used to “wrap” the MapServer CGI, in order to avoid having
to specify the ‘map’ parameter (or any other chosen parameters) in your MapServer URLs.

Warning: Using a wrapper script is inefficient as it implies spawning two processes (shell+mapserv) instead of
only one (mapserv), and should not be used on production installations. Refer to Changing the Online Resource
URL for examples of how to setup similar functionality directly by using webserver configuration options.

Script Information

If you want to avoid having to specify the ‘map’ parameter in your MapServer URLs, one solution is to use a “wrapper”.
Basically, a wrapper is a CGI program that receives an incoming CGI request, modifies the request parameters in some
way, and then hands off the actual processing to another CGI program (e.g. MapServer).

The following shell scripts are wrappers for CGI GET requests that should be generic enough to run on any OS with
/bin/sh.

Alternative 1

#!/bin/sh
MAPSERV="/path/to/my/mapserv"
MS_MAPFILE="/path/to/my/mapfile.map" exec ${MAPSERV}

You should set the MAPSERV and MS_MAPFILE variables as appropriate for your configuration. MAPSERV points
to your MapServer executable, and MS_MAPFILE points to the mapfile you want MapServer to use. Both variables
should be absolute file paths that your webserver has permission to access, although they need not (and probably should
not) be in web-accessible locations. Put the script in your web server’s cgi-bin directory, and make it executable.

This solution should support both GET and POST requests.

Alternative 2

#!/bin/sh
MAPSERV="/path/to/my/mapserv"
MAPFILE="/path/to/my/mapfile.map"
if [ "${REQUEST_METHOD}" = "GET" ]; then
if [ -z "${QUERY_STRING}" ]; then
QUERY_STRING="map=${MAPFILE}"

else
QUERY_STRING="map=${MAPFILE}&${QUERY_STRING}"

fi
exec ${MAPSERV}

else
echo "Sorry, I only understand GET requests."

fi
exit 1
# End of Script
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You should set the MAPSERV and MAPFILE variables as appropriate for your configuration. MAPSERV points to
your MapServer executable, and MAPFILE points to the mapfile you want MapServer to use. Both variables should
be absolute file paths that your webserver has permission to access, although they need not (and probably should not)
be in web-accessible locations. Then put the script in your web server’s cgi-bin directory, and make it executable.

Although this script only sets the ‘map’ parameter, it is easily modified to set any number of other MapServer parameters
as well. For example, if you want to force your MapServer to ‘map’ mode, you can simply add ‘mode=map’ to the
front of the QUERY_STRING variable. Just remember to separate your parameters with ampersands (’&’).

Finally, note that the script only works for GET requests.

15.1.7 MapServer OpenLayers Viewer

MapServer (since the 6.0 release) provides a simple, built-in method for testing a mapfile using OpenLayers. This
feature is for testing/development purposes only, and not for production or deploying full-featured sites. You can
preview, test, and navigate a mapfile by accessing a special url which will return a built-in OpenLayers template.

Note: This feature was discussed in rfc 63 and in the ticket https://github.com/MapServer/MapServer/issues/3549

Using the OpenLayers viewer

Opening the OpenLayers viewer in your browser

Assuming you are running mapserver on your local machine, and you have the Itasca demo setup, a basic url would be
(split into two lines for readability):

http://localhost/cgi-bin/mapserv?mode=browse&template=openlayers
&layer=lakespy2&layer=dlgstln2&map=/var/www/workshop/itasca.map

Here is a quick breakdown of that url:

• Basic Parameters for activating the OpenLayers browser:

template=openlayers
mode=browse

• Basic Map / Layer Parameters:

map=/var/www/workshop/itasca.map
layer=lakespy2
layer=dlgstln2

That’s it!
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Opening the OpenLayers viewer in the form of a WMS request

This feature is useful when debugging WMS requests. You can write one of these by hand, or copy the URL for a WMS
tile. Running the following should give you a simple OpenLayers demo around the BBOX (split into several lines for
readability):

http://localhost/cgi-bin/mapserv?map=/var/www/workshop/itasca.map
&LAYERS=lakespy2&VERSION=1.1.1&SERVICE=WMS&REQUEST=GetMap
&FORMAT=application/openlayers&WIDTH=512&HEIGHT=512&SRS=EPSG:26915
&BBOX=429956.19803725,5231780.0814818,444078.32296225,5245902.2064068

Here is a quick breakdown of the interesting parts of that URL:

• Special Parameter for activating the OpenLayers viewer:

FORMAT=application/openlayers

• Basic MapServer Parameters:

map=/var/www/workshop/itasca.map

• Basic WMS parameters:

#Layers, our bounding box and projection
LAYERS=lakespy2
BBOX=429956.19803725,5231780.0814818,444078.32296225,5245902.2064068
SRS=EPSG:26915

#Version and other WMS request params
SERVICE=WMS
VERSION=1.1.1
REQUEST=GetMap
WIDTH=512
HEIGHT=512
TRANSPARENT=true

Customizing settings

• environment variables:

MS_OPENLAYERS_JS_URL - The URL to the OpenLayers javascript library. Per default␣
→˓the library loaded from the MapServer web server.
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16.1 Glossary

AGG
Anti-Grain Geometry A high quality graphics rendering engine that MapServer 5.0+ can use. It supports sub-
pixel anti-aliasing, as well as many more features.

CGI
Wikipedia provides excellent coverage of CGI.

EPSG
EPSG codes are numeric codes associated with coordinate system definitions. For instance, EPSG:4326 is ge-
ographic WGS84, and EPSG:32611 is “UTM zone 11 North, WGS84”. The WMS protocol uses EPSG codes
to describe coordinate systems. EPSG codes are published by the OGP Surveying and Positioning Commit-
tee. A list of PROJ definitions corresponding to the EPSG codes can be found: for PROJ version >= 6, in
the SpatiaLite database proj.db at /usr/local/share/proj/proj.db, or for PROJ version < 6, in the text file epsg at
/usr/local/share/proj/epsg. PROJECTION describes how to use these in your Mapfile.

See also:
https://epsg.io/ for a listing of spatial references and an interface to search for EPSG codes (the old site https:
//spatialreference.org is no longer maintained, but might still be useful).

Filter Encoding
Filter Encoding is an OGC standard which defines an XML encoding for filter expressions to allow for spatial
and attribute querying.

See also:
WFS Filter Encoding

FreeType
FreeType is a font engine that MapServer uses for accessing and rendering TrueType fonts.

GD
GD is a graphics library for dynamic generation of images. It was the first graphics renderer that was available
for MapServer, and was required by MapServer to operate.

Warning: GD support was removed in MapServer 7.0.

GDAL
GDAL (Geospatial Data Abstraction Library) is a multi-format raster reading and writing library. It is used as
the primary mechanism for reading raster data in MapServer. It is hosted at https://gdal.org/
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GEOS
Geometry Engine Open Source is a C/C++ port of the Java Topology Suite. It is used for geometric algebra
operations like determining if a polygon is contained in another polygon or determining the resultant intersection
of two or more polygons. MapServer optionally uses GEOS for geometric algebra operations.

GML
Geography Markup Language is an OGC standard which defines an abstract model for geographic features

See also:
WFS Server

GPX
GPS eXchange Format is an XML Schema for describing GPS data. OGR can be used to transform and render
this data with MapServer.

Map Scale
A treatise of mapping scale can be found on about.com.

Mapfile
Mapfile is the declarative language that MapServer uses to define data connections, map styling, templating, and
server directives. Its format is xml-like and hierarchical, with closing END tags, but the format is not xml.

MapScript
MapScript is an alternative the the CGI application of mapserv that allows you to program the MapServer object
API in many languages.

Mercator
Wikipedia provides excellent coverage of the Mercator projection.

OGC
The Open Geospatial Consortium is a standards organization body in the GIS domain. MapServer supports
numerous OGC standards.

See also:
WMS Server and WMS Time and WMS Client and WFS Server and WFS Client and WCS Server and Map Context
and SLD and WFS Filter Encoding and SOS Server

OGR
OGR is the vector data access portion of the GDAL library. It provides access to a multitude of data formats.

See also:
OGR Vector Layers Through MapServer (Accessing OGR Layers through MapServer)

OM
Observations and Measurements is an OGC standard which defines an abstract model for sensor based data.

See also:
SOS Server

OpenLayers
OpenLayers is a JavaScript library for developing draggable, “slippy map” web applications.

PROJ
PROJ (formerly referred to as PROJ.4) is a library for projecting map data. It is used by MapServer and GDAL
and a multitude of other Open Source GIS libraries.

Projection
A map projection is a mathematical transformation of the surface of a sphere (3D) onto a 2D plane. Due to the
laws of the universe, each type of projection must make tradeoffs on how and what features it distorts.
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Raster
A raster is a rectangular grid of pixels. Essentially an image. Rasters are supported in MapServer with a layer
type of RASTER, and a variety of formats are supported including GeoTIFF, JPEG, and PNG.

Shapefile
Shapefiles are simple GIS vector files containing points, lines or areas. The format was designed and published
by ESRI and is widely supported in the GIS world. It is effectively the native and highest performance format
for MapServer.

See also:
Wikipedia

SLD
SLD is an OGC standard which allows for custom symbolization for portrayal of data.

See also:
SLD

SOS
SOS is an OGC standard which provides an API for managing deployed sensors and retrieving sensor and ob-
servation data.

See also:
SOS Server

Spherical Mercator
Spherical Mercator (or more commonly known as the Google Mercator, or Web Mercator) is a term used to
describe the default PROJECTION used by many commercial API providers for their resulting map tiles &
services. The associated official EPSG code is EPSG:3857 (formerly “EPSG:900913”).

SVG
Scalable Vector Graphics is an XML format that MapServer can output. It is frequently used in browser and
mobile devices.

See also:
SVG

SWF
Shockwave Flash format that MapServer can generate for output.

See also:
Flash Output

SWIG
Simplified Wrapper Interface Generator is the library that MapServer uses for generating the language bindings
for all languages other than C/C++ and PHP. MapScript describes these bindings.

Tileindex
A tileindex is a Shapefile or other Vector data source that contains footprints of Raster data coverage. MapServer
can use a tileindex to render a directory of raster data. The tileindex allows MapServer to only read the data that
intersects the requested map extent, rather than reading all of the data.

See also:
Tile Indexes

Vector
Geographic features described by geometries (point, line, polygon) on a (typically) cartesian plane.
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WCS
WCS is an OGC standard that describes how to systematically produce structured Raster cartographic data from
a service and return them to a client

See also:
WCS Server and WCS Use Cases

WFS
WFS is an OGC standard that describes how to systematically produce structured Vector cartographic data from
a service and return them to a client.

See also:
WFS Server and WFS Client

WMC
Web Map Context is an OGC standard which allows for sharing of map views of WMS layers in multiple appli-
cations.

See also:
Map Context

WMS
WMS is an OGC standard that describes how to systematically produce rendered map images from a service and
return them to a client.

See also:
WMS Server and WMS Client
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17.1 Errors

Contents

• Errors

– drawEPP(): EPPL7 support is not available

– loadLayer(): Unknown identifier. Maximum number of classes reached

– loadMapInternal(): Given map extent is invalid

– msGetLabelSize(): Requested font not found

– msLoadFontset(): Error opening fontset

– msLoadMap(): Failed to open map file

– msProcessProjection(): no options found in ‘init’ file

– msProcessProjection(): No such file or directory

– msProcessProjection(): Projection library error.major axis or radius = 0 not given

– msQueryByPoint: search returned no results

– msReturnPage(): Web application error. Malformed template name

– msSaveImageGD(): Unable to access file

– msWMSLoadGetMapParams(): WMS server error. Image Size out of range, WIDTH and HEIGHT must
be between 1 and 2048 pixels

– Unable to load dll (MapScript)
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17.1.1 drawEPP(): EPPL7 support is not available

Error displayed when not using EPPL7 data.

This is a confusing error for users who are not even trying to view EPPL7 layers (EPPL7 is a raster format). The full
error displayed may appear as follows:

msDrawRaster(): Unrecognized or unsupported image format ...

drawEPP(): EPPL7 support is not available.

Explanation

When MapServer tries to draw a layer, it will attempt to use all of the drivers it knows about, and the EPPL7 driver is
the very last driver it will try. This means that if a layer fails to draw for any reason, you will see this error message.

There are other possible instances when this error can appear however, here are a few:

• the server is returning either a ServiceException (which MapServer does not yet detect and parse into a reasonable
error message) or it is returning an image in an unrecognized format . . . for instance it is returning a GIF image
and MapServer is not built to support GIF images.

• WMS servers often advertise multiple image formats but don’t respect them in the getmap request.

17.1.2 loadLayer(): Unknown identifier. Maximum number of classes reached

Error displayed when attempting to draw a layer with a large number of classes.

This error states that MapServer has reached its limit for the maximum number of classes for the layer. This maximum
can be modified in the MapServer source, and can then be re-compiled. map.h contains the default values, and below
are the defaults for MapServer 4.10 and 4.8:

#define MS_MAXCLASSES 250
#define MS_MAXSTYLES 5
#define MS_MAXLAYERS 200

Note: This limitation was corrected in MapServer 5.0 and should no longer be a problem.

17.1.3 loadMapInternal(): Given map extent is invalid

When loading your mapfile or one of your layers, MapServer complains about an invalid extent.

Beginning in MapServer 4.6, MapServer got more strict about LAYER and MAP extents. If minx is greater than
maxx, or miny is greater than maxy, this error will be generated. Check your MAP’s EXTENT, LAYER’s EXTENT,
or wms_extent setting to make sure this is not the case. MapServer always takes in extents in the form of:

EXTENT minx miny maxx maxy
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How to get a file’s EXTENT values?

The easiest way to get a vector file’s EXTENT is to use the ogrinfo utility, that is part of the GDAL/OGR library (for
raster files you would use the gdalinfo utility). Windows users can download the FWTools package, which includes all
of the GDAL and OGR commandline utilities. MS4W also includes the utilities (in ms4w/tools/gdal-ogr-utils/ ). Linux
users will probably already have the GDAL libraries, if not you can also use the FWTools package.

For example, here is the results of the ogrinfo command on a shapefile (notice the “Extent” line):

$ ogrinfo province.shp province -summary
INFO: Open of `province.shp'
using driver `ESRI Shapefile' successful.

Layer name: province
Geometry: Polygon
Feature Count: 1071
Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)
AREA: Real (16.0)
PERIMETER: Real (16.0)
PROVINCE_: Real (16.0)
PROVINCE_I: Real (16.0)
STATUS: String (64.0)
NAME: String (64.0)
NAME_E: String (64.0)
NAME_F: String (64.0)
REG_CODE: Real (16.0)
POLY_FEATU: Real (16.0)
ISLAND: String (64.0)
ISLAND_E: String (64.0)
ISLAND_F: String (64.0)
YYY: Real (16.0)
SIZE: Real (16.0)
ANGLE: Real (16.0)

Ogrinfo gives the file’s extent in the form of (minx, miny),(maxx, maxy), therefore the EXTENT in a mapfile would
be:

EXTENT -2340603.750000 -719746.062500 3009430.500000 3836605.250000

Note: The EXTENT in a mapfile must be in the same units as the MAP -level PROJECTION .
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17.1.4 msGetLabelSize(): Requested font not found

Error displayed when attempting to display a specific font.

This message tells you that MapServer cannot find specified font.

Make sure that the font is properly referenced in the FONTSET lookup file.

See also:
FONTSET

17.1.5 msLoadFontset(): Error opening fontset

Error when attempting to display a label.

This message tells you that MapServer cannot find the FONTSET specified in the Mapfile.

The FONTSET path is relative to the mapfile location.

See also:
FONTSET

17.1.6 msLoadMap(): Failed to open map file

Error displayed when trying to display map image.

The message tells you that MapServer cannot find map file or has problems with the map file. Verify that you have
specified the correct path to the mapfile. Linux/Unix users should make sure that the web user has access permissions
to the mapfile path as well. Verify that the map file using shp2img to make sure that the syntax is correct.

The error message states where MapServer thinks the mapfile is:

[MapServer Error]: msLoadMap(): (D:/ms4w/apps/blah/blah.map)
Failed to open map file D:/ms4w/apps/blah/blah.map

17.1.7 msProcessProjection(): no options found in ‘init’ file

Error displayed when attempting to use a specific projection.

The message tells you that the projection you’re trying to use isn’t defined in the epsg file. Open your epsg file in a text
editor and search for your projection to make sure that it exists.

On Windows, the default location of the epsg file is c:\proj\nad. MS4W users will find the epsg file in \ms4w\proj\nad.

See also:
PROJECTION and https://epsg.io/ (https://spatialreference.org is no

longer maintained but may still useful)
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17.1.8 msProcessProjection(): No such file or directory

Error displayed when trying to refer to an epsg file.

The message tells you that MapServer cannot find the epsg file.

On Windows, the default location of the epsg file is c:\proj\nad. MS4W users will find the epsg file in \ms4w\proj\nad.

Linux/Unix users should be careful to specify the correct case when referring to the epsg file, since filenames are case
sensitive on Linux/Unix. “init=epsg:4326” refers to the epsg filename, and therefore “init=EPSG:4326” will not work
because it will be looking for an EPSG file in uppercase.

Setting the location of the epsg file

There are a few options available if you need to set the epsg location:

1. Use a system variable (“environment variable” on windows) called “PROJ_LIB” and point it to your epsg direc-
tory.

2. Use the mapfile parameter CONFIG to force the location of the epsg file. This parameter is specified at the MAP
level

See also:
Mapfile

MAP
...
CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"
...

END

3. Set an environment variable through your web server. Apache has a SetEnv directive that can set environment
variables. Add something like the following to your Apache httpd.conf file:

SetEnv PROJ_LIB C:/somedir/proj/nad/

17.1.9 msProcessProjection(): Projection library error.major axis or radius = 0 not
given

Error displayed when attempting to specify projection parameters.

Since MapServer 4.0, you are required to specify the ellipsoid for the projection. Omitting this ellipsoid parameter in
later MapServer versions will cause this error.

Valid Examples

4.0 and newer:

PROJECTION
"proj=latlong"
"ellps=WGS84"

END

before MapServer 4.0:
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PROJECTION
"proj=latlong"

END

See also:
PROJECTION and https://epsg.io/ (https://spatialreference.org is no

longer maintained but may still useful)

17.1.10 msQueryByPoint: search returned no results

Why do I get the message “msQueryByPoint(): Search returned no results. No matching record(s) found” when I query
a feature known to exists?

The query feature requires a TEMPLATE object in the CLASS object of your LAYER definition. The value points to
a html fragment using MapServer template syntax.

Example MapFile fragment:

LAYER
NAME "Parcel9"
TYPE POLYGON
STATUS OFF
DATA "Parcels/area09_parcels.shp"
CLASS
STYLE
OUTLINECOLOR 128 128 128
COLOR 153 205 255

END
TEMPLATE "templates/Parcels/area09_parcels.html"

END

HEADER "templates/Parcels/area09_parcels_header.html"
FOOTER "templates/Parcels/area09_parcels_footer.html"

END

Example Template:

<tr>
<td>[lrn]</td>
<td>[PIN]</td>

</tr>

The [lrn] is a special keyword that indicates the resulting line number which starts at 1. [PIN] is the name of a feature
attribute.
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17.1.11 msReturnPage(): Web application error. Malformed template name

This error may occur if you try to access a template file with a file extension that is not recognized by MapServer. Valid
file extensions for templates are:

.gml

.html

.htm

.js

.kml

.svg

.tmpl

.wml

.xml

This error may also occur when you are attempting to use a URL template for a query. The issue is that URL templates
are only allowed for query modes that return only one result (e.g. query or itemquery)

You can only use a URL template for a query in mode=query or mode=itemquery. If you try it with mode=nquery or
mode=itemnquery, you will get the error:

Content-type: text/html msReturnPage(): Web application error. Malformed template name

See also:
MapServer CGI Controls

17.1.12 msSaveImageGD(): Unable to access file

Error displayed when attempting to display map image.

This error is displayed if MapServer cannot display the map image. There are several things to check:

• IMAGEPATH and IMAGEURL parameters in mapfile are valid

• In CGI mode, any IMAGEPATH and IMAGEURL variables set in the init pages are valid

• Linux/Unix users should verify that the web user has permissions to write to the IMAGEPATH

17.1.13 msWMSLoadGetMapParams(): WMS server error. Image Size out of range,
WIDTH and HEIGHT must be between 1 and 2048 pixels

Error that is returned / displayed when a user has requested a map image (via WMS) that exceeds the maximum width
or height that the service allows.

To increase the maximum map width and height for the service, use the MAXSIZE parameter of the MAP object.
Producing larger map images requires more processing power and more memory, so take care.
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17.1.14 Unable to load dll (MapScript)

One of the dll-s could not be loaded that mapscript.dll depends on.

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared library.
The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll depends on.
So firstly you might want to check for the dependencies of your libmap.dll in your application directory. You can use the
Visual Studio Dependency Walker to accomplish this task. You can also use a file monitoring tool (like SysInternal’s
filemon) to detect the dll-s that could not be loaded. I propose to store all of the dll-s required by your application in
the application folder. If you can run the mapscript sample applications properly your compilation might be correct
and all of the dlls are available.

C#-specific information

You may find that the mapscript C# interface behaves differently for the desktop and the ASP.NET applications. Al-
though you can run the drawmap sample correctly you may encounter the dll loading problem with the ASP.NET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’ by
default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The appli-
cation will run under a different security context than the interactive user (under the context of the ASPNET user by
default). When placing the dll-s outside of your application directory you should consider that the PATH environment
variable may differ between the interactive and the ASPNET user and/or you may not have enough permission to access
a dll outside of your application folder.
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18.1 FAQ

18.1.1 Where is the MapServer log file?

See Debugging MapServer

18.1.2 What books are available about MapServer?

“Mapping Hacks” by Schuyler Erle, Rich Gibson, and Jo Walsh is available from O’Reilly.

“Web Mapping Illustrated” by Tyler Mitchell is available from O’Reilly. Introduces MapServer and many other related
technologies including, GDAL/OGR, MapScript, PostGIS, map projections, etc.

“MapServer: Open Source GIS Development” by Bill Kropla.

18.1.3 How do I compile MapServer for Windows?

See Compiling on Win32. Also, you can use the development libraries in OSGeo4W as a starting point instead of
building all of the dependent libraries yourself. Windows users wanting a full installer (including Apache, MapServer,
mapscripts, GDAL) please see MS4W

18.1.4 What do MapServer version numbers mean?

MapServer’s version numbering scheme is very similar to Linux’s. For example, a MapServer version number of 4.2.5
can be decoded as such:

• 4: Major version number. MapServer releases a major version every two to three years.

• 2: Minor version number. Increments in minor version number almost always relate to additions in functionality.

• 5: Revision number. Revisions are bug fixes only. No new functionality is provided in revisions.

From a developer’s standpoint, MapServer version numbering scheme is also like Linux. Even minor version numbers
(0..2..4..6) relate to release versions, and odd minor versions (1..3..5..7) correspond to developmental versions.
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18.1.5 Is MapServer Thread-safe?

Q: Is MapServer thread-safe?

A: Generally, no (but see the next question). Many components of MapServer use static or global data that could
potentially be modified by another thread. Under heavy load these unlikely events become inevitable, and could result
in sporadic errors.

Q: Is it possible to safely use any of MapServer in a multi-threaded application?

A: Some of it, yes, with care. Or with Python :) Programmers must either avoid using the unsafe components of
MapServer or carefully place locks around them. Python’s global interpreter lock immunizes against MapServer thread-
ing problems; since no mapscript code ever releases the GIL all mapscript functions or methods are effectively atomic.
Users of mapscript and Java, .NET, mod_perl, or mod_php do not have this extra layer of protection.

A: Which components are to be avoided?

Q: Below are lists of unsafe and unprotected components and unsafe but locked components.

Unsafe:

• OGR layers: use unsafe CPL services

• Cartoline rendering: static data

• Imagemap output: static data

• SWF output: static data and use of unsafe msGetBasename()

• SVG output: static data

• WMS/WFS server: static data used for state of dispatcher

• Forcing a temporary file base (an obscure feature): static data

• MyGIS: some static data

Unsafe, but locked:

• Map config file loading: global parser

• Setting class and and layer filter expressions (global parser)

• Class expression evaluation (global parser)

• Setting map and layer projections (PROJ)

• Raster layer rendering and querying (GDAL)

• Database Connections (mappool.c)

• PostGIS support

• Oracle Spatial (use a single environment handle for connection)

• SDE support (global layer cache)

• Error handling (static repository of the error objects)

• WMS/WFS client connections: potential race condition in Curl initialization

• Plugin layers (static repository of the loaded dll-s)

Rather coarse locks are in place for the above. Only a single thread can use the global parser at a time, and only one
thread can access GDAL raster data at a time. Performance is exchanged for safety.
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18.1.6 What does STATUS mean in a LAYER?

STATUS ON and STATUS OFF set the default status of the layer. If a map is requested, those layers will be ON/OFF
unless otherwise specified via the layers parameter. This is particularly the case when using MapScript and MapServer’s
built-in template mechanism, but is also useful as a hint when writing your own apps and setting up the initial map
view.

STATUS DEFAULT means that the layer is always on, even if not specified in the layers parameter. A layer’s status
can be changed from DEFAULT to OFF in MapScript, but other than that, it’s always on.

CGI turns everything off that is not “STATUS DEFAULT” off so all layers start from the same state (e.g. off) and must
be explicitly requested to be drawn or query. That common state made (at least in my mind) implementations easier. I
mean, if a layer “lakes” started ON the doing layer=lakes would turn it OFF. So I wanted to remove the ambiguity of a
starting state.

18.1.7 How can I make my maps run faster?

There are a lot of different approaches to improving the performance of your maps, aside from the obvious and expensive
step of buying faster hardware. Here are links to some individual howtos for various optimizations.

• Tuning your mapfile for performance

• Optimizing the performance of vector data sources

• Optimizing the performance of raster data sources

• Tileindexes for mosaicing and performance

Some general tips for all cases:

• First and foremost is hardware. An extra GB of RAM will give your map performance increases beyond anything
you’re likely to achieve by tweaking your data. With the price of RAM these days, it’s cheap and easy to speed
up every map with one inexpensive upgrade.

• Use the scientific method. Change one thing at a time, and see what effect it had. Try disabling all layers and
enabling them one at a time until you discover which layer is being problematic.

• Use shp2img program to time your results. This runs from the command line and draws an image of your entire
map. Since it’s run from the command line, it is immune to net lag and will give more consistent measurements
that your web browser.

18.1.8 What does Polyline mean in MapServer?

There’s confusion over what POLYLINE means in MapServer and via ESRI. In MapServer POLYLINE simply means
a linear representation of POLYGON data. With ESRI polyline means multi-line. Old versions of the Shapefile techical
description don’t even refer to polyline shapefiles, just line. So, ESRI polyline shapefiles are just linework and can only
be drawn and labeled as LINE layers. Those shapefiles don’t have feature closure enforced as polygon shapefiles do
which is why the distinction is so important. I suppose there is a better choice than POLYLINE but I don’t know what
it would be.

Note: The only difference between POLYLINE and LINE layers is how they are labeled.
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18.1.9 What is MapScript?

MapScript is the scripting interface to MapServer, usually generated by SWIG (except in the case of PHP MapScript
API). MapScript allows you to program with MapServer’s objects directly instead of interacting with MapServer
through its CGI and Mapfile.

18.1.10 Does MapServer support reverse geocoding?

No.

Reverse geocoding is an activity where you take a list of street features that you already have and generate postal
addresses from them. This kind of spatial functionality is provided by proprietary packages such as the ESRI suite of
tools, as well as services such as those provided by GDT. MapServer is for map rendering, and it does not provide for
advanced spatial operations such as this.

18.1.11 Does MapServer support geocoding?

No.

Geocoding is an activity where you take a list of addresses and generate lat/lon points for them. This kind of spatial
functionality is provided by proprietary packages such as the ESRI suite of tools, as well other sites. MapServer is for
map rendering, and it does not provide for advanced spatial operations such as this.

There are many free geocoders available, such as http://geolytica.com (geocoder.ca) for North America, or you can set
up your own service using OpenStreetMap data, TIGER data, or other open data sources. Then you could hook your
application up to use this service to provide lat/lon pairs for addresses, and then use MapServer to display those points
(possibly through MapScript).

18.1.12 How do I set line width in my maps?

In the current MapServer version, line width is set using the STYLE parameter WIDTH. For a LINE layer, lines can
be made red and 3 pixels wide by using the following style in a CLASS.

STYLE
COLOR 255 0 0
WIDTH 3

END

In earlier versions of MapServer , you could set the symbol for the LAYER to ‘circle’ and then you can set the symbol
SIZE to be the width you want. A ‘circle’ symbol can be defined as

SYMBOL
NAME 'circle'
TYPE ELLIPSE
FILLED TRUE
POINTS 1 1 END

END
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18.1.13 Why do my JPEG input images look different via MapServer?

You must be using an old version of MapServer (where GD was the default library for rendering).

Newer versions of MapServer use AGG for rendering, and the default output formats is 24 bit colour, so there should
not be a problem.

The default output format for MapServer with GD was 8bit pseudo-colored PNG or GIF. Inherently there will be some
color degradation in converting a 24bit image (16 million colors) image into 8bit (256 colors).

With GD output, MapServer used quite a simple method to do the transformation, converting pixels to the nearest color
in a 175 color colorcube. This would usually result in blotchy color in a fairly smoothly varying image.

For GD, solutions used to be:

• Select 24bit output. This might be as easy as “IMAGETYPE JPEG” in your MAP section.

• Enable dithering (PROCESSING “DITHER=YES”) to produce a better color appearance.

• Preprocess your image to 8bit before using it in MapServer with an external application like the GDAL rgb2pct.py
script.

For more information review the Raster Data.

18.1.14 Which image format should I use?

Although MapScript can generate the map in any desired image format it is sufficient to only consider the three most
prevalent ones: JPEG, PNG, and GIF.

JPEG is an image format that uses a lossy compression algorithm to reduce an image’s file size and is mostly used when
loss of detail through compression is either not noticeable or negligible, as in most photos. Maps on the other hand
mainly consist of fine lines and areas solidly filled in one colour, which is something JPEG is not known for displaying
very well. In addition, maps, unless they include some aerial or satellite imagery, generally only use very few different
colours. JPEG with its 24bit colour depth capable of displaying around 16.7 million colours is simple not suitable
for this purpose. GIF and PNG however use an indexed colour palette which can be optimized for any number (up to
256) of colours which makes them the perfect solution for icons, logos, charts or maps. The following comparison
(generated file sizes only; not file generation duration) will therefore only include these two file formats:

Table 1: GIF vs. PNG vs. PNG24 Generated Map File Sizes

GIF PNG PNG24
Vector Data only 59kb 26kb 69kb
Vector Data & Satellite Image coloured 156kb 182kb 573kb
Vector Data & Satellite Image monochrome 142kb 134kb 492kb

(results based on an average 630x396 map with various colours, symbols, labels/annotations etc.)

Although GIF shows a quantitative as well as qualitative advantage over PNG when generating maps that contain full
coloured remote sensing imagery, PNG is the clear quantitative winner in terms of generated file sizes for maps with or
without additional monochrome imagery and should therefore be the preferred image format. If the mapping application
however can also display fullcolour aerial or satellite imagery, the output file format can be changed dynamically to
either GIF or even PNG24 to achieve the highest possible image quality.
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18.1.15 Why doesn’t PIL (Python Imaging Library) open my PNGs?

PIL does not support interlaced PNGs at this time (no timetable on when it actually will either). To be able to read
PNGs in PIL, they must not be interlaced. Modify your OUTPUTFORMAT with a FORMATOPTION like so:

OUTPUTFORMAT
NAME png
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "INTERLACE=OFF"

END

18.1.16 Why do my symbols look poor in JPEG output?

When I render my symbols to an 8bit output (PNG, GIF) they look fine, but in 24bit jpeg output they look very blocky
and gross.

You must be using an old version of MapServer . This should not be problem with newer versions. The following
explains the old (GD) behaviour.

In order to render some classes of symbols properly in 24bit output, such as symbols from true type fonts, it is necessary
to force rendering to occur in RGBA. This can be accomplished by including the “TRANSPARENCY ALPHA” line
in the layer definition. Don’t use this unnecessarily as there is a performance penalty.

This problem also affects PNG24 output or any RGB output format. 8bit (PC256) or RGBA output types are already
ok.

18.1.17 How do I add a copyright notice on the corner of my map?

You can use an inline feature, with the FEATURE object, to make a point on your map. Use the TEXT parameter of
the FEATURE object for the actual text of the notice, and a LABEL object to style the notice.

Example Layer

LAYER
NAME "copyright"
STATUS on
TYPE point
TRANSFORM ll # set the image origin to be lower left
UNITS PIXELS # sets the units for the feature object
FEATURE
POINTS
60 -10 # the offset (from lower left) in pixels

END # Points
TEXT "© xyz company 2006" # this is your displaying text

END # Feature
CLASS
STYLE # has to have a style
END # style
LABEL # defines the font, colors etc. of the text

(continues on next page)
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(continued from previous page)

FONT "times"
TYPE truetype
SIZE 8
BUFFER 1
COLOR 0 0 0
FORCE true
STYLE
GEOMTRANSFORM 'labelpoly'
COLOR 255 255 255 # white

END # Style
END # Label

END # Class
END # Layer

Result
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18.1.18 How do I have a polygon that has both a fill and an outline with a width?

How do I have a polygon that has both a fill and an outline with a width? Whenever I put both a color (fill) and an
outlinecolor with a width on a polygon within a single STYLE, the outline width isn’t respected.

For historical reasons, width has two meanings within the context of filling polygons and stroke widths for the outline.
If a polygon is filled, then the width defines the width of the symbol inside the filled polygon. In this event, the outline
width is disregarded, and it is always set to 1. To achieve the effect of both a fill and an outline width, you need to use
two styles in your class.

STYLE # solid fill
COLOR 255 0 0

END
STYLE # thick outline
OUTLINECOLOR 0 0 0
WIDTH 3

END

18.1.19 How can I create simple antialiased line features?

With AGG (used in recent MapServer version), antialiased lines is the default, and can’t be turned off.

With GD, the easiest way to produce antialiased lines is to:

• use a 24-bit output image type (IMAGEMODE RGB (or RGBA))

• set TRANSPARENCY ALPHA in the layer using antialiased lines

• set ANTIALIAS TRUE in the STYLE element of the CLASS with antialiased lines

The following mapfile snippets enable antialiased county borders for GD:

...
IMAGETYPE "png24"
...
OUTPUTFORMAT
NAME "png24"
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END
...
LAYER
NAME "counties"
TYPE line
STATUS default
DATA "bdry_counln2.shp"
TRANSPARENCY alpha
SYMBOLSCALE 5000000
CLASS
STYLE
WIDTH 3
COLOR 1 1 1
ANTIALIAS true

(continues on next page)
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(continued from previous page)

END
END

END
...

Note: The bdry_counln2 shapefile referenced in the counties layer is a line shapefile. A polygon shapefile could be
substituted with roughly the same results, though owing to the nature of shapefiles each border would be rendered twice
and the resulting output line would likely appear to be slightly thicker. Alternatively, one could use a polygon shapefile,
set TYPE to POLYGON, and use OUTLINECOLOR in place of COLOR in the STYLE element.

Note: You can tweak the combination of STYLE->WIDTH and SYMBOLSCALE to modify line widths in your
output images.

See also:
Cartoline symbols can be used to achieve fancier effects.

18.1.20 Which OGC Specifications does MapServer support?

See: MapServer OGC Specification support.

18.1.21 Why does my requested WMS layer not align correctly?

Requesting a layer from some ArcIMS WMS connectors results in a map with misaligned data (the aspect ratio of the
pixels looks wrong).

Some ArcIMS sites are not set up to stretch the returned image to fit the requested envelope by default. This results
in a map with data layers that overlay well in the center of the map, but not towards the edges. This can be solved by
adding “reaspect=false” to the request (by tacking it on to the connection string).

For example, if your mapfile is in a projection other than EPSG:4326, the following layer will not render correctly:

LAYER
NAME "hillshade"
TYPE RASTER
STATUS OFF
TRANSPARENCY 70
CONNECTIONTYPE WMS
CONNECTION "http://gisdata.usgs.net:80/servlet19/com.esri.wms.Esrimap/USGS_WMS_NED?"
PROJECTION

"init=epsg:4326"
END
METADATA

"wms_srs" "EPSG:4326"
"wms_title" "US_NED_Shaded_Relief"
"wms_name" "US_NED_Shaded_Relief"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

(continues on next page)
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END
END

Adding “reaspect=false” to the connection string solves the problem:

LAYER
NAME "hillshade"
TYPE RASTER
STATUS OFF
TRANSPARENCY 70
CONNECTIONTYPE WMS
CONNECTION "http://gisdata.usgs.net:80/servlet19/com.esri.wms.Esrimap/USGS_WMS_NED?

→˓reaspect=false"
PROJECTION

"init=epsg:4326"
END
METADATA

"wms_srs" "EPSG:4326"
"wms_title" "US_NED_Shaded_Relief"
"wms_name" "US_NED_Shaded_Relief"
"wms_server_version" "1.1.1"
"wms_format" "image/png"

END
END

18.1.22 When I do a GetCapabilities, why does my browser want to download
mapserv.exe/mapserv?

A beginner question here. . . I’m new to MS and to Apache. I’ve got MS4W up and running with the Itasca demo. Now
I want to enable it as a WMS server. mapserv -v at the command line tells me it supports WMS_SERVER. When I
point my browser to it, my browser just wants to download mapserv.exe!

What am I missing?

Here is the URL I’m using to issue a GetCapabilities WMS request: http://localhost/cgi-bin/mapserv.exe?map=..
/htdocs/itasca/demo.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

The OGC:WMS 1.1.0 and 1.1.1 specifications (which are both supported by MapServer) state that, for GetCapabilities
responses, the OGC:WMS server returns a specific MIME type (i.e. application/vnd.ogc.xml (see subclause 6.5.3 of
OGC:WMS 1.1.1.

A MIME type is passed from the web server to the client (in your case, a web browser), from which a client can decide
how to process it.

Example 1: if using a web browser, if a web server returns an HTTP Header of “Content-type:image/png”, then the
web browser will know that this is a PNG image and display it accordingly.

Example 2: if using a web browser, if a web server returns an HTTP Header of “Content-type:text/html”, then the web
browser will know that this is an HTML page and display it accordingly (i.e. tables, divs, etc.)

Basically, what is happening is that the OGC:WMS is returning, in the headers of the HTTP response, a MIME type
which your web browser does not understand, which usually prompts a dialog box on whether to open or download the
content (i.e. Content-type:application/vnd.ogc.wms_xml).
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You could configure your web browser to handle the application/vnd.ogc.wms_xml MIME type a certain way (i.e. open
in Notepad, etc.).

18.1.23 Why do my WMS GetMap requests return exception using MapServer 5.0?

Before upgrading to MapServer 5.0, I was able to do quick GetMap tests in the form of: http://wms.example.com/
wms?service=WMS&version=1.1.1&request=GetMap&layers=foo

Now when I try the same test, MapServer WMS returns an XML document saying something about missing required
parameters. What’s going on here?

This was a major change for WMS Server support in MapServer 5.0. MapServer WMS Server GetMap requests now
require the following additional parameters:

• srs

• bbox

• width

• height

• format

• styles

Note: These parameters were always required in all versions of the WMS specification, but MapServer previously had
not required them in a client request (even though most OGC WMS clients would issue them anyway to be consistent
with the WMS spec).

The request below now constitutes a valid GetMap request:

http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo&
→˓srs=EPSG:4326&bbox=-180,-90,180,90&format=image/png&width=400&height=300&styles=default

Which is consistent with the WMS specification.

More information on these parameters can be found in the WMS Server and the OGC WMS 1.1.1 specification

For more detailed information, see ticket 1088

Warning: STYLES, though a required WMS parameter, is now optional again in MapServer. For more detailed
information, see ticket 2427

18.1.24 Using MapServer 6.0, why don’t my layers show up in GetCapabilities re-
sponses or are not found anymore?

MapServer 6.0 introduces the option of hiding layers against OGC Web Service requests. OGC Web Services can
provide powerful access to your geospatial data. It was decided to disable layer level request access as a default. See
rfc67 provides a full explanation of the changes and implications.

To enable pre-6.0 behaviour, you can add the following to the WEB object’s METADATA section in your mapfile:

"ows_enable_request" "*"

This will enable access of all layers to all OGC Web Service requests.

18.1. FAQ 1059

http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo
http://wms.example.com/wms?service=WMS&version=1.1.1&request=GetMap&layers=foo
https://portal.ogc.org/files/?artifact_id=1081&version=1&format=pdf
https://github.com/MapServer/MapServer/issues/1088
https://github.com/MapServer/MapServer/issues/2427


MapServer Documentation, Release 7.6.6

18.1.25 Where do I find my EPSG code?

For PROJ version >= 6, there is a SpatiaLite database proj.db in your PROJ installation (e.g.
“/usr/local/share/proj/proj.db”) which contain the EPSG information used by PROJ; For PROJ version < 6, there is a
text file epsg in that same shared location. On Windows, MS4W users can find the epsg file at C:\ms4w\proj\nad, or it
can be generally found with an environment variable called PROJ_LIB.

https://epsg.io/ (recommended) and https://spatialreference.org (no longer maintained) allow you to search for EPSG
codes.

More information on EPSG (which also now contains a text or map search for EPSG codes) : https://epsg.org/home.
html

More information on PROJ: https://proj.org/

18.1.26 How can I reproject my data using ogr2ogr?

With ogr2ogr of course! ogr2ogr is a powerful utility that will transform the projections of your shapefiles when passed
the appropriate parameters. In my case, I was using MapServer to serve data in RI State Plane Feet. In order to do so,
the data had to first be converted to meters. Here is the command I used:

ogr2ogr -t_srs EPSG:32130 output.shp input.shp

Since my data already had a projection defined, I did not need to explicitly state a source projection. This command
uses the EPSG definition for NAD83 Rhode Island (32130) and performs the feet to meters conversion.

Now say my data wasn’t already projected? Here’s how we deal with that:

ogr2ogr -s_srs "+proj=tmerc +lat_0=41.08333333333334 +lon_0=-71.5 +k=0.999994 +x_
→˓0=100000 +y_0=0 +ellps=GRS80 +datum=NAD83 +to_meter=0.3408 +no_defs" -t_srs EPSG:32130␣
→˓output.shp input.shp

Let’s examine what is going on here:

The -s_srs parameter explicitly defines a projection for the data. The parameters used here were taken out of the EPSG
definition (in this case, 32130) in the epsg file (see the previous FAQ for more details on locating EPSG definitions).
The entry for RI in the epsg file is as follows:

# NAD83 / Rhode Island
<32130> +proj=tmerc +lat_0=41.08333333333334 +lon_0=-71.5 +k=0.999994 +x_0=100000 +y_0=0␣
→˓+ellps=GRS80 +datum=NAD83 +units=m +no_defs no_defs <>

You can see how the definition in the initial command is formulated. Notice that the “+units=m” parameter has been
changed to “+to_meter=0.3408”. This is important for the conversion. Where did the value of 0.3408 come from you
ask? From the EPSG file! It has many goodies buried in it so by simply running ‘grep “to_meter” epsg’ you can refresh
your memory if you need to.

The next parameter in the command is “-t_srs EPSG:32130”. This command tells ogr2ogr to transform the data to the
EPSG code of 32130. After this is declared, all you need to do is declare a file name for your new shape file and to set
which file is being used as the input (note: make sure you don’t confuse the order of these two).

Hit enter, bombs away, and enjoy your new data in meters!
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18.1.27 How can I help improve the documentation on this site?

New documentation material and corrections to existing documentation are definitely very welcome. These contribu-
tions are handled through the same issue tracker used to track software bugs and enhancements.

Follow the directions for submitting bugs at: http://www.mapserver.org/development/bugs.html. When creating a
ticket, in the Component field, select MapServer Documentation. If our ticket pertains to a specific web page, please
include the URL to that page.

If you have tips or examples that don’t really fit the definition of documentation, a good place to put them is the
MapServer wiki at: https://github.com/MapServer/MapServer/wiki

18.1.28 What’s with MapServer’s logo?

The MapServer logo illustrates the confluence of the Minnesota and Mississippi rivers, quite near to the home of the
St. Paul Campus of the University of Minnesota, which was the birthplace of MapServer.
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NINETEEN

COPYRIGHT

19.1 License

Copyright (c) 2008-2021 Open Source Geospatial Foundation. Copyright (c) 1996-2008 Regents of the University of
Minnesota.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies of this Software or works derived
from this Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19.2 Documentation License

If not stated otherwise, all content is licensed under the Creative Commons Attribution-ShareAlike 3.0 licence (CC
BY-SA).

19.3 Credits

Major funding for the development of MapServer has been provided by NASA through cooperative agreements with
the University of Minnesota, Department of Forest Resources. Additional enhancements have been made by the State
of Minnesota, Department of Natural Resources and the Land Management Information Center. We would like to
acknowledge other major contributions as well:

• MapServer and MapScript have been developed by Stephen Lime.

• Raster access module developed by Pete Olson and Stephen Lime.

• PHP/MapScript module was developed by DM Solutions and is maintained by MapGears.

• Portions copyright (c) 1998 State of Minnesota, Land Management Information Center.

• Ongoing maintenance and support frequently provided by the US Army Corps of Engineers
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• Several version 6.2 features funded through Météo-France
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BLOCKYSIZE
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GEOMTRANSFORM, 176
LAYER GEOMTRANSFORM, 213
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COMPRESS
OUTPUTFORMAT FORMATOPTION, 243
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Join types, MapScript, 306
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Layer types, MapScript, 303
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Debugging, 949
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CURL_CA_BUNDLE
Environment variables, 959
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MapScript Constants, 305
dd
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CLASS, 135
LAYER, 211
MAP, 235
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Debugging, 947

Debugging, 945
CPL_DEBUG, 949
Debug levels, 947
GDB, 956
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MS_ERRORFILE, 946
ON_MISSING_DATA, 953
PHP Mapscript, 955
PROJ_DEBUG, 950
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Expressions, 163
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Expressions, 160
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LAYER PROCESSING, 653
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MapScript PHP, 51

drawEPP(): EPPL7 support is not available
Error, 1041
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DUMP
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drawEPP(): EPPL7 support is not
available, 1041

loadLayer(): Unknown identifier.
Maximum number of classes reached,
1042

loadMapInternal(): Given map extent is
invalid, 1042

msGetLabelSize(): Requested font not
found, 1043

msLoadFontset(): Error opening fontset,
1044

msLoadMap(): Failed to open map file,
1044

msProcessProjection(): no options
found in 'init' file, 1044

msProcessProjection(): No such file or
directory, 1044

msProcessProjection(): Projection
library error.major axis or radius =
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msQueryByPoint: search returned no
results, 1046

msReturnPage(): Web application error.
Malformed template name, 1046

msSaveImageGD(): Unable to access file,
1047

msWMSLoadGetMapParams(): WMS server
error, 1047

Unable to load dll, 1047
Error return codes

MapScript Constants, 307
errorObj

MapScript, 313
MapScript PHP, 366
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Exception handling

MapScript Python, 419
EXPRESSION
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CLASSITEM, 155
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Arithmetic expressions, 159
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beyond, 161
buffer, 163
commify, 161
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difference, 163
disjoint, 160
dwithin, 161
eq, 159, 160, 164
firstcap, 162
fromtext, 163
ge, 159, 164
gt, 159, 164
in, 159
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le, 159, 164
length, 162
Logical expressions, 158
lower, 162
lt, 159, 164

MapServer expressions, 157
ne, 159, 164
not, 158
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overlaps, 161
Regular expression comparison, 155
round, 162
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String functions, 162
String operations, 161
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GEOMTRANSFORM, 175

EXTENSION
OUTPUTFORMAT, 240

EXTENT
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External overviews
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FEATURE, 165
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OUTPUTFORMAT IMAGEMODE, 243
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Feature attributes
Cluster, 139, 227
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featurenquery
CGI mode, 1025

featurequery
CGI mode, 1025
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MAP UNITS, 238
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File format
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FONTSET, 166
File management, 1019
File paths, 295, 1019
File placement, 1019
File types

MapScript Constants, 305
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SYMBOL, 264
FILTER

CLUSTER, 138
LAYER, 212
Run-time substitution, 1032
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FONT

LABEL, 203
SYMBOL, 264

Fonts
Optimization, 976

FONTSET, 165
File format, 166
MAP, 236

fontsetObj
MapScript, 314

FOOTER
JOIN, 194
LAYER, 213
WEB, 291

FORCE
LABEL, 203

FORCE2D
LAYER PROCESSING, 219

FORMATOPTION
BLOCKXSIZE, OUTPUTFORMAT, 243
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QUALITY, OUTPUTFORMAT, 241
QUANTIZE_COLORS, OUTPUTFORMAT, 241
QUANTIZE_FORCE, OUTPUTFORMAT, 241
TILED, OUTPUTFORMAT, 243
TRANSPARENT_FORMAT, OUTPUTFORMAT, 241
UTFRESOLUTION, OUTPUTFORMAT, 243

Formats
OGR, 591

FreeType, 1037
FriBidi, 35
FROM

JOIN, 194
fromtext

Expressions, 163
Functions

MapScript, 308
MapScript PHP, 362

G
GAMMA

LAYER PROCESSING, 220
OUTPUTFORMAT FORMATOPTION, 240

GAP, 95
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centroid, STYLE, 253
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Geospatial
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WMS METADATA, 771

gml_[geometry name]_occurances
WFS METADATA, 828

gml_[geometry name]_type
WFS METADATA, 828
WMS METADATA, 771

gml_[group name]_group
WFS METADATA, 828
WMS METADATA, 770
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LEADER, 227
GROUP

CLASS, 135
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H
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SYMBOL TYPE, 265
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I
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Image modes
MapScript Constants, 306

Image types
MapScript Constants, 306

IMAGECOLOR
LEGEND, 232
MAP, 236
SCALEBAR, 249

IMAGEMODE
BYTE, OUTPUTFORMAT, 243
FEATURE, OUTPUTFORMAT, 243
FLOAT32, OUTPUTFORMAT, 243
INT16, OUTPUTFORMAT, 243
OUTPUTFORMAT, 243
PC256, OUTPUTFORMAT, 243
RGB, OUTPUTFORMAT, 243
RGBA, OUTPUTFORMAT, 243

imageObj

MapScript, 315
MapScript PHP, 368
MapScript Python, 417

IMAGEPATH
WEB, 291

IMAGETYPE
jpeg, MAP, 236
MAP, 236
pdf, MAP, 236
png, MAP, 236
svg, MAP, 236

IMAGEURL
WEB, 291

img
CGI, 1024

imgbox
CGI, 1024

imgext
CGI, 1024

imgshape
CGI, 1024

imgsize
CGI, 1024

imgxy
CGI, 1024

in
Expressions, 159

inches
LAYER SIZEUNITS, 222
LAYER UNITS, 226
MAP UNITS, 238
SCALEBAR UNITS, 250

INCLUDE
MAP, 192

Include, 192
indexquery

CGI mode, 1025
initcap

Expressions, 162
INITIALGAP

STYLE, 254
INSPIRE, 781
INSPIRE Download Service, 832
INSPIRE View Service, 781
Installation, 33

MapScript PHP, 52
OGR, 593
Oracle, 72
Unix, 33
Win32, 42

INT16
OUTPUTFORMAT IMAGEMODE, 243

intarray
MapScript, 316
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INTERLACE
OUTPUTFORMAT FORMATOPTION, 242

INTERLEAVE
OUTPUTFORMAT FORMATOPTION, 243

Internal overviews
Raster, 657

International characters, 146
intersects

Expressions, 160
INTERVALS

SCALEBAR, 249
Introduction

MapScript, 297
ISO-8859-1

ENCODING, 152
ISO-8859-2

ENCODING, 152
itemfeaturenquery

CGI mode, 1025
itemfeaturequery

CGI mode, 1025
itemnquery

CGI mode, 1026
itemquery

CGI mode, 1026
ITEMS

FEATURE, 165
LAYER PROCESSING, 139, 217

J
Javascript

GEOMTRANSFORM, 183
LAYER GEOMTRANSFORM, 214
LAYER STYLEITEM, 223

JOIN, 193
CONNECTION, 194
CONNECTIONTYPE, 194
CONNECTIONTYPE csv, 194
CONNECTIONTYPE mysql, 194
CONNECTIONTYPE postgresql, 194
FOOTER, 194
FROM, 194
HEADER, 194
LAYER, 194, 214
NAME, 194
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TABLE, 194
TEMPLATE, 194
TO, 194
TYPE, 194

Join types
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jpeg
MAP IMAGETYPE, 236

K
kerneldensity

LAYER CONNECTIONTYPE, 210
KERNELDENSITY_COMPUTE_BORDERS

LAYER PROCESSING, 218
KERNELDENSITY_NORMALIZATION

LAYER PROCESSING, 218
KERNELDENSITY_RADIUS

LAYER PROCESSING, 218
KEYIMAGE

CLASS, 136
KEYSIZE

LEGEND, 232
KEYSPACING

LEGEND, 232
kilometers

LAYER SIZEUNITS, 222
LAYER UNITS, 226
MAP UNITS, 238
SCALEBAR UNITS, 250

L
LABEL, 201

ALIGN, 201
ANGLE, 201
ANTIALIAS, 202
BUFFER, 202
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COLOR, 202
ENCODING, 203
EXPRESSION, 203
FONT, 203
FORCE, 203
LEGEND, 232
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MAXOVERLAPANGLE, 204
MAXSCALEDENOM, 204
MAXSIZE, 204
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MINFEATURESIZE, 204
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MINSIZE, 204
OFFSET, 204
OUTLINECOLOR, 205
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POSITION, 206
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REPEATDISTANCE, 206
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SHADOWSIZE, 206
SIZE, 207
STYLE, 207
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TEXT, 208
TYPE, 208
TYPE bitmap, 208
TYPE truetype, 208
WRAP, 208

Label positions
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LABEL_NO_CLIP
LAYER PROCESSING, 219

LABELCACHE
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WEB METADATA, 292
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MapScript, 316

labelcacheMemberObj
MapScript PHP, 369

labelCacheObj
MapScript, 317

labelcacheObj
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LABELFORMAT
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LABELITEM
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LAYER, 215

LABELMINSCALEDENOM
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labelObj
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PROCESSING UNION_SCALE_CHECK, 220
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PROCESSING UNION_STATUS_CHECK, 220
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TRANSFORM, 225
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TYPE line, 225
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UNITS miles, 226
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Layer
Cloning, MapScript, 424

layer
CGI, 1024

Layer Metadata API
Metadata, 813

Layer types
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MapScript, 321
MapScript PHP, 372
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le
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LEADER, 226
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Leader, 226
LEGEND, 231

IMAGECOLOR, 232
KEYSIZE, 232
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LABEL, 232
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OUTLINECOLOR, 232
POSITION, 232
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STATUS, 233
TEMPLATE, 233
TRANSPARENT, 233

legend
CGI mode, 1026
Utility, 1004

LEGENDFORMAT
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legendicon
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MapScript, 329
MapScript PHP, 377
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libexslt, 294
libiconv, 148
libxslt, 294
Limit mapfile access, 967
Limitations

WFS Filter encoding, 847
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Line symbol overlay, 95
Line symbols, 93
LINECAP
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square, STYLE, 255
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LINEJOINMAXSIZE
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lineObj
MapScript, 330
MapScript PHP, 378

LOAD_FULL_RES_IMAGE
LAYER PROCESSING, 653

LOAD_WHOLE_IMAGE
LAYER PROCESSING, 653

loadLayer(): Unknown identifier. Maximum
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Error, 1042
loadMapInternal(): Given map extent is

invalid
Error, 1042

local
LAYER CONNECTIONTYPE, 210
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CONFIG MS_ENCRYPTION_KEY, 234
CONFIG MS_ERRORFILE, 234
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OUTPUTFORMAT, 237
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Map projections, 244
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mapext

CGI, 1025
Mapfile, 79, 1038

Cloning, MapScript, 423
MapScript, 422
Saving, MapScript, 423
SOS Server, 895
WCS Server, 864
WFS Client, 838
WFS Server, 816
WMS Client, 789
WMS Server, 754

Mapfile tuning, 969
mapObj

MapScript, 330, 423
MapScript PHP, 379

MapScript, 1038
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Constants Co, 305
Constants DB connection types, 305
Constants Error return codes, 307
Constants File types, 305
Constants Image modes, 306
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Constants Join types, 306
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Constants Line join types, 306
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Constants MS_VERSION, 302
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Constants Return codes, 307
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Constants Status values, 302
Constants Symbol types, 307
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Functions, 308
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imageObj, 315
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labelCacheMemberObj, 316
labelCacheObj, 317
labelObj, 318
Layer Cloning, 424
layerObj, 321
legendObj, 329
lineObj, 330
Mapfile, 422
Mapfile Cloning, 423
Mapfile Saving, 423
mapObj, 330, 423
markerCacheMemberObj, 338
outputFormatObj, 339
OWSRequest, 340
PHP, 50, 357
PHP Build, 51
PHP Classes, 363
PHP classObj, 363
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PHP Constants, 361
PHP Download, 51
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PHP errorObj, 366
PHP Functions, 362
PHP gridObj, 367
PHP hashTableObj, 368
PHP imageObj, 368
PHP Installation, 52
PHP labelcacheMemberObj, 369
PHP labelcacheObj, 370
PHP labelObj, 370
PHP layerObj, 372
PHP legendObj, 377
PHP lineObj, 378
PHP mapObj, 379
PHP outputformatObj, 386
PHP OwsrequestObj, 387
PHP pointObj, 388
PHP projectionObj, 389
PHP querymapObj, 390
PHP rectObj, 390
PHP referenceMapObj, 391
PHP resultObj, 392
PHP scalebarObj, 393
PHP Setup, 51
PHP shapefileObj, 394
PHP shapeObj, 395
PHP styleObj, 397
PHP symbolObj, 399
PHP webObj, 401
pointObj, 341
projectionObj, 343
Python, 417
Python Classes, 417
Python Exception handling, 419
Python imageObj, 417
Python pointObj, 418
Python rectObj, 419
Querying, 425
rectObj, 343
referenceMapObj, 344
resultCacheMemberObj, 346
resultCacheObj, 346
scalebarObj, 346
shapefileObj, 348
shapeObj, 348
styleObj, 351
symbolObj, 353
symbolSetObj, 355
V8, 76
webObj, 356

Mapscript
Wrapper, 762

Mapscript wrappers
WxS Services, 906
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Expressions, 157
mapshape

CGI, 1025
mapsize

CGI, 1025
mapxy

CGI, 1025
MARKER

REFERENCE, 248
markerCacheMemberObj

MapScript, 338
MARKERSIZE

REFERENCE, 248
MASK

LAYER, 215
MAXARCS

GRID, 188
MAXBOXSIZE

REFERENCE, 248
MAXCLASSES, 295
MAXDISTANCE

CLUSTER, 138
LEADER, 227

MAXFEATURES
LAYER, 216

MAXGEOWIDTH
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MAXLENGTH
LABEL, 203

MAXOVERLAPANGLE
LABEL, 204

MAXSCALEDENOM
CLASS, 136
LABEL, 204
LAYER, 216
STYLE, 255
WEB, 292

MAXSIZE
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LABEL, 204
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MAXSYMBOLS, 295
MAXTEMPLATE

WEB, 292
MAXWIDTH
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maxx
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maxy
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METADATA
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wms_extent, WMS, 773
wms_feature_info_mime_type, WMS, 768
wms_fees, WMS, 768
wms_getcapabilities_version, WMS, 768
wms_getfeatureinfo_formatlist, WMS, 773
wms_getlegendgraphic_formatlist, WMS, 768,

773
wms_getmap_formatlist, WMS, 768, 773
wms_group_abstract, WMS, 773
wms_group_title, WMS, 774
wms_identifier_authority, WMS, 774
wms_identifier_value, WMS, 774
wms_include_items, WMS, 774
wms_keywordlist, WMS, 768, 774
wms_keywordlist_vocabulary, WMS, 768, 774
wms_keywordlist_[vocabulary's

name]_items, WMS, 768, 774
wms_languages, WMS, 768
wms_layer_group, WMS, 774
wms_layerlimit, WMS, 768
wms_metadataurl_format, WMS, 775
wms_metadataurl_href, WMS, 775
wms_metadataurl_list, WMS, 775, 881
wms_metadataurl_type, WMS, 775
wms_onlineresource, WMS, 769
wms_opaque, WMS, 775
wms_postcode, WMS, 766

wms_remote_sld_max_bytes, WMS, 769
wms_resx, WMS, 769
wms_resy, WMS, 769
wms_rootlayer_abstract, WMS, 769
wms_rootlayer_keywordlist, WMS, 769
wms_rootlayer_name, WMS, 769
wms_rootlayer_title, WMS, 769
wms_service_onlineresource, WMS, 769
wms_srs, WMS, 769, 775
wms_stateorprovince, WMS, 766
wms_style, WMS, 775
wms_style_[style's_name]_legendurl_format,

WMS, 776
wms_style_[style's_name]_legendurl_height,

WMS, 776
wms_style_[style's_name]_legendurl_href,

WMS, 776
wms_style_[style's_name]_legendurl_width,

WMS, 776
wms_timeextent, WMS, 776
wms_timeformat, WMS, 770, 776
wms_timeitem, WMS, 776
wms_title, WMS, 770, 776

Metadata
Layer Metadata API, 813
SOS, 900
WCS, 879
WFS, 822
WMS, 765

METADATA_ITEM
OUTPUTFORMAT FORMATOPTION, 242

meters
LAYER SIZEUNITS, 222
LAYER UNITS, 226
MAP UNITS, 238
SCALEBAR UNITS, 250

Microsoft SQL Server 2008, 578
miles

LAYER SIZEUNITS, 222
LAYER UNITS, 226
MAP UNITS, 238
SCALEBAR UNITS, 250

MIMETYPE
OUTPUTFORMAT, 243

MINARCS
GRID, 188

MINBOXSIZE
REFERENCE, 248

MINDISTANCE
LABEL, 204

MINFEATURESIZE
CLASS, 137
LABEL, 204

MINGEOWIDTH
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LAYER, 216
MININTERVAL

GRID, 188
MINSCALEDENOM

CLASS, 136
LABEL, 204
LAYER, 216
STYLE, 256
WEB, 293

MINSIZE
CLASS, 137
LABEL, 204
STYLE, 256

MINSUBDIVIDE
GRID, 188

MINTEMPLATE
WEB, 293

MINWIDTH
STYLE, 256

minx
CGI, 1025

miny
CGI, 1025

miter
STYLE LINEJOIN, 255

mode
browse, CGI, 1025
CGI, 1025
coordinate, CGI, 1025
featurenquery, CGI, 1025
featurequery, CGI, 1025
indexquery, CGI, 1025
itemfeaturenquery, CGI, 1025
itemfeaturequery, CGI, 1025
itemnquery, CGI, 1026
itemquery, CGI, 1026
legend, CGI, 1026
legendicon, CGI, 1026
map, CGI, 1026
nquery, CGI, 1026
query, CGI, 1026
reference, CGI, 1026
scalebar, CGI, 1026
tile, CGI, 1026
zoomin, CGI, 1026
zoomout, CGI, 1026

MS_DEBUGLEVEL
Debugging, 948
Environment variables, 959

ms_enable_modes
WEB METADATA, 292

MS_ENCRYPTION_KEY
Environment variables, 960
MAP CONFIG, 234

MS_ERRORFILE
Debugging, 946
Environment variables, 960
MAP CONFIG, 234

MS_MAP_BAD_PATTERN
Environment variables, 961

MS_MAP_NO_PATH
Environment variables, 960

MS_MAP_PATTERN
Environment variables, 961

MS_MAPFILE
Apache, 761
Environment variables, 961

MS_MAPFILE_PATTERN
Environment variables, 961

MS_MODE
Environment variables, 962

MS_NONSQUARE
MAP CONFIG, 234

MS_OPENLAYERS_JS_URL
Environment variables, 962

MS_TEMPPATH
Environment variable, 294
Environment variables, 962

MS_VERSION
MapScript Constants, 302

MS_XMLMAPFILE_XSLT, 295
Environment variables, 962

msencrypt
Utility, 1004

msGetLabelSize(): Requested font not found
Error, 1043

msLoadFontset(): Error opening fontset
Error, 1044

msLoadMap(): Failed to open map file
Error, 1044

msProcessProjection(): no options found in
'init' file

Error, 1044
msProcessProjection(): No such file or

directory
Error, 1044

msProcessProjection(): Projection library
error.major axis or radius = 0 not
given

Error, 1045
msQueryByPoint: search returned no results

Error, 1046
msReturnPage(): Web application error.

Malformed template name
Error, 1046

msSaveImageGD(): Unable to access file
Error, 1047

MSSQL_READ_WKB
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LAYER PROCESSING, 219, 583
msWMSLoadGetMapParams(): WMS server error

Error, 1047
mysql

JOIN CONNECTIONTYPE, 194

N
NAME

CLASS, 137
JOIN, 194
LAYER, 216
MAP, 237
OUTPUTFORMAT, 243
SYMBOL, 264

NATIVE_FILTER
LAYER PROCESSING, 219

nauticalmiles
LAYER SIZEUNITS, 222
LAYER UNITS, 226
MAP UNITS, 238
SCALEBAR UNITS, 250

ne
Expressions, 159, 164

not
Expressions, 158

nquery
CGI mode, 1026

NULLVALUE
OUTPUTFORMAT FORMATOPTION, 243

O
OFFSET

LABEL, 204
SCALEBAR, 250
STYLE, 103, 256

OFFSITE
LAYER, 217

OGC, 1038
OGC conformance tests

WFS Filter encoding, 850
OGC Support, 747
OGR, 589, 1038

Connection Pooling, 599
Formats, 591
Installation, 593
Style parameters, 601
STYLEITEM "AUTO", 599
TILEINDEX, 598
Virtual File Support, 659

ogr
LAYER CONNECTIONTYPE, 210

OGRINFO, 596
ogrtindex, 982
OM, 1038

ON_MISSING_DATA
Debugging, 953
MAP CONFIG, 234

OPACITY
COMPOSITE, 146
LAYER, 217
STYLE, 256

OPAQUE_FORMAT
OUTPUTFORMAT FORMATOPTION, 241

OpenLayers, 1038
Optimization, 945

Databases, 1000
Fonts, 976
Image formats, 981
Layers, 974
PostGIS, 998
Projections, 970
Raster, 977
Raster Tiling, 981
Shape datasets, 997
Symbols, 975
Tile indexes, 981
TILEINDEX, 983
Vector, 993

or
Expressions, 158

Oracle, 606
Installation, 72

oraclespatial
LAYER CONNECTIONTYPE, 210

OUTLINECOLOR
CLASS, 137
LABEL, 205
LEGEND, 232
REFERENCE, 248
SCALEBAR, 250
STYLE, 256

OUTLINEWIDTH
LABEL, 205
STYLE, 257

Output formats
WCS Server, 866

OUTPUTFORMAT, 238
DRIVER, 240
EXTENSION, 240
FORMATOPTION, 240
FORMATOPTION BLOCKXSIZE, 243
FORMATOPTION BLOCKYSIZE, 243
FORMATOPTION COMPRESS, 243
FORMATOPTION COMPRESSION, 241
FORMATOPTION DUPLICATES, 243
FORMATOPTION GAMMA, 240
FORMATOPTION GEO_ENCODING, 242
FORMATOPTION INTERLACE, 242
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FORMATOPTION INTERLEAVE, 243
FORMATOPTION LABELS, 243
FORMATOPTION METADATA_ITEM, 242
FORMATOPTION NULLVALUE, 243
FORMATOPTION OPAQUE_FORMAT, 241
FORMATOPTION PALETTE, 241
FORMATOPTION PALETTE_FORCE, 241
FORMATOPTION QUALITY, 241
FORMATOPTION QUANTIZE_COLORS, 241
FORMATOPTION QUANTIZE_FORCE, 241
FORMATOPTION TILED, 243
FORMATOPTION TRANSPARENT_FORMAT, 241
FORMATOPTION UTFRESOLUTION, 243
IMAGEMODE, 243
IMAGEMODE BYTE, 243
IMAGEMODE FEATURE, 243
IMAGEMODE FLOAT32, 243
IMAGEMODE INT16, 243
IMAGEMODE PC256, 243
IMAGEMODE RGB, 243
IMAGEMODE RGBA, 243
MAP, 237
MIMETYPE, 243
NAME, 243
Template-driven output, 730
TRANSPARENT, 243
UTFGRID, 243
WFS Server, 821

outputFormatObj
MapScript, 339

outputformatObj
MapScript PHP, 386

overlaps
Expressions, 161

OVERSAMPLE_RATIO
LAYER PROCESSING, 654

ows_allowed_ip_list
SOS METADATA, 900, 902
WCS METADATA, 879, 882
WFS METADATA, 824, 830
WMS METADATA, 765, 771

ows_denied_ip_list
SOS METADATA, 900, 902
WCS METADATA, 879, 882
WFS METADATA, 825, 830
WMS METADATA, 765, 771

ows_http_max_age
WMS METADATA, 765

ows_language
SOS METADATA, 900

ows_schemas_location
SOS METADATA, 900
WFS METADATA, 825
WMS METADATA, 765

ows_sld_enabled
WMS METADATA, 766

ows_updatesequence
SOS METADATA, 900
WFS METADATA, 825
WMS METADATA, 766

OWSRequest
MapScript, 340

OwsrequestObj
MapScript PHP, 387

P
PALETTE

OUTPUTFORMAT FORMATOPTION, 241
PALETTE_FORCE

OUTPUTFORMAT FORMATOPTION, 241
PARTIALS

LABEL, 205
PATTERN, 95

STYLE, 257
PC256

OUTPUTFORMAT IMAGEMODE, 243
PDF

Geospatial, 241
pdf

MAP IMAGETYPE, 236
percentages

LAYER UNITS, 226
Performance tips

Raster, 656
PHP

Build, MapScript, 51
Classes, MapScript, 363
classObj, MapScript, 363
clusterObj, MapScript, 365
colorObj, MapScript, 366
Constants, MapScript, 361
Download, MapScript, 51
errorObj, MapScript, 366
Functions, MapScript, 362
gridObj, MapScript, 367
hashTableObj, MapScript, 368
imageObj, MapScript, 368
Installation, MapScript, 52
labelcacheMemberObj, MapScript, 369
labelcacheObj, MapScript, 370
labelObj, MapScript, 370
layerObj, MapScript, 372
legendObj, MapScript, 377
lineObj, MapScript, 378
mapObj, MapScript, 379
MapScript, 50, 357
outputformatObj, MapScript, 386
OwsrequestObj, MapScript, 387
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pointObj, MapScript, 388
projectionObj, MapScript, 389
querymapObj, MapScript, 390
rectObj, MapScript, 390
referenceMapObj, MapScript, 391
resultObj, MapScript, 392
scalebarObj, MapScript, 393
Setup, MapScript, 51
shapefileObj, MapScript, 394
shapeObj, MapScript, 395
styleObj, MapScript, 397
Support, 50
symbolObj, MapScript, 399
webObj, MapScript, 401

PHP Mapscript
Debugging, 955

Pie chart, 674
pixel, 648
pixels

LAYER SIZEUNITS, 222
LAYER UNITS, 226

pixmap
SYMBOL TYPE, 265

Pixmap polygon fill, 107
Pixmap symbols, 88
PLUGIN

LAYER, 217
plugin

LAYER CONNECTIONTYPE, 210
png

MAP IMAGETYPE, 236
point

LAYER TYPE, 225
Point symbols, 86
pointObj

MapScript, 341
MapScript PHP, 388
MapScript Python, 418

POINTS
FEATURE, 165
SYMBOL, 265

POLAROFFSET
STYLE, 257

polygon
LAYER TYPE, 225

Polygon outlines, 122
POLYLINE_NO_CLIP

LAYER PROCESSING, 219
POSITION

LABEL, 206
LEGEND, 232
SCALEBAR, 250

PostGIS
Optimization, 998

postgis
LAYER CONNECTIONTYPE, 210

postgresql
JOIN CONNECTIONTYPE, 194

POSTLABELCACHE
LAYER, 217
LEGEND, 232
SCALEBAR, 250

Preprocessing
Raster, 657

PRIORITY
LABEL, 206

PROCESSING, 217
ArcSDE options, LAYER, 217
BANDS, LAYER, 652
CHART_BAR_MAXVAL LAYER, 677
CHART_BAR_MINVAL LAYER, 677
CHART_SIZE LAYER, 673
CHART_SIZE_RANGE LAYER, 673
CHART_TYPE LAYER, 674
CLOSE_CONNECTION, LAYER, 217, 583
cluster options, LAYER, 217
CLUSTER_GET_ALL_SHAPES, LAYER, 139, 217
CLUSTER_KEEP_LOCATIONS, LAYER, 139, 217
CLUSTER_USE_MAP_UNITS, LAYER, 139, 217
COLOR_MATCH_THRESHOLD, LAYER, 652
contour options, LAYER, 218
CONTOUR_INTERVAL, LAYER, 218
CONTOUR_ITEM, LAYER, 218
CONTOUR_LEVELS, LAYER, 218
DITHER, LAYER, 653
EXTENT_PRIORITY, LAYER, 653
FORCE2D, LAYER, 219
GAMMA, LAYER, 220
GETSHAPE_STYLE_ITEMS, LAYER, 219
ITEMS, LAYER, 139, 217
KERNELDENSITY_COMPUTE_BORDERS, LAYER, 218
KERNELDENSITY_NORMALIZATION, LAYER, 218
KERNELDENSITY_RADIUS, LAYER, 218
LABEL_NO_CLIP, LAYER, 219
LAYER, 217
LOAD_FULL_RES_IMAGE, LAYER, 653
LOAD_WHOLE_IMAGE, LAYER, 653
LUT[_n], LAYER, 653
MSSQL_READ_WKB, LAYER, 219, 583
NATIVE_FILTER, LAYER, 219
OVERSAMPLE_RATIO, LAYER, 654
POLYLINE_NO_CLIP, LAYER, 219
RANGE_COLORSPACE, LAYER, 218
raster options, LAYER, 220
RENDERMODE, LAYER, 219
RESAMPLE, LAYER, 654
SCALE, LAYER, 654
union options, LAYER, 220
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UNION_SCALE_CHECK, LAYER, 220
UNION_SRCLAYER_CLOSE_CONNECTION, LAYER,

220
UNION_STATUS_CHECK, LAYER, 220
UV_SIZE_SCALE, LAYER, 219
UV_SPACING, LAYER, 219
WORLDFILE, LAYER, 654

Processing directives
Raster, 652

PROJ, 1038
PROJ_DEBUG

Debugging, 950
MAP CONFIG, 235

PROJ_LIB
Environment variables, 962
MAP CONFIG, 234, 246

PROJECTION, 244
LAYER, 220
MAP, 237

Projection, 1038
projectionObj

MapScript, 343
MapScript PHP, 389

Projections
Optimization, 970

Python
Classes, MapScript, 417
Exception handling, MapScript, 419
imageObj, MapScript, 417
MapScript, 417
pointObj, MapScript, 418
rectObj, MapScript, 419

Q
qformat

CGI, 1026
qitem

CGI, 1026
qlayer

CGI, 1026
qstring

CGI, 1026
QUALITY

OUTPUTFORMAT FORMATOPTION, 241
QUANTIZE_COLORS

OUTPUTFORMAT FORMATOPTION, 241
QUANTIZE_FORCE

OUTPUTFORMAT FORMATOPTION, 241
Query

Raster, 655
query

CGI mode, 1026
LAYER TYPE, 225

Query types

MapScript Constants, 304
queryfile

CGI, 1027
QUERYFORMAT

WEB, 293
Querying

MapScript, 425
QUERYMAP, 246

COLOR, 247
MAP, 237
SIZE, 247
STATUS, 247
STYLE, 247

Querymap styles
MapScript Constants, 305

querymapObj
MapScript PHP, 390

Quotes escaping, 154

R
radius

WMS Vendor specific parameters, 777
RANGE_COLORSPACE

LAYER PROCESSING, 218
RANGEITEM

STYLE, 258
Raster, 1039

24bit, 652
8bit, 657
External overviews, 658
Georeferencing, 658
Internal overviews, 657
Optimization, 977
Performance tips, 656
Preprocessing, 657
Processing directives, 652
Query, 655
Tile indexing, 650
Tiled datasets, 657
Tiling, Optimization, 981
Warping, 651
World files, 658

raster
LAYER TYPE, 225

Raster classification, 647
Raster data, 646
Raster formats, 649
Raster options, 217
raster options

LAYER PROCESSING, 220
Raster query

blue, 655
class, 655
green, 655
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red, 655
value_list, 655
value_n, 655
x, 655
y, 655

rectObj
MapScript, 343
MapScript PHP, 390
MapScript Python, 419

red, 648
Raster query, 655

ref
CGI, 1027

REFERENCE, 247
COLOR, 247
EXTENT, 248
IMAGE, 248
MAP, 237
MARKER, 248
MARKERSIZE, 248
MAXBOXSIZE, 248
MINBOXSIZE, 248
OUTLINECOLOR, 248
SIZE, 248
STATUS, 248

reference
CGI mode, 1026

referenceMapObj
MapScript, 344
MapScript PHP, 391

refxy
CGI, 1027

REGION
CLUSTER, 138

Regular expression comparison
Expressions, 155

Regular expressions, 155, 295
RENDERMODE

LAYER PROCESSING, 219
REPEATDISTANCE

LABEL, 206
REQUIRES

LAYER, 220
RESAMPLE

LAYER PROCESSING, 654
RESOLUTION

MAP, 237
resultCacheMemberObj

MapScript, 346
resultCacheObj

MapScript, 346
resultObj

MapScript PHP, 392
Return codes

MapScript Constants, 307
ReWriteRule

Apache, 760
RGB

OUTPUTFORMAT IMAGEMODE, 243
RGBA

OUTPUTFORMAT IMAGEMODE, 243
ROSA-Applet controls, 1029
round

Expressions, 162
STYLE LINECAP, 255
STYLE LINEJOIN, 255

Run-time substitution, 1029
Default value, 1032
FILTER, 1032
Supported parameters, 1031
VALIDATION, 1032

S
savequery

CGI, 1027
Saving

MapScript Mapfile, 423
SCALE

LAYER PROCESSING, 654
SCALEBAR, 248

ALIGN, 248
BACKGROUNDCOLOR, 248
COLOR, 249
IMAGECOLOR, 249
INTERVALS, 249
LABEL, 250
MAP, 237
OFFSET, 250
OUTLINECOLOR, 250
POSITION, 250
POSTLABELCACHE, 250
SIZE, 250
STATUS, 250
STYLE, 250
UNITS, 250
UNITS feet, 250
UNITS inches, 250
UNITS kilometers, 250
UNITS meters, 250
UNITS miles, 250
UNITS nauticalmiles, 250

scalebar
CGI mode, 1026
Utility, 1006

scalebarObj
MapScript, 346
MapScript PHP, 393

SCALEDENOM
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MAP, 237
scaledenom

CGI, 1027
SCALETOKEN

LAYER, 221
Scaling of symbols, 86
sde

LAYER CONNECTIONTYPE, 210
searchmap

CGI, 1027
SetEnvIf

Apache, 761
Setup

MapScript PHP, 51
WMS Server, 753

SHADOWCOLOR
LABEL, 206

SHADOWSIZE
LABEL, 206

Shape datasets
Optimization, 997

Shape types
MapScript Constants, 304

Shapefile, 1039
Shapefile types

MapScript Constants, 304
shapefileObj

MapScript, 348
MapScript PHP, 394

shapeindex
CGI, 1027

shapeObj
MapScript, 348
MapScript PHP, 395

SHAPEPATH
MAP, 237

Shift-JIS
ENCODING, 152

shp2img
Debugging, 950
Utility, 1006

shptree
Utility, 1010

shptreetst
Utility, 1011

simpifypt
STYLE GEOMTRANSFORM, 254

simple: CGI controls, 1023
simple: OpenLayers viewer, 1035
simplify

GEOMTRANSFORM, 178
LAYER GEOMTRANSFORM, 213
STYLE GEOMTRANSFORM, 254

simplifypt

GEOMTRANSFORM, 179
LAYER GEOMTRANSFORM, 213

SIZE
CLASS, 137
LABEL, 207
MAP, 238
QUERYMAP, 247
REFERENCE, 248
SCALEBAR, 250
STYLE, 258

SIZEUNITS
feet, LAYER, 222
inches, LAYER, 222
kilometers, LAYER, 222
LAYER, 222
meters, LAYER, 222
miles, LAYER, 222
nauticalmiles, LAYER, 222
pixels, LAYER, 222

slayer
CGI, 1027

SLD, 851, 1039
Element support, 854

smoothsia
all, GEOMTRANSFORM, 180
angle, GEOMTRANSFORM, 180
GEOMTRANSFORM, 180
LAYER GEOMTRANSFORM, 213
STYLE GEOMTRANSFORM, 254

sortshp
Utility, 1013

SOS, 1039
LAYER METADATA, 902
Metadata, 900
METADATA ows_allowed_ip_list, 900, 902
METADATA ows_denied_ip_list, 900, 902
METADATA ows_language, 900
METADATA ows_schemas_location, 900
METADATA ows_updatesequence, 900
METADATA sos_abstract, 901
METADATA sos_accessconstraints, 901
METADATA sos_address, 901
METADATA sos_addresstype, 901
METADATA sos_allowed_ip_list, 900
METADATA sos_city, 901
METADATA sos_contactelectronicmailaddress,

901
METADATA sos_contactfacsimiletelephone,

901
METADATA sos_contactinstructions, 901
METADATA sos_contactorganization, 901
METADATA sos_contactperson, 901
METADATA sos_contactposition, 901
METADATA sos_contactvoicetelephone, 901
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METADATA sos_country, 901
METADATA sos_denied_ip_list, 900
METADATA sos_describesensor_url, 902
METADATA sos_enable_request, 901, 902
METADATA sos_encoding_blockSeparator, 901
METADATA sos_encoding_tokenSeparator, 901
METADATA sos_fees, 901
METADATA sos_hoursofservice, 901
METADATA sos_keywordlist, 902
METADATA sos_maxfeatures, 902
METADATA sos_observedproperty_authority,

903
METADATA sos_observedproperty_id, 903
METADATA sos_observedproperty_name, 903
METADATA sos_observedproperty_version,

903
METADATA sos_offering_description, 903
METADATA sos_offering_extent, 903
METADATA sos_offering_id, 904
METADATA sos_offering_intendedapplication,

904
METADATA sos_offering_name, 904
METADATA sos_offering_timeextent, 904
METADATA sos_onlineresource, 902
METADATA sos_postcode, 901
METADATA sos_procedure, 904
METADATA sos_procedure_item, 904
METADATA sos_role, 902
METADATA sos_service_onlineresource, 902
METADATA sos_srs, 902
METADATA sos_stateorprovince, 901
METADATA sos_timeitem, 904
METADATA sos_title, 902
METADATA sos_[item name]_alias, 903
METADATA sos_[item name]_definition, 903
METADATA sos_[item name]_uom, 903
WEB METADATA, 900

SOS Server, 893
Mapfile, 895

sos_abstract
SOS METADATA, 901

sos_accessconstraints
SOS METADATA, 901

sos_address
SOS METADATA, 901

sos_addresstype
SOS METADATA, 901

sos_allowed_ip_list
SOS METADATA, 900

sos_city
SOS METADATA, 901

sos_contactelectronicmailaddress
SOS METADATA, 901

sos_contactfacsimiletelephone

SOS METADATA, 901
sos_contactinstructions

SOS METADATA, 901
sos_contactorganization

SOS METADATA, 901
sos_contactperson

SOS METADATA, 901
sos_contactposition

SOS METADATA, 901
sos_contactvoicetelephone

SOS METADATA, 901
sos_country

SOS METADATA, 901
sos_denied_ip_list

SOS METADATA, 900
sos_describesensor_url

SOS METADATA, 902
sos_enable_request

SOS METADATA, 901, 902
sos_encoding_blockSeparator

SOS METADATA, 901
sos_encoding_tokenSeparator

SOS METADATA, 901
sos_fees

SOS METADATA, 901
sos_hoursofservice

SOS METADATA, 901
sos_keywordlist

SOS METADATA, 902
sos_maxfeatures

SOS METADATA, 902
sos_observedproperty_authority

SOS METADATA, 903
sos_observedproperty_id

SOS METADATA, 903
sos_observedproperty_name

SOS METADATA, 903
sos_observedproperty_version

SOS METADATA, 903
sos_offering_description

SOS METADATA, 903
sos_offering_extent

SOS METADATA, 903
sos_offering_id

SOS METADATA, 904
sos_offering_intendedapplication

SOS METADATA, 904
sos_offering_name

SOS METADATA, 904
sos_offering_timeextent

SOS METADATA, 904
sos_onlineresource

SOS METADATA, 902
sos_postcode
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SOS METADATA, 901
sos_procedure

SOS METADATA, 904
sos_procedure_item

SOS METADATA, 904
sos_role

SOS METADATA, 902
sos_service_onlineresource

SOS METADATA, 902
sos_srs

SOS METADATA, 902
sos_stateorprovince

SOS METADATA, 901
sos_timeitem

SOS METADATA, 904
sos_title

SOS METADATA, 902
sos_[item name]_alias

SOS METADATA, 903
sos_[item name]_definition

SOS METADATA, 903
sos_[item name]_uom

SOS METADATA, 903
Spatial expressions

Expressions, 160
Spatial functions

Expressions, 163
SpatialLite, 630
Special options, 217
Spherical Mercator, 1039
square

STYLE LINECAP, 255
SRS

WFS Server, 819
Stacked bar graph, 677
start

GEOMTRANSFORM, 170
STYLE GEOMTRANSFORM, 253

STARTINDEX
WFS Server, 821

STATUS
CLASS, 137
LAYER, 222
LEGEND, 233
MAP, 238
QUERYMAP, 247
REFERENCE, 248
SCALEBAR, 250

Status values
MapScript Constants, 302

Stored queries
WFS Server, 822

String comparison
Expressions, 155

String expressions
Expressions, 158

String functions
Expressions, 162

String operations
Expressions, 161

String quotation, 153
STYLE, 250

ANGLE, 251
ANTIALIAS, 251
BACKGROUNDCOLOR, 251
CLASS, 137
COLOR, 252
COLORRANGE, 252
DATARANGE, 252
GAP, 253
GEOMTRANSFORM, 253
GEOMTRANSFORM bbox, 253
GEOMTRANSFORM buffer, 253
GEOMTRANSFORM centroid, 253
GEOMTRANSFORM end, 253
GEOMTRANSFORM expression, 253
GEOMTRANSFORM generalize, 254
GEOMTRANSFORM labelpnt, 253
GEOMTRANSFORM labelpoly, 253
GEOMTRANSFORM simpifypt, 254
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Style parameters
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STYLEITEM
attribute, LAYER, 223
AUTO, LAYER, 223
Javascript, LAYER, 223
LAYER, 223

STYLEITEM "AUTO"
OGR, 599

STYLEITEM Javascript, 260
styleObj

MapScript, 351
MapScript PHP, 397

Support
PHP, 50

Supported features
WFS Filter encoding, 843

Supported formats
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Supported parameters
Run-time substitution, 1031

SVG, 1039
svg

MAP IMAGETYPE, 236
SYMBOL TYPE, 265

SWF, 1039
SWIG, 1039
sym2img
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SYMBOL, 263
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CHARACTER, 264
CLASS, 137
FILLED, 264
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Symbol construction, 79
Symbol scaling, 83
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Symbol types

MapScript Constants, 307
symbolObj

MapScript, 353
MapScript PHP, 399

Symbology examples, 265
Symbols
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SYMBOLSCALEDENOM

LAYER, 224
SYMBOLSET

MAP, 238
symbolSetObj

MapScript, 355
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TABLE

JOIN, 194
TEMPLATE

CLASS, 137
JOIN, 194
LAYER, 224
LEGEND, 233
WEB, 294

Template substitution tags
Template-driven output, 731

Template-driven output, 729
OUTPUTFORMAT, 730
Template substitution tags, 731

TEMPLATEPATTERN
MAP, 238

Templating, 269
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Temporary directory, 294
Temporary files, 294, 1019
TEMPPATH

WEB, 294
TEXT

CLASS, 137
FEATURE, 165
LABEL, 208
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CGI mode, 1026

Tile indexes
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Tile indexing
Raster, 650

tile4ms
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Tiled datasets
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TILEINDEX
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Tileindex, 1039
tileindex
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TILESRS
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TOLERANCEUNITS
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TRANSFORM
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SYMBOL, 265

TRANSPARENT_FORMAT
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SYMBOL TYPE, 265
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hatch, SYMBOL, 265
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Unable to load dll

Error, 1047
union
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union options
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LAYER PROCESSING, 220
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dd, LAYER, 226
dd, MAP, 238
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feet, MAP, 238
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kilometers, LAYER, 226
kilometers, MAP, 238
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